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Abstract

Background: Popular miRNA target prediction techniques use sequence features to determine the functional
miRNA target sites. These techniques commonly ignore the cellular conditions in which miRNAs interact with their
targets in vivo. Gene expression data are rich resources that can complement sequence features to take into account
the context dependency of miRNAs.

Results: We introduce BayMiR, a new computational method, that predicts the functionality of potential miRNA
target sites using the activity level of the miRNAs inferred from genome-wide mRNA expression profiles. We also
found that mRNA expression variation can be used as another predictor of functional miRNA targets. We
benchmarked BayMiR, the expression variation, Cometa, and the TargetScan “context scores” on two tasks: predicting
independently validated miRNA targets and predicting the decrease in mRNA abundance in miRNA overexpression
assays. BayMiR performed better than all other methods in both benchmarks and, surprisingly, the variation index
performed better than Cometa and some individual determinants of the TargetScan context scores. Furthermore,
BayMiR predicted miRNA target sets are more consistently annotated with GO and KEGG terms than similar sized
random subsets of genes with conserved miRNA seed regions. BayMiR gives higher scores to target sites residing near
the poly(A) tail which strongly favors mRNA degradation using poly(A) shortening. Our work also suggests that
modeling multiplicative interactions among miRNAs is important to predict endogenous mRNA targets.

Conclusions: We develop a new computational method for predicting the target mRNAs of miRNAs. BayMiR applies
a large number of mRNA expression profiles and successfully identifies the mRNA targets and miRNA activities
without using miRNA expression data. The BayMiR package is publicly available and can be readily applied to any
mRNA expression data sets.

Background
MicroRNAs are short (21-25 nt) non-coding RNAs
that repress the expression of their direct targets [1-4].
Primary miRNAs (pri-miRNAs) are transcribed from
intra/intergenic genomic loci and cleaved by Drosha
to form approximately 70-nt hairpin precursors (called
pre-miRNAs) that are subsequently cleaved by the RNase
III enzyme, Dicer, to generate miRNA duplexes [5]. One
strand of the duplex, the mature miRNA, is loaded into
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the RNA-induced silencing complex (RISC) [6] and
guides it to recognize mRNA targets through partial base
pairing with the 3’ UTRs of targets [7].
The presence of target sites with perfect complemen-

tarity to the seed region of miRNAs is a strong predictor
of targeting but perfect complementarity is neither suf-
ficient nor necessary [7-10]. Many other determinants
have been proposed to specify efficient mRNA-miRNA
duplexes including: AU composition flanking target sites
[8], thermodynamic stability of binding sites [11], evo-
lutionary conservation of the seed [12-14], secondary
structure accessibility [6,15-17], target-site abundance
[18,19], seed-pairing stability [18], 3’ pairing contribution
[8], loop in position 9-12 of miRNA-mRNA hybrids [10],
and the binding location in the 3’ UTR [8,17]. Due to the
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limited number of validated miRNA targets, the exact
specificity and sensitivity of current determinants are
unclear [20-23]; however, estimates of precision of these
determinants, alone or together, are typically reported to
be about 50% at a sensitivity of 6-12% [24,25], suggesting
that sequence-based prediction methods are not fully
capturing miRNA target preferences.
In mammals, it is estimated that miRNAs primarily and

dominantly repress the steady-state expression level of
their targets [26-34]. Therefore, down-regulation of an
mRNA’s expression when the miRNA is active is evidence
of a functional target site on the gene in vivo. Although
numerous methods have been introduced to incorporate
mRNA and miRNA expression data into miRNA tar-
get predictions, existing methods either require paired
miRNA-mRNA data [35-48], have only been tested in
miRNA transfection assays [28,29,49], or do not consider
the combinatorial impact of multiple miRNAs on mRNA
expression [50,51].
In this paper, we introduce two new mRNA-miRNA

scoring schemes by incorporating genome-wide measures
of mRNA expression in target prediction. Neither of these
scoring schemes requires miRNA expression data, so can
be applied to vast amount of publicly available mRNA
expression databases. The first scoring scheme identi-
fies the impact of a miRNA in repressing an mRNA
in presence of other targeting miRNAs, cellular activ-
ities, and under a wide range of endogenous condi-
tions. This scheme (hereafter called the BayMiR score) is
obtained using BayMiR, a sparse Bayesian linear regres-
sion model, in which the decrease in expression levels of
anmRNA across different conditions is explained in terms
of the activity of miRNAs that have conserved target site
matches in the 3’ UTR of the transcript. BayMiR infers
miRNA activity levels based on the expression profiles of
its putative targets (predicted on the basis of conserved
seed matches) and then it refines these target predictions
using the regression model. We also found that expres-
sion variability is significantly higher among mRNAs with
more miRNA target sites and, furthermore, that it can be
used to identify more likely targets. Accordingly, we used
the variance of gene expression levels across a wide range
of samples including different cell types, cell lines, and
disease/healthy tissues as another mRNA-miRNA scoring
scheme. These scores are called “gene variation” index.
BayMiR analysis was conducted on 1,539 human miR-

NAs and the expression levels of 13,303 genes mea-
sured on 5,372 microarray experiments and predicts
that approximately 60% of miRNA-mRNA duplexes with
matched conserved targets sites have detectable down-
regulation signal on gene expression. We evaluated and
compared the efficacy of the proposed scores with
eight TargetScan scores (a collection of most impor-
tant sequence based features) as well as Cometa scores

(an mRNA expression based miRNA target prediction
method) using over-expressionmiRNAs experiments, val-
idated targets, and GO and KEGG enrichment analysis.
Using these benchmarks, we found the BayMiR scores
consistently outperform both the sequence and expres-
sion scores and identify to what extent down-regulated
genes on a global set of microarrays are under control of
miRNAs.

