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1 Introduction

M-theory is well-known but not well-understood. It arises as an umbrella theory that uni-

fies the various perturbative string theories into a single non-perturbative theory. In its

strong coupling phase M-theory does not possess string states but rather M2-branes and

M5-branes. The M2-branes are now relatively well understood and described by three-

dimensional conformal Chern-Simons-Matter theories with 16 (BLG model [1–3]) or 12

(ABJM models [4, 5]) manifest supersymmetries. The M5-brane however remains very

mysterious. Its worldvolume description arises from a six-dimensional conformal theory

with (2, 0) supersymmetry. Unlike the case of the three-dimensional worldvolume theo-

ries of M2-branes very little is known about six-dimensional UV complete quantum field

theories, let alone those with maximal supersymmetry.

There have been several attempts to understand the (2, 0) theory in the literature.

Some time ago a light-cone formulation was proposed in [6], for the case of light-like

compactification of the M5-brane as well as related constructions from Matrix Theory [7–9].

In addition a four-dimensional ‘deconstruction’ was presented in [10]. More recently it has

been suggested that maximally supersymmetric five-dimensional Yang-Mills theory can be

used to define the (2, 0) theory in the case of a space-like compactification, including all

the Kaluza-Klein modes [11, 12]. Other, even more recent, discussions on formulating the

dynamics of the (2, 0) theory are [13–20].

An attempt to shed some light on the mysterious (2, 0) system and the M5-brane

was presented in [21]. There a non-Abelian system of equations of motion were derived

which provide a representation of the (2, 0) superalgebra. The construction involved a new

field Cµ
a however the on-shell constraints force Cµ

a to be constant and furthermore set all

derivatives of the non-Abelian fields to zero along the direction of Cµ
a . Thus, although

the system is formally six-dimensionally Lorentz invariant, its non-trivial dynamics are
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five-dimensional. Choosing a space-like vacuum expectation value for Cµ
a leads to five-

dimensional maximally supersymmetric Yang-Mills. Indeed a closely related system can

essentially be reverse-engineered directly from maximally supersymmetric five-dimensional

Yang-Mills [22]. Nevertheless there have been some encouraging signs that this formalism

is capable of describing various branes in string theory and M-theory [23, 24]. In this paper

we wish to study the system of equations obtained in [21] in the case where the auxiliary

field Cµ
a is null.

The rest of this paper is organized as follows. In section 2 we review the (2, 0) system

constructed in [21]. We also determine the conserved energy momentum tensor, super-

charge and compute the superalgebra including the central charges. In section 3 we con-

sider in detail the resulting dynamical system when the auxiliary vector field Cµ
a has a null

vacuum expectation value. This leads to a curious system of equations with 16 supersym-

metries and an SO(5) R-symmetry that propagate in one null and four space directions.

We show how the equations reduce to motion on instanton moduli space, where the instan-

ton number is the null momentum parallel to Cµ
a . We then quantize the system by using

the other null momentum generator as a Hamiltonian. This leads directly to the light-cone

quantization proposal of the (2, 0) theory proposed in [6], generalized to include a potential

when the scalars have a vacuum expectation value and also couplings to background gauge

and self-dual two-form fields. In section 4 we end with our conclusions.

2 A non-Abelian (2,0) supersymmetry

Let us start by reviewing the construction of [21]. The fields consist of 5 scalars XI
a ,

a sixteen-component Fermion ψa which satisfies Γ012345ψa = −ψa, a gauge field Ãµ
a
b, a

vector Cµ
a and a self-dual three-form Hµνλ a:

Hµνλ a =
1

3!
ǫµνλτσρH

τσρ
a . (2.1)

Here the index a refers to the fact that the fields take values in a 3-algebra with structure

constants f cdba which are totally anti-symmetric (when all indices are raised) and satisfy

the fundamental identity

fefgdf
abc

g = fefagf
gbc

d + fefbgf
agc

d + fefcgf
abg

d . (2.2)

The supersymmetry transformations are:

δXI
a = iǭΓIψa (2.3)

δψa = ΓµΓIǫDµX
I
a +

1

3!

