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1 Introduction

The intersection numbers for p-spin curves appear in the generalized Kontsevich matrix

model [1–3]. The generating function for p-spin intersection number obeys the p-th KdV

equation or Gelfand-Dikii equation. In a random matrix theory, the correlation functions

at the edges of the spectrum, where one can tune a degeneracy of order p, are expressed

through intersection numbers [4–7]. In conformal field theory, the p-spin curve intersection

theory is related to N=2 superconformal minimal theory for Lie algebra Ap−1 type. It

has been pointed out that it corresponds to a gauged Wess-Zumino-Witten (WZW) model

of SU(2)k/U(1), where k = p − 2 is the level of the Kac-Moody algebra of Lie group

SU(2) [8, 9], and is related to SL(2,R)/U(1) black hole sigma model when k becomes

negative [10].

The free energy for the p-spin curve satisfies interesting universal equations, such as a

string equation, dilaton equation, and WDVV equation, so called tautological equations or

universal equations, and has been studied in the connection to Gromov-Witten theory [11–

13]. Although the p-spin curve intersection numbers can be obtained through tautological

equations in a recursive way, the actual computation for higher genuses is limitted [14–16].

In previous papers, we have derived explicit integral formula for the p-spin curve in-

tersection numbers of the moduli space Mg,n valid for all order of genus g. We have shown

that they are obtained analytically for a fixed number n of marked points. Our formulation

starts from simple Gaussian matrix models with an external matrix source and based upon

a duality relation [5–7], from which one recovers a generalized Kontsevich matrix model.

The intersection numbers for the spin moduli spaces with n-marked points are obtained

from the n n-point correlation functions U(s1, . . . , sn) of Gaussian random matrices in a

scaling limit at critical edges [17, 18]. In a previous article [19], we have computed explicitly
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the intersection numbers of moduli space of p-spin curves with one marked point, for

arbitrary values of p, as polynomials in p. This allowed us to consider continuations in

p; in particular the limit p → −1 exhibits an interesting relation between the intersection

numbers, and the orbifold Euler characteristics χ(Mg,1) = ζ(1 − 2g), where ζ(x) is the

Riemann zeta function) [21, 22].

In this paper, we extend the evaluation of the intersection numbers beyond the one

marked point (n = 1) for arbitrary p. The obtained intersection numbers are consistent

with previously known results [14–16] for small values of p. We pursue the large p behavior,

p → ∞ limit. The p-spin curve intersection theory is equivalent to gauged WZW model.

For this gauged WZW theory, in which k = p−2 appears as overall factor, the large k limit

may give a semi-classical solution [10, 24]. In the negative k, the gauged WZW model on

SU(2)/U(1) is changed to WZW model on non-compact SL(2, R)/U(1), which is relevant

to a black hole σ model [10]. We will discuss the relation between the intersection numbers

and the density of state of SL(2, R)/U(1) black hole sigma model [25, 26, 28].

2 Generating function for p-spin intersection numbers

The mathematical definition of the intersection numbers of the moduli space of p-spin

curves with s-marked points is given by [3]

< τn1(Uj1) · · · τns(Ujs) >=
1

pg

∫

Mg,s

CT (ν)

s
∏

i=1

(c1(Li))
ni (2.1)

where Uj is an operator for the primary matter field (tachyon), related to top Chern class

CT (ν), and τn is a gravitational operator, related to the first Chern class c1 of the line

bundle Li at the ith-marked point. We denote τn(Uj) by τn,j , and j represents the spin

index (j=0,. . . ,p-1). The problem of definition (2.1) has been discussed extensively [12].