Results
BayMiR method
BayMiR (Figure 1) calculates the degree to which mRNA
down-regulation inferred from a large set of microarrays
can be explained by inferred miRNA activity. BayMiR
makes this prediction by integrating sequence and expres-
sion evidence. Because many targets are under the control
of multiple miRNAs [20,46,52,53], BayMiR applies a linear
model that relates the target expression vector (measured
variable) to a weighted combination of the miRNA activ-
ity vectors (regressor variables). BayMiR infers the activity
vector of a given miRNA by averaging the normalized
expression vectors of its predictedmRNA targets based on
sequence-based prediction methods. These miRNA activ-
ity vectors are then used as regressors in a Bayesian linear
regressionmodel of the “down-regulation” expression vec-
tor of each mRNA. The resulting regression coefficients
of each miRNA are interpreted as the strength of miRNA-
mediated repression of the target mRNA.
We also considered the variability in gene expression

of a target mRNA as a determinant to distinguish func-
tional and non-functional targets of a given miRNA. The
gene variation index for each mRNA is computed as the
variance of gene expression levels across all samples.
Each expression vector consists of the transcriptional

abundance of the target in one of 392 biological samples
collected from 5,372 microarray experiments. We deter-
mine the coefficients of the regression model using a
penalized likelihood approach called elastic net regression
[54] (see Methods) modified to assign only positive coef-
ficients. By using this regression model, each sequence-
predicted miRNA-mRNA interaction is assigned one
coefficient; this coefficient represents how much the
inferred activity profile of that miRNA contributes to
predicting that mRNA’s “down-regulation” profile (see
Methods) when considering the activity profiles of all
other miRNAs predicted to target the mRNA. We call
these coefficients “BayMiR scores” and interpret a zero
BayMiR score as representing a lack of evidence in the
expression data for regulation of the mRNA by that miRNA.

BayMiR identifies highly repressed targets onmiRNA
over-expression assays
To evaluate whether the BayMiR scores reflect the
strength of miRNA-mediated repression of mRNA tar-
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Figure 1 BayMiR Method. Flowchart of the BayMiR algorithm. For each miRNA, BayMiR first identifies the set of targets based on the presence of
conserved complementary sites to the seed region of the miRNA in the 3’UTR of the target. Next, for each miRNA, BayMiR extracts the mRNA
expression vectors associated with the selected targets from the mRNA gene expression data set, and averages them to obtain the miRNA activity
vector. These miRNA activity vectors are used as regressors in a Bayesian linear regression model to explain the down-regulation in the expression
level of the target. Finally, BayMiR infers scores (the regression coefficients) using a penalized likelihood method called elastic net regression. Each
score indicates the strength of miRNA- mediated repression on the target genes.

gets, we measured the consistency between the BayMiR
scores and relative down-regulation of targets in a set of
miRNA over-expression experiments. One expects high
scoring targets to be down-regulated more in miRNA
over-expression experiments. We note that a similar met-
ric has previously been used to evaluate the efficiency
of TargetScan scores [8,18], and that this set of miRNA
over-expression assays were not used in BayMiR to obtain
the scores; thus, we are not influencing the results of our
evaluation by either selecting bias metrics or by evalu-
ating our model on the training data. We downloaded
the data collected by Khan et. al [34] in which 23 miR-
NAs were transfected into seven different cell types and
the log-fold change of the expression levels of mRNAs
were measured. To examine that the degree to which our
scores can predict the log-fold change of mRNAs in the
miRNA over-expression arrays, for each score, we binned
mRNAs into five bins based on their scores and com-
puted themean ofmRNA log-fold changes in each bin.We
observed that negative log-fold repression levels decrease
consistently as scores decrease for both determinants
(Figure 2.(top)). In total, 3,867 out of 10,125 mRNAs are
down-regulated in the miRNAs over-expression experi-
ments. We then asked if our scoring schemes can detect
repressed targets better than the individual components
of the TargetScan context score [8].When comparing neg-
ative mean log-fold changes for messages whose scores
were greater than the median score for the correspond-
ing miRNA, BayMiR scores outperforms all TargetScan
scores, even the context+score which is a combination
of all individual TargetScan scores (Figure 2.(middle)). In
addition, when we combined BayMiR scores and the Tar-

getScan context+score the performance further improved
(Wilcoxon-Mann-Whitney test: P < 0.001), indicating
that BayMiR can augment the TargetScan scoring system
to further improve the performance. Target site conserva-
tion is another scoring scheme used by TargetScan, so we
also compared BayMiR scores with conservation scores
for all conserved target sites of all conserved miRNA fam-
ilies and found similar improvements (Figure 2.(bottom)).
Our analysis also shows that the gene variation score
was a better predictor of log-fold change than seed pair-
ing stability, relative location of seed match in the 3’
UTR, and target abundance; however, it is worse than
the other components of the context score on this assay
(Figure 2(middle)).

High-scoring BayMiR targets are enriched for validated
targets
To test whether the set of experimentally validated tar-
gets are enriched among high-scoring BayMiR targets, we
measured the significance of overlap between the targets
with scores greater than the median and the experimen-
tally validated targets retrieved fromTarBase [55]. Enrich-
ment using the hyper-geometric test showed that the
validated targets are enriched in the sets of high-scoring
genes both for BayMiR and gene variation predicted tar-
gets, P < 10−5 and P < 10−4 respectively. A cumulative
distribution analysis is also shown in Additional file 1:
Figure S1. Number of TarBase validated human targets at
mRNA level is 491; number of validated targets with con-
served target site is 279 and BayMiR predicts 203 of these
conserved validated targets (72.8%). Together these obser-
vations support that the hypothesis that repressed targets
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Figure 2 BayMiR performance in the miRNA over-expression experiments. (top) mRNAs in the over-expression miRNA assays are grouped into
five bins based on their BayMiR and gene variation scores; the mean log-fold change of the mRNAs in each bin is plotted in as a bar. There are two
groups of bars; the left- and right-hand groups correspond to BayMiR and gene variation, respectively. (middle) Comparing BayMiR and gene
variation scores with seven sequence scores from TargetScan. Each bar represents the negative mean log-fold change for mRNAs whose scores are
greater than the median of all mRNA scores for the selected determinant in the miRNA over-expression assays. The most left-hand group is
obtained by combining the context+ scores with BayMiR scores. The dashed line shows the mean log-fold change for all targets in the miRNA
over-expression assays (bottom) Comparing BayMiR scores with the conservation scores as measured by TargetScan. The conservation scores are
given only for the targets with conserved target sites complementary to the seed regions of the conserved miRNA families. Error bars indicate 95%
confidence intervals for the estimated means.
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under the endogenous conditions are more likely to be
functional targets.