1

2
ΓµνλǫH

µνλ
a − 1

2
ΓλΓ

IJǫCλ
bX

I
cX

J
d f

cdb
a (2.4)

δHµνλ a = 3iǭΓ[µνDλ]ψa + iǭΓIΓµνλκC
κ
bX

I
cψdf

cdb
a (2.5)

δÃµ
b
a = iǭΓµλC

λ
c ψdf

cdb
a (2.6)

δCµ
a = 0 . (2.7)
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These transformations close on-shell. In particular the equations of motion are [21]1

0 = ΓµDµψa +XI
cC

ν
b ΓνΓ

Iψdf
cdb

a (2.8)

0 = D2XI
a − i

2
ψ̄cC

ν
b ΓνΓ

Iψdf
cdb

a + Cν
b CνgX

J
c X

J
e X

I
ff

efg
df

cdb
a (2.9)

0 = D[µHνλρ] a +
1

4
ǫµνλρστC

σ
b X

I
cD

τXI
df

cdb
a +

i

8
ǫµνλρστC

σ
b ψ̄cΓ

τψdf
cdb

a (2.10)

0 = F̃µν
b
a + Cλ

cHµνλ df
cdb

a (2.11)

0 = DµC
ν
a = Cµ

c C
ν
d f

bcd
a (2.12)

0 = Cρ
cDρX

I
df

cdb
a = Cρ

cDρψdf
cdb

a = Cρ
cDρHµνλ af

cdb
a . (2.13)

In all these equations F̃µν
b
a is the field strength of the gauge connection Ãµ

b
a which appears

in the covariant derivative Dµ which acts as, for example, DµX
I
a = ∂µX

I
a − Ãµ

b
aX

I
b .

Note that the second to last equation implies that Cµ
a is constant and hence selects

a preferred direction spacetime and in the 3-algebra. The final equations imply that the

non-Abelian components of the fields can only propagate in the five dimensions orthogo-

nal to Cµ
a .

Next it will be useful to construct the conserved currents of this theory. In particular

we look for an energy-momentum tensor Tµν as well as a supercurrent Jµ. Simple trial and

error leads to the following expressions:

Tµν =DµX
I
aDνX

Ia − 1

2
ηµνDλX

I
aD

λXIa

+
1

4
ηµνC

λ
bX

I
aX

J
c CλgX

I
fX

J
e f

cdbafefgd +
1

4
Hµλρ aHν

λρ a

− i

2
ψ̄aΓµDνψ

a +
i

2
ηµνψ̄aΓ

λDλψ
a − i

2
ηµνψ̄aC

λ
bX

I
cΓλΓ

Iψdf
abcd (2.14)

Jµ =
1

2

1

3!
Hνλρ aΓ

νλρΓµψa −DνX
I
aΓ

νΓIΓµψa − 1

2
Cν
bX

I
cX

J
d ΓνΓ

IJΓµψaf bcda . (2.15)

In the Abelian case this agrees with the linearised form of the energy-momentum tensor

derived in [25]. The associated conserved charges are

Pµ =

∫

d5x Tµ0 , Q =

∫

d5x J0 , (2.16)

where the integrals are over the spatial coordinates, corresponding to the momentum and

supercharge respectively.

The superalgebra of the (2, 0)-theory can then be deduced by evaluating δJ0 = δǫJ
0αǫα

viz :

{Qα, Qβ} =−
∫

d5x (δǫJ
0C−1)αβ

=− 2(ΓµC−1)αβPµ + (ΓµΓIC−1)αβZ
I
µ + (ΓµνλΓIJC−1)αβZ

IJ
µνλ . (2.17)

1Note the corrected sign in the scalar equation of motion, first pointed out in [23], as well the corrected

sign in the gauge field equation of motion.
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The central charges we obtain in this way are (in the case of vanishing Fermions):

ZI
0 =

∫

d5x 4C0
bX

I
cX

J
dD

0XJ
a f

cdba (2.18)

ZI
i =

∫

d5x

(

H0
ji aD

jXIa +
1

6
∂j(Hklm aX

Iaε0ijklm)

+ CibX
I
cX

J
dD

0XJ
a f

cdba − 2C0
bX

I
cX

J
dDiX

I
af

cdba

)

(2.19)

ZIJ
0ij=

∫

d5x

(

1

2
H0ij aC

0
bX

I
cX

J
d f

cdba − ∂i(X
I
aDjX

Ja)

)

(2.20)

ZIJ
klm=

∫

d5x

(

1

12
Hklm aC

0
bX

I
cX

J
d f

cdba +
1

36
∂i(CjbX

K
c X

L
d X

M
a f cdbaε0ijklmε

IJKLM )

)

, (2.21)

where here, in this section, i, j = 1, 2, 3, 4, 5.