In a previous paper [19], we have shown that those intersection numbers (2.1) are

expressed through the correlation functions U(s1, . . . , sn) as coefficients of powers of sj ,

U(s1, s2, . . . , sn) = < tres1M tres2M · · · tresnM >

=

∫ m
∏

l=1

dλle
∑

itlλl <
m
∏

1

trδ(λj −M) > (2.2)

where sl = itl; M is an N ×N Hermitian random matrix. The bracket stands for averages

with the Gaussian probability measure

< X >=
1

Z

∫

dMe−
N
2
trM2+NtrMAX(M), (2.3)

in which A is an N × N external Hermitian matrix source. By an appropriate tuning of

the external source matrix A, we may obtain the desired singularity, which generates the

p-spin curves. The relation to the generalized Kontsevich model is discussed in § 3,4 of [19].
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An exact and useful integral representation for U(s1, . . . , sn) is known in presence of

an arbitrary external matrix source A with eigenvalues aα [20]:

U(s1, · · · , sn) =
1

N
〈tres1M · · · tresnM〉 (2.4)

= e
∑n

1 s2i

∮ n
∏

1

dui
2πi

e
∑n

1 uisi

N
∏

α=1

n
∏

i=1

(

1−
si

aα − ui

)

det
1

ui − uj + si

This representation involves contour integrals around ui = aα. In the large N limit, it

is convenient to express the factors in the determinant as additional integrals. For instance,

in the case of the two point correlation (n=2), after the shift ui → ui −
si
2 , si →

si
N , in the

two point function, we have

1

u1 − u2 +
1
2N (s1 + s2)

1

u1 − u2 −
1
2N (s1 + s2)

=
N

s1 + s2

∫ ∞

0
dxe−x(u1−u2)sh

(

x

2N
(s1 + s2)

)

(2.5)

Tuning now the aα’s, and taking the large N limit, we obtain

U(s1, s2) =
2N

s1 + s2

1

(2πi)2

∫ ∞

0
dx

∫

du1du2sh

(

1

2N
x(s1 + s2)

)

e−(u1−u2)x (2.6)

×exp

[

−
N

p2 − 1

∑ 1

ap+1
α

(

∑

i

(

ui +
1

2N
si

)p+1

−
∑

i

(

ui −
1

2N
si

)p+1)]

For the three and four point correlations, similar useful formulae for the determinant part

of (2.4) may be found in the appendices A and B of [19].

3 Intersection numbers for p = 3 with two marked points

The intersection numbers are obtained as coefficients of the power series in s1, s2 of U(s1, s2).

In a previous paper [19], for p=3, we have computed the intersection numbers with two

marked points or genus one case (g=1) starting from (2.6). As an example, we compute

the p = 3 case up to genus 3. The general expansion

U(s1, s2) =
∑

g,m,j

< τm1,j1τm2,j2 >g Γ

(

1−
1 + j1
p

)

Γ

(

1−
1 + j2
p

)

s1
m′

1s2
m2′ (3.1)

with the condition,

(p+ 1)(2g − 2 + n) =

s
∑

i=1

(pmi + ji + 1), m′
k = mk +

1 + jk
p

(k = 1, 2) (3.2)

is applied to the special case n = 2, p = 3 The gamma functions in (3.1) represent the

spin factors.
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After rescaling of the parameters,

U(s1, s2) =
2

(s1 + s2)(3s2)1/3

∫ ∞

0
dysh

(

s1 + s2
2

(3s1)
1/3y

)

Ai

(

y −
1

4 · 31/3
s1

8/3

)

×Ai

(

− ay −
1

4 · 31/3
s2

8/3

)

(3.3)

in which a = (s1/s2)
1/3, and the Airy function is

Ai(y) =

∫ +∞

−∞

du

2π
e

i
3
u3+iuy (3.4)

The Airy function satisfies the differential equation

A′′
i (y) = yAi(y), A′′

i (−ay) = −a3yAi(−ay) (3.5)

The genus one case (g=1) has been studied in [7].

If one expands the hyperbolic sine function and the Airy functions in (3.3) up to

relevant orders, we find a sum of six terms which, for g = 2, involve the following integrals:

I1 =

∫ ∞

0
dyy5Ai(y)Ai(−ay), I2 =

∫ ∞

0
dyyA′′

i (y)Ai(−ay),

I3 =

∫ ∞

0
dyyAi(y)A

′′
i (−ay), I4 =

∫ ∞

0
dyyA′

i(y)A
′
i(−ay),

I5 =

∫ ∞

0
dyy3A′

i(y)Ai(−ay), I6 =

∫ ∞

0
dyy3Ai(y)A

′
i(−ay) (3.6)