BayMiR predicts miRNA-induced repression better than
Cometa
Next, we used the same evaluation strategy to compare
BayMiR scores with an mRNA-miRNA scoring method
which also uses large-scale gene expression data. Recently,
Gennarino et al. [50] showed that the target set of a
miRNA tend to be co-expressed and based on this prop-
erty they proposed Cometa, a computational method
that scores each sequence-basedmiRNA target prediction
based on how correlated it is with other predicted tar-
gets of the miRNA. Examining the down-regulated targets
on the miRNA over-expression assays shows that nega-
tive mean log-fold expression changes for targets selected
by our scoring schemes are significantly higher than those
selected by Cometa scores (P < 10−40, Additional file 2:
Figure S2). Moreover, our methods’ high scoring tar-
gets are significantly more down-regulated compared to
Cometa high scoring targets (P < 10−60 Figure 3) on the
over-expression assays. Although Cometa targets are also
enriched for validated targets, this enrichment is smaller
than BayMiR scoring targets (P < 0.01 v.s. P < 10−5).

BayMiR target sets havemore consistent GO-BP and KEGG
annotations
Many miRNAs participate in the coordinate regulation
of biological processes [56]; as such, we should expect
that, in general, better target prediction methods would
generate miRNA target sets that have higher enrich-
ment [57]. To test whether BayMiR predicted targets
are more consistently annotated with GO and KEGG
terms than TargetScan targets, we used Fisher’s exact
test with an FDR multiple test correction (see Methods)
to score the enrichment of 1,233 GO-BP terms and 259
KEGG pathways within the target sets of each of 1,264
miRNA families. We found a nearly three-fold increase
in enriched terms and pathways (FDR < 0.1) within
BayMiR-predicted target sets compared to equally-
sized random subsets of TargetScan (31,976 vs 11,890,
P < 10−200).
Examination of the enriched GO-BP terms and KEGG

pathways revealed a wide diversity of biological processes
regulated by miRNAs (Additional file 3: Table S1, FDR <

0.1 and Additional file 4: Table S2, FDR < 0.1). We found
that 35 % of miRNAs that have BayMiR target sets are
enriched for the GO term “regulation of expression” sug-
gesting that miRNAs have substantial influence in gene
regulation through their control of other gene regulators.
We also searched for miRNAs with known functions

among the miRNAs enriched in our pathway analysis. A
list of miRNAs with experimentally supported functions

among their enriched pathways are given in Additional
file 5: Table S3. Notably the miR-17 family is frequently
seen in the list. This family has been extensively studied
and shown to play an important role in many cancer-
related processes and pathways [58,59], and references in
Additional file 5: Table S3.
When we examined the mRNAs in KEGG pathways

targeted by miRNAs, we found that although there are
extensive co-regulation of mRNAs by multiple miRNAs,
a handful of miRNAs appeared to be responsible for
most of the regulation. For example, in the WNT sig-
naling pathway, five miRNAs target 32 out of 46 genes
predicted to be targeted by any of the 45 miRNAs with
targets in this pathway (Figure 4). Similarly, the 106 genes
in “Pathways in cancer” are targeted by 83 miRNAs but
only 10 of these miRNAs collectively target more than
75% these genes (Additional file 6: Figure S3). Although
some of this consolidation of targeting can be explained
with a large variability in number of mRNA targets per
miRNA, there is significantly more consolidation than we
would expect by chance (Figure 5, P < 10−19) These
observations suggest that important miRNA regulators
of specific biological processes can be identified in silico
through gene set enrichment analysis of BayMiR target
sets.

miRNA activity and expression profiles are significantly
correlated
To test if miRNA activities obtained using the BayMiR
procedure are correlated with the miRNA expression pro-
files, we downloaded the miRNA expression data from
the mimiRNA repository [60] and computed the corre-
lation between matched activity and expression vectors.
After excluding miRNA expression data that are not con-
sistent across multiple resources (according to P > 0.05
reported in the mimiRNA resource) and mapping the
biological samples of the miRNA expression data to our
biological groups we obtained paired matches for 48 miR-
NAs. Interestingly, we found that 96% of the pairs (46
out 48) have the Pearson correlation coefficients greater
than 0.35 compared to 4% positive correlation obtained
from a similar analysis but with the permuted activ-
ity vectors (P < 0.05 and Additional file 7: Table S4).
This correlation analysis shows that miRNA activities
inferred from the mean of inverse expression of their tar-
gets are highly correlated with expression data for those
miRNAs.

mRNAs harboring miRNA target sites near the both ends of
the 3’ UTR have higher endogenous down-regulation
signals
To investigate any association between endogenous target
repression scores provided by BayMiR and sequence and
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Figure 3 Comparing BayMiR and Cometa. BayMiR high scoring targets are more down-regulated in miRNA over-expression assays than Cometa
high scoring targets. Each bar represents the mean of negative log-fold change after miRNA over-expression for genes with scores greater than
median.

gene variation determinants, we measured the correlation
between the scores of all paired determinants(Figure 6).
The heat map shows that BayMiR scores correlate most
highly with the position contribution scores. In addition,
when we ranked all mRNA-miRNA pairs based on their
BayMiR scores, the top 50 percentile of the ranked list
have higher position contribution scores than the bot-
tom 50 percentile (P < 10−200, Wilcoxon-Mann-Whitney
test and Additional file 8: Figure S7). The position contri-
bution scores provide estimate of expected repression in
terms of the distance of targets sites from the both end
of the 3’ UTR; target sites near to the ORF or the poly(A)
tail are more effective [8] and more conserved than those
in the middle of the 3’ UTR [12]. To further investigate
this, we located 1,567,294 conserved target sites matched
to the seed region of 1,032 miRNAs on the 3’ UTR of
17,840 mRNAs. The start position of each target site was
divided by the length of the 3’ UTR to obtain the rel-
ative position of miRNAs on the 3’ UTRs, denoted by
0 < LmiRNA < 1. We found that target sites located on
the both end of 3’ UTRs (LmiRNA < 0.25 or LmiRNA >

0.75) are assigned higher BayMiR scores than those on
the middle (P < 10−200, Wilcoxon-Mann-Whitney test).
Furthermore, we found that target sites located in the
terminus close to the poly(A) tail (LmiRNA > 0.75) are
assigned higher BayMiR scores than to those located on

the other terminus (LmiRNA < 0.25, P < 10−5, Wilcoxon-
Mann-Whitney test). Poly(A) shortening is known as one
of the mechanisms of mRNA degradation; this mecha-
nism strongly favors the preference of miRNA target sites
near the end of 3’UTR close to the poly(A) tail to recruits
mRNA deadenylase complexes [61]. Together these lines
of evidence underline the importance of target site posi-
tion in miRNA targeting.
BayMiR scores are also highly correlated with gene

variation scores suggesting that mRNAs with high expres-
sion variability are under selective pressure to be miRNA
targets.