3 Null reduction

Next we wish to consider the above system of equations for the special case where Cµ
a is a

null vector:

Cµ
a =

g2√
2
(δµ0 + δµ5 )δ

∗
a (3.1)

where g2 has dimensions of length and ∗ denotes some preferred direction in the 3-algebra.

We choose to go to light-cone coordinates i.e. xµ = (x+, x−, xi) where

x− =
1√
2
(x0 − x5) , x+ =

1√
2
(x0 + x5) , (3.2)

so that Cµ
a = g2δµ+δ

∗
a. Note that for the rest of this paper we have i, j = 1, 2, 3, 4 (rather

than i, j = 1, 2, 3, 4, 5 that was used in the previous section). The constraint (2.13) now tells

us that D+ vanishes on all the fields. Furthermore F̃i+
b
a = 0 so Ã+

b
a is a flat connection

and can be set to zero (at least locally). Thus the fields are essentially just functions of xi

and x−. Here we wish to view these equations of motion as a dynamical system where x−

plays the role of time.

Let us now give the equations of motion that follow from the choice Cµ
a = g2δµ+δ

∗
a.

Fixing the element T ∗ in the 3-algebra means that the remaining generators behave as an

ordinary Lie-algebra with Lie bracket:

i[T c, T d] = [T ∗, T c, T d] = f∗cdaT
a . (3.3)

The components of the fields along the ∗ direction in the 3-algebra decouple and behave as a

free six-dimensional tensor multiplet and for the rest of this paper we simply discard them.

Alternatively one could have started from a non-Abelian (2, 0) system where the C-field

does not take values in the algebra, i.e. Cµ instead of Cµ
a , as in the construction of [22].

For the sake of clarity we will use a notation whereby all the fields are taken to be

Lie-algebra valued: e.g. XI =
∑

a 6=∗X
I
aT

a, and the a index is dropped. We also note that

the gauge field Ãµ
b
a and field strength F̃µν

b
a also take values in the Lie-algebra and act on

– 4 –
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the other fields through the commutator. Therefore we drop the a, b indices and tilde on

these fields in what follows.

In the (x+, x−, xi) coordinates self-duality of Hµνλ implies that Fij = −g2Hij+ is

anti-self-dual, Gij = −g2Hij− is self-dual and

Hijk = g−2ǫijklF
l
− . (3.4)

Noting that the constraint implies that only the derivatives D− and Di are non-vanishing

we find the remaining equations of motion can be written as

0 = Γ−D−ψ + ΓiDiψ + ig2[XI ,Γ+Γ
Iψ] (3.5)

0 = DiD
iXI +

g2

2
[ψ̄,Γ+Γ

Iψ] (3.6)

0 = DiFi− +
g4

2
[ψ̄,Γ+ψ] (3.7)

0 = D−Fi− −DjGij − ig4[XI , DiX
I ] +

g4

2
[ψ̄,Γiψ] (3.8)

0 = D[iFj−] . (3.9)

One sees that the final equation is just the Bianchi identity and automatically satisfied.

Our strategy now is to solve as many of the equations of motion as possible. We will

do this by setting the Fermions to zero with the understanding that the supersymmetry

can be used to generate Fermionic solutions. We will see that all but the second order

equation (3.8) can be solved and reduced to ADHM data.

To continue we first observe that the gauge field Ai is determined by the ADHM con-

struction [26]. Thus the degrees of freedom of the gauge field are reduced to the finite dimen-

sional instanton moduli space with local coordinatesmα. Note that althoughGij is self-dual

it has no interpretation as the field strength of Ai. Therefore Gij is not necessarily the field

strength of a gauge field and one cannot solve for it using the ADHM construction. In fact

Gij behaves as a non-dynamical background field since its D− derivative never appears.

With vanishing Fermions the scalar equation of motion is just DiD
iXI = 0. It is easy

to see that there is a unique solution to this equation for any given asymptotic value of

XI . In addition for an instanton background there exists smooth solutions. Thus XI is

uniquely determined in terms of the ADHM data of the gauge field Ai and its asymptotic

value:

XI = vI +O
(

1

|x|2
)

, (3.10)

where vI is an element of the Lie-algebra.