Discussion
Large-scale mRNA expression profiling datasets provide
a rich resource to study the regulatory impact of miR-
NAs. Here, we showed that the impact of miRNAs on
targets is detectable in normal tissue and unperturbed
cell line data. Given a list of miRNAs with partial com-
plementarity to a particular mRNA, our computational
technique, BayMiR, scores the relative regulatory impact
of the miRNA among other predicting targeting miR-
NAs. We showed that BayMiR estimates of miRNA reg-
ulatory impact better reflect independent measures of
this impact than the TargetScan context scores; further-
more, we showed that the context scores and BayMiR
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Figure 4WNT signaling pathway.WNT signaling pathway: 32 targets of 5 miRNAs are involved in the pathway (red boxes). 14 mRNAs are
targeted by the remaining miRNAs are colored in yellow; and 23 mRNAs involved in the pathway were excluded from the BayMiR target list since
their expression variabilities across arrays were very low (white boxes). The miRNA family IDs:
miR-518a-5p/520d-5p/524-5p,miR-556-3p,miR-4514/4692,miR-548aeajamx ,miR-135ab/135a-5p;.

can be combined to generate even better estimates.
We also demonstrated that the miRNA activity vectors
that we infer from mRNA expresssion data are well-
correlated with the measured expression levels of these
miRNAs.
BayMiR has several features that make it particularly

useful for estimating the potential regulatory impact of
a miRNA. BayMiR models the combinatorial effect of
multiple regulatory miRNAs on a single target which is
critical, as most mRNAs are likely to be targeted by mul-
tiple miRNAs (Additional file 9: Figure S4). BayMiR is
fast; its runtime is less than a minute in the current ver-
sion, so is easily applied to a subset of or all available gene
expression data. Because BayMiR estimates the activity
of miRNAs based on mRNA expression data, there is no
need for matching miRNA expression profiles. As such,
BayMiR predictions can be easily extended when new
miRNAs are found and the current version of BayMiR
incorporates all miRNAs retrieved from the latest release
of miRBase (v.19).

Combinatorial regulation by multiple miRNAs has been
described for particular mRNAs [8,62] and is likely to play
a large role in mRNA expression regulation [46]. Indeed,
human 3’ UTRs contain conserved seed matches for on
average 33 of miRNAs (median = 16) (Additional file 9:
Figure S4). This combinatorial regulation may explain
the observations that inverse correlation under endoge-
nous condition between miRNA and mRNA expression
does not provide strong and consistent evidence of target-
ing [60,63] and that the impact of miRNA regulation on
mRNA levels can only be seen within the context of other
miRNA regulations [46,63]. Additional file 10: Figure
S5 shows a toy example where combinatorial regulation
masks inverse correlation between miRNA regulators and
their targets.
There are a large number of other methods [49-51,63-72]

that infer either miRNA activity or predict miRNA targets
based on the expression levels of their sequence-predicted
targets, however, no method both infers miRNA activity
and predicts miRNA targets while considering the impact
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of other miRNAs. For example, Cometa attempts to pre-
dict miRNA targets, by identifying tight, co-expressed
clusters of sequence-predicted targets [50]; however it
doesn’t account for combinatorial regulation by multiple
miRNAs and provides no estimate of miRNA activity.

Other methods such as Sylamer [49], and a number of
web-based applications [66-68], identify miRNA seed
regions that significantly enriched in the 3’ UTRs of
down-regulated transcripts as a way of assessing miRNA
activity level in a tissue. However, the performance
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of Sylamer when applied to endogenous gene expres-
sion data is unclear. In addition, it does not take into
account multiple targeting effect of miRNAs and has not
been used to score the individual miRNA-mRNA pairs.
Other methods use paired miRNA-mRNA expression
patterns to augment sequence-based target prediction
[35-48]. These methods typically require paired miRNA
and mRNA measurements in a large number of sam-
ples to generate reliable predictions. This type of paired
expression data is however rare and unavailable for some
miRNAs [73]. On the other hand, there is very large
amount of mRNA expression data available for BayMiR.
Two intronic miRNA target prediction methods, InMiR
and Hoctar [51,63] predict the intronic miRNA targets
using the expression levels of their host genes, and sub-
sequently can also incorporate large mRNA expression
data. However, these methods can only be applied to
intronic miRNAs and only to those miRNAs whose host
gene expression is a good surrogate for their activity.
Many host gene expression levels are not good surrogates
[63,74-76].
Our analysis also reveals that mRNAs with more target

sites have higher expression variation when compared to
a random subset of genes, and expression variance consis-
tently increases as number of target sites do (P < 10−33,
Additional file 11: Figure S6). These observations sug-
gest that mRNAs with highly variable expression levels are
much more likely to be regulated by miRNAs; our find-
ing is consistent with recent reports that genes regulated
by miRNAs have higher expression variability at among
humans and between human and other primate species
[77].
miRNA transfection experiments have suggested that

the degree of mRNA repression induced by two seeds is
equivalent to the product of repression induced by the
seeds individually [8]. We have observed a similar effect.
The version of BayMiR described here implicitly assumes
multiplicative interactions because it log-transforms the
mRNA expression levels before performing regression.
Applying BayMiR to non-transformed expression lev-
els assumes additive interactions and this version of
BayMiR performs much worse in our benchmarks (data
not shown).
In this paper, we introduced BayMiR and demon-

strated its merits when compared to two the state-of-the-
art miRNA computational prediction methods. BayMiR
applies a more relevant biological model and uses a large
collection gene expression data to decipher the impact
of miRNAs on gene expression data. We measured this
impact in terms of endogenous target repression scores
for about half a million miRNA-mRNA duplexes. This
new scoring strategy can be used alone or along with other
sequence determinants to predict functional miRNA-
mRNA interactions.

Methods
BayMiR model
BayMiR applies the following linear model to relate
the changes in the log-transformed expression level of
mRNAs to the activity level of miRNAs:

�yi
M×1

= W
M×K

hi
K×1

+ ε
M×1

where �yi ∈ R
M denote the change in the expres-

sion level of the ith mRNA measured across M samples
and is obtained by subtracting the mean from yi; W =
[wm,k]M×K denote the activity levels of K miRNAs across
M samples, and each element of hi ∈ R

+K represents
the contribution of the corresponding miRNA in down-
regulating the expression of the ith mRNA; ε models
error. In our problem K = 1, 252; M = 369 and i =
1, . . . 13, 000.
In this linear equation, �yi and W and are observed;

hi is the desired unknown variable. BayMiR infers h by
maximizing its posterior probability of h given �y andW:

ĥ = argmax log p(h|�y,W).

This inference problem can be written in form of a
penalized linear regression optimization given by:

ĥ = argmin
∑
m

(�ym − wm,:h)2 + λ1
∑
k

hk

+ λ2
∑
k

h2k subject to: hk ≥ 0 ∀k
(1)

where λis are two tuning parameters and wm,: is a row
vector representing the expression activity of miRNAs
in the mth sample . We solved this optimization using
the coordinate-descent method [54] in which, the objec-
tive function is partially optimized with respect to each
individual coefficient in an iterative manner given by

hj =
S
(∑M

m=1(�ym − ∑K
k �=j wn

m,khk)w
n
mj, λ1

)

∑M
m=1 wn2

mj + λ2
(2)

where S(x, t) is the soft threshold operator defined as
sign(x)(|x| − t)+ where (y)+ = 0 if y < 0 and (y)+ = y if
y ≥ 0 [78].
Since miRNA and target mRNA expression data are

anti-correlated [79], for each miRNA, BayMiR uses the
negative mean of target expression levels as an estimate of
the activity level of the miRNA as follows:

wk = − 1
Nk

Nk∑
i=1

yi where

Nk : number of target genes for kth miRNA
(3)
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and then each activity vector is normalized wk ← wk‖wk‖ .
As such, the activity of the miRNA will be deemed to
be positive when its sequence-predicted targets are below
their mean expression level. BayMiR considers a gene as
a potential target of a miRNA if there is a complementary
conserved match sites to the seed region of the miRNA.

Processing mRNA expression data
The mRNA expression data were downloaded
from the EMBL-EBI repository [80], available at
www.ebi.ac.uk/gxa/experiment/E-MTAB-62. The data
consists of 5,372 samples profiled on HG-U133A array
platforms; As described in [80], the data were normalized
and manually labeled into 369 biological groups cover-
ing a wide range of healthy/cancer tissues, conditions,
and cell lines. We did the following processing on the
retrieved expression data; all probe sets with no gene
symbols were excluded. The samples belonging to each
biological groups were averaged—the samples within one
biological group are highly correlated (ρ > 0.85). An
upper/lower threshold defined by lth = Q2 − 1.5(Q4−Q2)
and uth = Q4 + 1.5(Q4 − Q2) respectively, when Q2
and Q4 represent the second and forth quartiles, were
specified to detect and modify the extreme outliers. The
outliers were then replaced with lth or uth. The gene sym-
bol list in both expression and sequence datasets were
updated based on the latest release of the HUGO Gene
Nomenclature Committee (HGNC) (Feb.2012) to have
consistent gene symbols.

MiRNA-mRNA interaction analysis
We downloaded the list of 19,055 protein coding gene
symbols from HGNC database and the list of 1,537
miRNA IDs from MiRbase V.19. We then built seven
19, 055× 1, 532 binary connectivity matrices based on the
mRNA-miRNA interactions given by: Targetscan V6.1,
[7] and TarBase [55]. All miRNAs are grouped into 1,251
miRNA families as defined by TargetScan—miRNAs shar-
ing the same seed region. Conserved target sites are also
retrieved from the TargetScan repository.

Enrichment analysis
Gene ontology biological process (GO-BP) annotations
were downloaded from the Gene Ontology Website on
April 15th 2012. The file contains 14,000 annotations for
15,000 genes. The enrichment analysis was performed
using Fisher Exact test. The test was performed on
BayMiR predicted targets of each of miRNA families.
The enrichment pvalues were corrected using Benjamini-
Hochberg test [81] and a FDR cutoff equal to 0.1 was
chosen to selected significant enrichment categories. The
KEGG enrichment analysis carried out in a similar man-
ner; The list of 253 KEGG human pathways were with
associated genes downloaded from http://www.genome.

jp/kegg/; Fisher exact test was used to find enriched
pathways for BayMiR targets of all miRNA families.

Availability of BayMiR and supporting data
The code for BayMiR is available at morrislab.med.
utoronto.ca/BayMiR. package includes scripts and
instructions to re-generate BayMiR scores from the
“E-MTAB-62” file and sequence information, however,
a pre-computed version of the BayMiR scores are also
uploaded.

Conclusions
We developed BayMiR, a new computational method for
predicting the target mRNAs of miRNAs. BayMiR applies
a large number of mRNA expression profiles and suc-
cessfully identifies mRNA targets and miRNA activities
without using miRNA expression data. We also showed
that gene expression variability can be used to predict
miRNA targets. Our analysis revealed the importance of
miRNA target sites at 3’ UTR near to the poly (A) tails.
The BayMiR package is publicly available and can be
applied to any mRNA expression datasets.

Additional files

Additional file 1: Figure S1. Cumulative distribution of scores for the
validated targets. Validated targets are assigned higher BayMiR scores and
gene variation scores compared to the other putative targets. Shown are
the cumulative distributions of BayMiR (left plot) and gene variation scores
(right plot) scores for validated targets (blue) and all putative targets (red).

Additional file 2: Figure S2. Comparing BayMiR and Cometa. BayMiR
high scoring targets are more down-regulated in miRNA over-expression
assays than Cometa high scoring targets. The cumulative distribution of
log-fold change for high-scoring mRNAs; blue, red, and black represent
graphs associated with BayMiR, gene variation, and Cometa.

Additional file 3: Table S1. Excel file. Enriched GO-BP terms

Additional file 4: Table S2. Excel file. Enriched KEGG terms

Additional file 5: Table S3. Validated KEGG pathways. List of miRNAs
with proposed functions found in our enriched KEGG list; the third column
gives the Pubmed IDs of the references.

Additional file 6: Figure S3. KEGG “Pathways in cancer”: 68 targets of 10
miRNAs are involved in the pathway (red boxes). 38 genes targeted by the
other miRNAs are colored in yellow; and 62 genes involved in the pathway
were excluded from the BayMiR target list since their expression
variabilities across arrays were very low (white boxes). The miRNA family
IDs: miR-17/17-5p/20ab/20b-5p/93/106ab/427/518a-3p/519d,miR-
548ah/3609,miR-4729,miR-203,miR-548p,miR-3647-3p,miR-300/381/539-
3p,miR-142-5p,miR-545,miR-125a-5p/125b-5p/351/670/4319’.