Next we consider the equation DiFi− = 0. In terms of gauge fields this is

DiDiA− −Di∂−Ai = 0 . (3.11)

To solve this equation we need to recall some facts about instanton moduli space, for

reviews see [27, 28]. In particular the instanton equations are

Fij = −1

2
εijklF

kl . (3.12)

– 5 –
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Moduli correspond to infinitesimal changes to the gauge fields that preserve this condition:

DiδAj −DjδAi = −εijklDkδAl . (3.13)

However gauge transformations δAi = Diω will clearly solve these equations and we do not

wish to include them in the moduli. To exclude them we require that δAi is orthogonal to

all gauge modes:

Tr

∫

d4x δAiD
iω = 0 . (3.14)

Integrating by parts, and requiring that ω = 0 at infinity, shows that we therefore impose

the gauge fixing condition

DiδAi = 0 . (3.15)

We have seen that the solution to the equations of motion requires that Ai has anti-self-

dual field strength. Therefore the x− dependence comes entirely through the dependence

of the moduli on x− and hence we conclude that

Di∂−Ai = 0 , (3.16)

with ∂−Ai =
∂Ai

∂mα∂−m
α + Diω where ω is chosen to ensure that (3.16) is satisfied. Thus

the DiFi− = 0 equation simply becomes DiDiA− = 0. This is the same as the XI equation

and so A− is also determined in terms of ADHM data and its asymptotic value:

A− = w +O
(

1

|x|2
)

, (3.17)

where w is an element of the Lie-algebra.

We are now left with just one equation which is second order in x−:

D−Fi− −DjGij − ig4[XI , DiX
I ] = 0 . (3.18)

However as we mentioned above we do not aim to solve this equation - which would amount

to a complete solution to all the classical field equations. Rather we now wish to quantize

the classical field configurations that we have constructed and use the momentum generator

along x− as the Hamiltonian.

3.1 Conserved charges

To proceed we note that we need to use a slightly different definition of the conserved

charge. In particular the problem with the standard definition given in section 2 is that

the integral over all space includes an integral over x5. However one can simply change

integration variable from x5 to x− so that the integral is over all the coordinates. The

resulting conserved charge is therefore constant not for dynamical reasons but because we

have integrated over all the coordinates upon which the fields depend.

On the other hand we can consider

Pµ = g2
∫

d4x Tµ+ , Q = g2
∫

d4x J− , (3.19)

– 6 –



J
H
E
P
0
2
(
2
0
1
2
)
0
1
3

where we have included a factor of g2 to ensure that they have the canonical dimensions.

Since D+ = 0, Pµ and Q are conserved in the sense that ∂−Pµ = ∂−Q = 0. Note that this

assumes that the fields vanish sufficiently quickly at infinity so that the boundary terms

in the integrals can be discarded. In particular conservation of Q requires that D−X
I and

[XI , XJ ] → 0 as xi → ∞. Therefore, in this paper, in order to obtain conserved charges

that can be used to define the quantum theory we assume that

[vI , vJ ] = [vI , w] = 0 . (3.20)

i.e. we require that the scalar fields and gauge field are in a vacuum configuration at infinity.

More explicitly these expressions are (in the case of vanishing Fermions):

P− =Tr

∫

d4x
1

2g2
Fi−F

i
− +

g2

2
DiX

IDiXI (3.21)

P+ = − 1

8g2
Tr

∫

d4x εijklFijFkl (3.22)

Pi =
1

2g2
Tr

∫

d4x FijF−
j (3.23)

Q =Tr

∫

d4x Fi−Γ
iΓ−ψ − 1

4
FijΓ

ijΓ+Γ−ψ + g2DiX
JΓJΓiΓ−ψ . (3.24)

Note that P+ = −4π2g−2k, where k is the instanton number. Thus the P+ eigenvalues are

discrete. Physically we interpret this a arising because the x+ direction is resticted to lie

on a circle with radius R = g2/4π2.

We can further decompose Q = Q+ + Q− where Γ−+Q± = ±Q±. In this case the

superalgebra becomes

{Q−α,Q−β} =− 2P−(Γ
−C−1)αβ + ZI

+(Γ
−ΓIC−1)αβ + ZIJ

ij+(Γ
ijΓ−ΓIJC−1)αβ (3.25)

{Q+α,Q+β} =− 2P+(Γ
+C−1)αβ (3.26)

{Q−α,Q+β} =− 2Pi(Γ
iC−1)αβ + ZI

i (Γ
iΓIC−1)αβ , (3.27)

where C = Γ0 is the charge conjugation matix and the central charges are

ZI
+ =− 2Tr

∫

d4x F−iD
iXI (3.28)

ZI
i =− Tr

∫

d4x GijD
jXI (3.29)

ZIJ
ij+ =− g2Tr

∫

d4x D[iX
IDj]X

J . (3.30)

Note that although there are 16 supersymmetry charges only 8 of them (Q−) have a

non-trivial relation with P−. This is a well-known feature of light-cone gauge (cf. the

Green-Schwarz superstring). Furthermore any state with a non-vanishing P+ must break

the Q+ supersymmetries.
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We also see that Gij only appears through its contribution to the central charge ZI
i .

Here we take it to be a background, non-dynamical field, in which case one only seems to

obtain a conserved quantity in the case that DjGij = 0, so that it decouples from (3.18).

In this case ZI
i is simply a boundary term depending on vI and Gij .

Thus, to summarize, we impose the constraints DiGij = [vI , vJ ] = [vI , w] = 0 on

the fields to ensure that there charges given above are well-defined and conserved. This

is necessary in our treatment since we will ultimately quantize the theory and use the

Hamiltonian as the generator of time evolution through a Schrödinger equation.

4 Quantization

We have seen above that the classical equations of motion can be solved up to a single

second order evolution. We have also constructed the conserved momentum and central

charges in the (2, 0) algebra. In this section, rather than solve the second order classical

evolution equation we instead wish to quantize the system using P− as the Hamiltonian.

In particular we see that it can be written as

P− =
1

2g2
Tr

∫

d4x ∂−Ai∂−A
i − 2∂−AiD

iA− +DiA−D
iA− + g4DiX

IDiXI . (4.1)

The first term gives the kinetic energy and can be expressed in terms of the metric gαβ on

instanton moduli space defined by

Tr

∫

d4x δAiδA
i = gαβδm

αδmβ . (4.2)

Here δAi = ∂Ai/∂m
αδmα+Diδω, with δω is the gauge transformation required to preserve

DiδAi = 0.

Next we have a term that is linear in time derivatives:

Tr

∫

d4x ∂−AiD
iA− = Tr

∮

∂−Arw = Lαṁ
α . (4.3)

where r is the radial normal direction to the sphere at infinity, ṁα = ∂−m
α and Lα is a

vector field on the instanton moduli space. We note that it is proportional to w, i.e. it is

determined by the vacuum expectation value of A−, and can be viewed as a background

gauge field.

The last two terms can be written as a boundary integral and contribute to the po-

tential. Thus we find that the Hamiltonian is

P− =
1

2g2
gαβ(ṁ

α − Lα)(ṁβ − Lβ) + V , (4.4)

where

V = − 1

2g2
gαβL

αLβ +
1

2g2
Tr

∮

g4XIDrX
I +A−DrA− . (4.5)

For w = 0 this Hamiltonian has appeared before [29] and is known to admit 8 super-

symmetries, which correspond to the Q− here. In particular it was shown that

V =
g2

2
gαβK

αKβ , (4.6)
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where Kα is a tri-holomorphic Killing vector on the instanton moduli space which can be

expressed purely in terms of the asymptotic values of XI and the ADHM data [29]. By

construction the Hamiltonian is also invariant under 8 supersymmetries when w 6= 0.

The next step is to decide on a momentum conjugate to the moduli coordinates mα.

The obvious choice is

pα = gαβṁ
β . (4.7)

An alternative quantization could be pα = gαβ(ṁ
β −Lβ) however since Lα depends on wa

this quantization would then differ in various sectors of the theory. It would be interesting

to obtain a symplectic structure on the entire (2, 0) system that leads to this. Quantization

is now straightforward and we just consider wavefunctions Ψ(mα, x−) and define

p̂αΨ = −i ∂Ψ
∂mα

, m̂αΨ = mαΨ , (4.8)

where a hat denotes the quantum operator.