Additional file 7: Table S4. Excel file: miRNA expression data retrieved
from the mimiRNA repository.

Additional file 8: Figure S7. Blue: the position contribution scores of
miRNA-mRNA pairs whose BayMiR scores > medianBayMiRscores . Red: the
position contribution scores of miRNA-mRNA pairs whose BayMiR scores
< medianBayMiRscores .

Additional file 9: Figure S4. The 3‘ UTR of mRNAs harbor many
conserved seed matches. Shown is the cumulative distribution of number
of seed matches in the 3‘UTR of 14,816 mRNA transcripts with at least one
miRNA seed match.
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Additional file 10: Figure S5. Example of combinatorial regulation
masking inverse correlation. Shown in green is the expression level of a
target gene and in red the expression levels of three targeting miRNAs. The
negative correlation of each individual miRNAs with the target is
insignificant, but when considered together they explain perfectly the
down-regulation impact of miRNAs.

Additional file 11: Figure S6. Gene expression variability increases as the
number of target sites increases in the 3’ UTR of genes. (top) miRNA targets
have high expression variation. (bottom) Red and blue demonstrate the
cumulative distributions of genes whose variance is larger than median
and 75th percentile, respectively. Dark: cumulative distribution of variances
corresponding to all genes.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Conceived and designed the experiments: MHR QMWW. Performed the
experiments: MHR. Analyzed the data: MHR QM. Wrote the paper: MHR QM. All
authors read and approved the final manuscript.

Acknowledgements
This research was supported by Natural Science and Engineering Research
Council grants to QM and WW. MHR was partially supported by an Ontario
Graduate Scholarship.

Author details
1Department of Electrical and Computer Engineering, University of Toronto,
Toronto, Ontario, Canada. 2Department of Computer Science, University of
Toronto, Toronto, Ontario, Canada. 3Department of Molecular Genetics,
University of Toronto, Toronto, Ontario, Canada. 4Terrence Donnelly Centre for
Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario,
Canada.

Received: 8 April 2013 Accepted: 22 July 2013
Published: 30 August 2013

References
1. Bartel D:MicroRNAs: target recognition and regulatory functions.

Cell 2009, 136(2):215–233.
2. John B, Enright A, Aravin A, Tuschl T, Sander C, Marks D, et al.: Human

microRNA targets. PLoS Biol 2004, 2(11):e363.
3. Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ: Biological

functions of microRNAs: a review. J Physiol Biochem 2011, 67:129–139.
4. Ambros V: The functions of animal microRNAs. Nature 2004,

431(7006):350–355.
5. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O,

Kim S, et al.: The nuclear RNase III Drosha initiates microRNA
processing. Nature 2003, 425(6956):415–419.

6. Ameres S, Martinez J, Schroeder R:Molecular basis for target RNA
recognition and cleavage by human RISC. Cell 2007, 130:101–112.

7. Lewis B, Shih I, et al.: Prediction of mammalian microRNA targets. Cell
2003, 115(7):787–798.

8. Grimson A, Farh K, Johnston W, Garrett-Engele P, Lim L, Bartel D:
MicroRNA targeting specificity in mammals: determinants beyond
seed pairing.Mol Cell 2007, 27:91–105.

9. Betel D, Koppal A, Agius P, Sander C, Leslie C: Comprehensive modeling
of microRNA targets predicts functional non-conserved and
non-canonical sites. Genome Biol 2010, 11(8):R90.

10. Khorshid M, Hausser J, Zavolan M, van Nimwegen E: A biophysical
miRNA-mRNA interaction model infers canonical and noncanonical
targets. Nat Methods 2013, 10:253–255.

11. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R: Fast and effective
prediction of microRNA/target duplexes. Rna 2004, 10(10):1507.

12. Friedman RC, Farh KKH, Burge CB, Bartel DP:Most mammalian mRNAs
are conserved targets of microRNAs. Genome Res 2009, 19:92–105.

13. Nielsen C, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge C:
Determinants of targeting by endogenous and exogenous
microRNAs and siRNAs. Rna 2007, 13(11):1894.

14. Gaidatzis D, Van Nimwegen E, Hausser J, Zavolan M: Inference of miRNA
targets using evolutionary conservation and pathway analysis. BMC
Bioinformatics 2007, 8:69.

15. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E: The role of site
accessibility in microRNA target recognition. Nature Genet 2007,
39(10):1278–1284.

16. Tafer H, Ameres S, Obernosterer G, Gebeshuber C, Schroeder R, Martinez J,
Hofacker I: The impact of target site accessibility on the design of
effective siRNAs. Nat Biotechnol 2008, 26(5):578–583.

17. Majoros W, Ohler U: Spatial preferences of microRNA targets in 3’
untranslated regions. BMC Genomics 2007, 8:152.

18. Garcia D, Baek D, Shin C, Bell G, Grimson A, Bartel D:Weak seed-pairing
stability and high target-site abundance decrease the proficiency of
lsy-6 and other microRNAs. Nat Struct Mol Biol 2011, 18(10):1139–1146.

19. Arvey A, Larsson E, Sander C, Leslie C, Marks D: Target mRNA abundance
dilutes microRNA and siRNA activity.Mol Syst Biol 2010, 6:220–225.

20. Ritchie W, Flamant S, Rasko J: Predicting microRNA targets and
functions: traps for the unwary. Nat Methods 2009, 6(6):397–398.

21. Barbato C, Arisi I, Frizzo M, Brandi R, Da Sacco L, Masotti A:
Computational challenges in miRNA target predictions: to be or not
to be a true target? J Biomed Biotechnol 2009, 1:150–157.

22. Saito T, Sætrom P:MicroRNAs–targeting and target prediction. New
Biotechnol 2010, 27(3):243–249.

23. Hammell M: Computational methods to identify miRNA targets. In
Seminars in Cell & Developmental Biology: Elsevier; 2010.

24. Alexiou P, Maragkakis M, Papadopoulos G, Reczko M, Hatzigeorgiou A:
Lost in translation: an assessment and perspective for
computational microRNA target identification. Bioinformatics 2009,
25(23):3049–3055.

25. Min H, Yoon S: Got target?: computational methods for microRNA
target prediction and their extension. ExpMol Med 2010, 42(4):233.

26. Guo H, Ingolia N, Weissman J, Bartel D:Mammalian microRNAs
predominantly act to decrease target mRNA levels. Nature 2010,
466(7308):835–840.