There is one issue that requires some discussion, namely the moduli space generically

contains singularities where the instantons shrink to zero size. These are not curvature

singularities but rather more like orbifold singularities. Thus we should either seek to

remove them or simply come up with a suitable prescription on the behaviour of the

wavefunction at the singularities. Methods for pursuing the first approach were considered

in [6]. For the second approach one could simply assume that physical wavefunctions need

to be even under the orbifold action at each singularity.

4.1 One instanton example

For concreteness we now give the expressions above for the case of a single instanton i.e.:

P+ = −4π2/g2 (4.9)

with gauge group SU(2), including all the moduli. In this case we have (ηaij are the self-dual

’t Hooft matrices)

Ai =
1

(x− y)2
ρ2

(x− y)2 + ρ2
ηaij(x− y)jUσaU

−1 (4.10)

XI =
(x− y)2

(x− y)2 + ρ2
vIaUσaU

−1 (4.11)

A− =
(x− y)2

(x− y)2 + ρ2
waUσaU

−1 . (4.12)

Here there are eight moduli represented by the instanton size ρ, position yi and gauge

embedding U ∈ SU(2) ≡ S3. Therefore, in total the moduli space is eight-dimensional.

Our first task is to compute the metric. To do this we note that to ensure Di∂−Ai = 0

we find that ω is given by

ω =
1

(x− y)2
ρ2

(x− y)2 + ρ2
ηaij ẏ

i(x− y)jUσaU
−1 − ρ2

(x− y)2 + ρ2
u̇aUσaU

−1 , (4.13)
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where we have introduced

U−1U̇ = iu̇aσa . (4.14)

We can now compute the metric and find

ds2 = 8π2(dρ2 + ρ2duadua) + 4π2dykdyk . (4.15)

This is just the flat metric on R
4×R

4 (ua are the left-invariant SU(2) forms of the unit S3).

However we note that, by construction, U is indistinguishable from−U and therefore the ac-

tual moduli space is obtained by identifying U ∼= −U and hence is the quotient R4/Z2×R
4.

Next we evaluate
∮

∂−Ar =

∮

∂Ar

∂mα
ṁα +Drω , (4.16)

where r is the normal direction to the boundary. The only contributions to this come

from the O(1/r3) term in ∂−Ar. To evaluate (4.16) one notes that ∂Ai/∂y
k = O(r−4)

and, although the ∂Ai/∂ρ and ∂Ai/∂U terms are O(r−3), their ∂Ar/∂ρ and ∂Ar/∂U

components vanish. Thus we have
∮

∂−Ar =

∮

Drω = 4π2ρ2Uu̇aσaU
−1 , (4.17)

and hence

Lαṁ
α = 8π2ρ2wau̇

a , (4.18)

or equivalently Lα = waδαa . If we consider gauge transformations of the form U(x−) then

Lα will transform as a gauge field. For V we find

V = 4π2g2vIav
I
aρ

2 . (4.19)

Note that the first and last terms in (4.5) have completely cancelled each other and we

expect that this is generically the case. Thus we have found that

P− =
4π2

g2

(

ρ̇2 + ρ2(u̇a − wa)(u̇a − wa) +
1

2
ẏkẏk

)

+ 4π2g2vIav
I
aρ

2. (4.20)

It is also straightforward to show that the conserved momentum is

Pi = −2π2g−2ẏi . (4.21)

More generally, for the case of point-like multi-instantons (i.e. widely separated compared

to their individual scale sizes), one finds Pi ∼ −2π2g−2
∑

ẏi is just the centre of mass

momentum.

Let us now discuss the central charges. First consider ZI
+;

ZI
+ = −2Tr

∫

d4x(∂−Ai −DiA−)D
iXI

= −2Tr

∮

(∂−Ar −DrA−)X
I (4.22)

= −16π2ρ2vIa(u̇
a − wa) .

This is the angular momentum associated to the action of SU(2) on the moduli space.
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In the one-instanton case the unique solution to DiGij = 0 is given by Gij =

G0(x
2 + ρ2)2x−4ηaijσa where G0 is a constant. However conservation of Q and Pµ re-

quires that all fields vanish at infinity (and aren’t too singular at the origin) and hence

we must take G0 = 0 so that ZI
i = 0. We expect that any states that carry ZI

i charge

are string-like states extended along some direction say x4. In this case the total P+ mo-

mentum is infinite but the P+ per unit length should be finite. Therefore the quantum

mechanical system reduces to motion on the monopole moduli space determined by the

Nahm construction [30].