27. Mukherji S, Ebert M, Zheng G, Tsang J, Sharp P, van Oudenaarden, A:
MicroRNAs can generate thresholds in target gene expression. Nat
Genet 2011, 43(9):854–859.

28. Lim L, Lau N, Garrett-Engele P, Grimson A, Schelter J, Castle J, Bartel D,
Linsley P, Johnson J:Microarray analysis shows that somemicroRNAs
downregulate large numbers of target mRNAs. Nature 2005,
433(7027):769–773.

29. Sood P, Krek A, Zavolan M, Macino G, Rajewsky N: Cell-type-specific
signatures of microRNAs on target mRNA expression. Proc Natl Acad
Sci USA 2006, 103(8):2746.

30. Filipowicz W, Bhattacharyya S, Sonenberg N:Mechanisms of
post-transcriptional regulation by microRNAs: are the answers in
sight? Nat Rev Genet 2008, 9(2):102–114.

31. Baek D, Villén J, Shin C, Camargo F, Gygi S, Bartel D: The impact of
microRNAs on protein output. Nature 2008, 455(7209):64–71.

32. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N:
Widespread changes in protein synthesis induced bymicroRNAs.
Nature 2008, 455(7209):58–63.

33. Humphreys D, Westman B, Martin D, Preiss T:MicroRNAs control
translation initiation by inhibiting eukaryotic initiation factor 4E/cap
and poly (A) tail function. Proc Natl Acad Sci USA 2005, 102(47):16961.

34. Khan A, Betel D, Miller M, Sander C, Leslie C, Marks D: Transfection of
small RNAs globally perturbs gene regulation by endogenous
microRNAs. Nat Biotechnol 2009, 27(6):549–555.

35. Vivek J, David M, Yee Y: Identification of microRNA-mRNAmodules
using microarray data. BMC Genomics. 12.

36. Liu B, Liu L, Tsykin A, Goodall G, Green J, Zhu M, Kim C, Li J: Identifying
functional miRNA–mRNA regulatory modules with correspondence
latent dirichlet allocation. Bioinformatics 2010, 26(24):3105–3111.

37. Sales G, Coppe A, Bisognin A, Biasiolo M, Bortoluzzi S, Romualdi C:
MAGIA, a web-based tool for miRNA and genes integrated analysis.
Nucleic Acids Res 2010, 38(suppl 2):W352—W359.

38. Yu-Ping W, Kuo-Bin L: Correlation of expression profiles between
microRNAs andmRNA targets using NCI-60 data. BMC Genomics. 10.

http://www.biomedcentral.com/content/supplementary/1471-2164-14-592-S10.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-592-S10.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-592-S11.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-14-592-S11.pdf


Radfar et al. BMC Genomics 2013, 14:592 Page 12 of 12
http://www.biomedcentral.com/1471-2164/14/592

39. Jayaswal V, Lutherborrow M, Ma D, Yang Y: Identification of microRNAs
with regulatory potential using a matchedmicroRNA-mRNA
time-course data. Nucleic Acids Res 2009, 37(8):e60–e60.

40. Ruike Y, Ichimura A, Tsuchiya S, Shimizu K, Kunimoto R, Okuno Y,
Tsujimoto G: Global correlation analysis for micro-RNA andmRNA
expression profiles in human cell lines. J Human Genet 2008,
53(6):515–523.

41. Li X, Gill R, Cooper N, Yoo J, Datta S:Modeling microRNA-mRNA
interactions using PLS regression in human colon cancer. BMCMed
Genom 2011, 4:44.

42. Muniategui A, Nogales-Cadenas R, Vázquez M, Aranguren X, Agirre X,
Luttun A, Prosper F, Pascual-Montano A, Rubio A: Quantification of
miRNA-mRNA interactions. PloS one 2012, 7(2):e30766.

43. Huang G, Athanassiou C, Benos P:mirConnX: condition-specific
mRNA-microRNA network integrator. Nucleic Acids Res 2011,
39(suppl 2):W416–W423.

44. Nam S, Li M, Choi K, Balch C, Kim S, Nephew K:MicroRNA andmRNA
integrated analysis (MMIA): a web tool for examining biological
functions of microRNA expression. Nucleic Acids Res 2009,
37(suppl 2):W356–W362.

45. Wuchty S, Arjona D, Li A, Kotliarov Y, Walling J, Ahn S, Zhang A, Maric D,
Anolik R, Zenklusen J, et al.: Prediction of associations between
microRNAs and gene expression in glioma biology. PLoS One 2011,
6(2):e14681.

46. Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, Hughes TR,
Blencowe BJ, Frey BJ, Morris QD: Using expression profiling data to
identify humanmicroRNA target. Nat Methods 2007, 4:1045–1049.

47. Huang J, Morris Q, Frey B: Detecting microRNA targets by linking
sequence, microRNA and gene expression data. In Research in
Computational Molecular Biology: Springer; 2006:114–129.

48. Huang J, Frey B, Morris Q: Compating sequence and expression data.
In Pacific Symposium on Biocomputing, Volume 13; 2008:52–63.

49. van Dongen S, Abreu-Goodger C, Enright A: Detecting microRNA
binding and siRNA off-target effects from expression data. Nat
Methods 2008, 5(12):1023–1025.

50. Gennarino VA, D’Angelo G, Dharmalingam G, Fernandez S, Russolillo G,
Sanges R, Mutarelli M, Belcastro V, Ballabio A, Verde P, et al.:
Identification of microRNA-regulated gene networks by expression
analysis of target genes. Genome Res 2012, 22(6):1163–1172.

51. Gennarino VA, Sardiello M, Avellino R, Meola N, Maselli V, Anand S,
Cutillo L, Ballabio A, Banfi S:MicroRNA target prediction by expression
analysis of host genes. Genome Res 2008, 19:481–490.

52. Peter M: Targeting of mRNAs by multiple miRNAs: the next step.
Oncogene 2010, 29(15):2161–2164.

53. Krek A, Grun D, Poy M, Wolf R, Rosenberg L, Epstein E, MacMenamin P,
da Piedade I, Gunsalus K, Stoffel M, et al.: Combinatorial microRNA
target predictions. Nat Genet 2005, 37(5):495–500.

54. Friedman J, Hastie T, Tibshirani R: Regularization paths for generalized
linear models via coordinate descent. J Stat Soft 2010, 33:1.

55. Papadopoulos G, Reczko M, Simossis V, Sethupathy P, Hatzigeorgiou A:
The database of experimentally supported targets: a functional
update of TarBase. Nucleic Acids Res 2009, 37(suppl 1):D155–D158.