In addition we find that ZIJ
ij+ is given by

ZIJ
ij+ = −2π2ρ2ǫabcηaijv

I
bv

J
c . (4.23)

However this vanishes since we demand that [vI , vJ ] = 0 in order that Q is conserved. More

generally we expect that any state with non-vanishing ZIJ
ij+ should have co-dimension two,

corresponding to 3-brane states of the M5-brane. In this case we need to consider states

with finite P+ per unit area and the quantum mechanical system should then be reduced

to the vortex moduli space.

5 Conclusion

In this paper we have constructed the conserved energy momentum tensor and supercurrent

for the (2, 0) system obtained in [21]. We then considered in detail the case of a null

reduction to a novel dynamical system with 16 supersymmetries and an SO(5) R-symmetry

in one null and four space dimensions. In particular we showed how the classical equations

can be reduced to motion on the instanton moduli space. This allows us to quantize the

system. In so doing we obtained the light-cone quantization proposal of [6], generalized to

include a potential that arises when the scalars (or gauge field A−) have a non-vanishing

vacuum expectation value, corresponding to the Coulomb branch where the M5-branes are

separated. We were also able to obtain expressions for the six-dimensional supersymmetry

and Poincaré algebras in terms of ADHM data of the instanton moduli space. This clarifies

the relation of the quantum mechanical system to the full six-dimensional one.

Finally it is instructive to see how the null reduction of the (2, 0) system above can be

viewed as the limit of an infinite boost. This is in agreement with the general arguments

for matrix models and light-cone quantization given in [31]. In particular let us return to

the general discussion for arbitrary Cµ and set

Cµ =
g2

√

1 + β2
(βδµ0 + δµ5 ) ,

where β is real. For any |β| < 1, Cµ is space-like and after a suitable Lorentz transformation

could be taken to simply be Cµ = g2δµ5 and one reproduces maximally supersymmetric five-

dimensional super-Yang-Mills Theory. Taking β → ±1 corresponds to an infinite boost of

the system along x5 and leads to the null reduction we have discussed.
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Let us see how this works in the (2, 0) system. We introduce coordinates

u =
x0 − βx5
√

1 + β2
, v =

x5 + βx0
√

1 + β2
, (5.1)

so that Cµ = g2δµv (again we are cavalier about the 3-algebra indices for the sake of clarity).

We now find that if we let

Fij = −g2Hijv (5.2)

Fiu = −g2Hiuv (5.3)

Gij = −g2Hiju , (5.4)

then self-duality of H implies that Hijk = g−2εijklF
l
u and also:

1

2
εijklF

kl =
2β

1 + β2
Fij +

1− β2

1 + β2
Gij . (5.5)

In the limit that β = 1− ε with ǫ≪ 1 we see that

1

2
εijklF

kl = Fij + εGij +O(ε2) , (5.6)

and therefore the non-self-dual part of Fij is boosted away. However for any β 6= ±1 the

gauge fields are not required to be self-dual and the reduction to quantum mechanics that

we found above will not occur.

In our opinion this work presents evidence that the (2, 0) system of [21] presents a

complete Lorentz covariant picture of the M5-brane on a six-dimensional spacetime of

the form M × S1. In particular it is capable of including and interpolating between two

conjectures on the dynamics of M5-branes: namely the recent suggestions that the (2, 0)

theory on a space-like circle is precisely five-dimensional maximally supersymmetric Yang-

Mills [11, 12] and also the older light-cone proposal of [6]. In particular the latter can

now be seen to arise as a space-like boost of the former in accordance with the general

prescription of [31]. Nevertheless it remains to be seen if these conjectures can be made to

lead to a more robust and complete description of the (2, 0) theory and hence the M5-brane,

particularly on uncompactified spacetimes.

It could also be interesting to consider a time-like reduction. The resulting system is

very similar to five-dimensional maximally supersymmetric Yang-Mills but in Euclidean

signature. Although it is not clear to us what this physically means (although perhaps it

could be related to the (2, 0) theory at finite temperature).
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