56. Ulitsky I, Laurent L, Shamir R: Towards computational prediction of
microRNA function and activity. Nucleic Acids Res 2010,
38(15):e160–e160.

57. Huang JC, Morris QD, Frey BJ: Bayesian inference of microRNA targets
from sequence and expression data. J Comput Biol 2007, 14:550–563.

58. Volinia S, Calin G, Liu C, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M,
Roldo C, Ferracin M, et al.: AmicroRNA expression signature of human
solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006,
103(7):2257–2261.

59. Uren A, Kool J, Matentzoglu K, De Ridder J, Mattison J, Van Uitert M,
Lagcher W, Sie D, Tanger E, Cox T, et al.: Large-scale mutagenesis in
ip19ARFi and ip53i deficient mice identifies cancer genes and their
collaborative networks. Cell 2008, 133(4):727–741.

60. Ritchie W, Flamant S, Rasko J:mimiRNA: a microRNA expression
profiler and classification resource designed to identify functional
correlations betweenmicroRNAs and their targets. Bioinformatics
2010, 26(2):223–227.

61. Funakoshi Y, Doi Y, Hosoda N, Uchida N, Osawa M, Shimada I, Tsujimoto M,
Suzuki T, Katada T: Hoshino Si: Mechanism of mRNA deadenylation:

evidence for a molecular interplay between translation termination
factor eRF3 andmRNA deadenylases. Genes Dev 2007,
21(23):3135–3148.

62. Doench JG, Sharp PA: Specificity of microRNA target selection in
translational repression. Genes Dev 2004, 18(5):504–511.

63. Radfar M, Wong W, Morris Q: Computational prediction of intronic
microRNA targets using host gene expression reveals novel
regulatory mechanisms. PLoS One 2011, 6(6):e19312.

64. Cheng C, Li L: Inferring microRNA activities by combining gene
expression with microRNA target prediction. PLoS One 2008,
3(4):e1989.

65. Cheng C, Fu X, Alves P, Gerstein M, et al.:mRNA expression profiles
show differential regulatory effects of microRNAs between
estrogen receptor-positive and estrogen receptor-negative breast
cancer. Genome Biol 2009, 10(9):R90.

66. Liang Z, Zhou H, He Z, Zheng H, Wu J:mirAct: a web tool for evaluating
microRNA activity based on gene expression data. Nucleic acids Res
2011, 39(suppl 2):W139–W144.

67. Alexiou P, Maragkakis M, Papadopoulos G, Simmosis V, Zhang L,
Hatzigeorgiou A: The DIANA-mirExTra web server: from gene
expression data to microRNA function. PLoS One 2010, 5(2):e9171.

68. Le Brigand K, Robbe-Sermesant K, Mari B, Barbry P:MiRonTop: mining
microRNAs targets across large scale gene expression studies.
Bioinformatics 2010, 26(24):3131–3132.

69. Volinia S, Visone R, Galasso M, Rossi E, Croce C: Identification of
microRNA activity by Targets’ Reverse EXpression. Bioinformatics
2010, 26:91–97.

70. Arora A, Simpson D: Individual mRNA expression profiles reveal the
effects of specific microRNAs. Genome Biol 2008, 9(5):R82.

71. Yu Z, Jian Z, Shen S, Purisima E, Wang E: Global analysis of microRNA
target gene expression reveals that miRNA targets are lower
expressed in mature mouse and Drosophila tissues than in the
embryos. Nucleic Acids Res 2007, 35:152–164.

72. Liang Z, Zhou H, Zheng H, Wu J, Liang Z, Zhou H, Zheng H, Wu J, et al.:
Expression levels of microRNAs are not associated with their
regulatory activities. Biol Direct 2011, 6:1–4.

73. Jayaswal V, Lutherborrow M, Yang Y:Measures of association for
identifying MicroRNA-mRNA pairs of biological interest. PloS one
2012, 7:e29612.

74. Monteys A, Spengler R, Wan J, Tecedor L, Lennox K, Xing Y, Davidson B:
Structure and activity of putative intronic miRNA promoters. RNA
2010, 16(3):495.

75. Ozsolak F, Poling L, Wang Z, Liu H, Liu X, Roeder R, Zhang X, Song J,
Fisher D: Chromatin structure analyses identify miRNA promoters.
Genes Dev 2008, 22(22):3172.

76. Martinez N, Ow M, Reece-Hoyes J, Barrasa M, Ambros V, Walhout A:
Genome-scale spatiotemporal analysis of Caenorhabditis elegans
microRNA promoter activity. Genome Res 2008, 18(12):2005.

77. Lu J, Clark A: Impact of microRNA regulation on variation in human
gene expression. Genome Res 2012, 22(7):1243–1254.

78. Friedman J, Hastie T, Höfling H, Tibshirani R: Pathwise coordinate
optimization. Ann Appl Stat 2007, 1(2):302–332.

79. Piriyapongsa J, Mariño-Ramírez L, Jordan I: Origin and evolution of
humanmicroRNAs from transposable elements. Genetics 2007,
176(2):1323–1337.

80. Lukk M, Kapushesky M, Nikkilä J, Parkinson H, Goncalves A, Huber W,
Ukkonen E, Brazma A: A global map of human gene expression. Nature
Biotechnol 2010, 28(4):322–324.

81. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J R Stat Soc Ser B
(Methodological) 1995:289–300.

doi:10.1186/1471-2164-14-592
Cite this article as: Radfar et al.: BayMiR: inferring evidence for endogenous
miRNA-induced gene repression from mRNA expression profiles. BMC
Genomics 2013 14:592.


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	BayMiR method
	BayMiR identifies highly repressed targets on miRNA over-expression assays
	High-scoring BayMiR targets are enriched for validated targets
	BayMiR predicts miRNA-induced repression better than Cometa
	BayMiR target sets have more consistent GO-BP and KEGG annotations

	miRNA activity and expression profiles are significantly correlated 
	mRNAs harboring miRNA target sites near the both ends of the 3' UTR have higher endogenous down-regulation signals

	Discussion
	Methods
	BayMiR model
	Processing mRNA expression data
	 MiRNA-mRNA interaction analysis 
	Enrichment analysis
	Availability of BayMiR and supporting data

	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6
	Additional file 7
	Additional file 8
	Additional file 9
	Additional file 10
	Additional file 11

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