A repeated use of (3.5) plus integrations by parts allows us to write all these integrals in

terms of

Ai(0) =
3−2/3

Γ(2/3)
=

1

2π31/3
Γ

(

1

3

)

, A′
i(0) = −

3−1/3

Γ(1/3)
= −

1

2π
Γ

(

2

3

)

(3.7)

plus the integral

T =

∫ ∞

0
dyAi(y)A

′
i(−ay) (3.8)

which cannot be reduced to Ai(0) or A
′
i(0). For instance one finds

(1 + a3)I2 = Ai(0)
2 − 2T (3.9)

and so on. However, all the T-dependence cancels when we sum up all the terms relevant

to g = 2 in U(s1, s2). For instance the sum of all terms of order s
16
3
2 is given by

1

5!

1

16
34/3(1 + a3)4a5s

16
3
2 I1 +

1

2

(

1

4 · 31/3

)2

a17s
16
3
2 I2

+
1

2

(

1

4 · 31/3

)2

a−1s
16
3
2 I3 −

(

1

4 · 31/3

)2

a8s
16
3
2 I4

−
1

3!

1

16
31/3(1 + a3)2a11s

16
3
2 I5 +

1

3!

1

16
31/3a2(1 + a3)2s

16
3
2 I6 (3.10)
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and we add up the six terms and expand in powers of s1 to the relevant orders we find

U(s1, s2)|g=2 =
(Ai(0))

2

32 · 32/3

(

− s
14/3
1 s

2/3
2 −

11

5
s
11/3
1 s

5/3
2

−
17

5
s
8/3
1 s

8/3
2 −

11

5
s
5/3
1 s

11/3
2 − s

2/3
1 s

14/3
2

)

. (3.11)

From these results, we obtain the intersection numbers

< τ0,1τ4,1 >g=2 =
1

864

< τ1,1τ3,1 >g=2 =
11

4320

< τ2,1τ2,1 >g=2 =
17

4320
(3.12)

Rather than computing the exact dependence in a of the terms proportional to s
16/3
2

and then re-expand in a to obtain the various terms of (3.11), we may proceed in a simpler

way by expanding Ai(−ay), A
′
i(−ay), A

′′
i (−ay) for small a:

Ai(−ay) = Ai(0)− ayA′
i(0) +

a2

2
y2A′′

i (0) + · · · (3.13)

and we then recover (3.12).

In the genus- three case (g=3), we have again ten distinct integrals J1 − J10 for the

terms of order s82a
m, in the small s1, s2 expansion of (3.3).

J1 =

∫ ∞

0
dyy7Ai(y)Ai(−ay), J2 =

∫ ∞

0
dyy5A′

i(y)Ai(−ay)

J3 =

∫ ∞

0
dyy5Ai(y)A

′
i(−ay), J4 =

∫ ∞

0
dyy3A′

i(y)A
′
i(−ay)

J5 =

∫ ∞

0
dyy3A′′

i (y)Ai(−ay), J6 =

∫ ∞

0
dyy3Ai(y)A

′′
i (−ay)

J7 =

∫ ∞

0
dyyA′′′

i (y)Ai(−ay), J8 =

∫ ∞

0
dyyAi(y)A

′′′
i (−ay)

J9 =

∫ ∞

0
dyyA′′

i (y)A
′
i(−ay), J10 =

∫ ∞

0
dyyA′

i(y)A
′′
i (−ay) (3.14)

The genus 3 contribution for U(s1, s2) is then expressed as the sum of four terms, U (1) -

U (4). The term U (1), which is related to J1, is

U (1) =
9

7! · 64
s
7/3
1 s

17/3
2 (1 + a3)6J1

=
3

8960
s82(−15a7 − 42a8 + 90a10 + 63a11

+63a13 + 90a14 − 42a16 − 15a17)Ai(0)A
′
i(0). (3.15)

The term U (2), which is related to J2, is

U (2) = −
1

2560
s82a

13(1 + a3)4J2

= −
1

2560
s82a

13(30 + 72a− 120a3 − 90a4 + 12a6)Ai(0)A
′
i(0). (3.16)
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The term U (3), which is related to J3, is

U (3) =
1

2560
s82a

4(1 + a3)4J3

=
1

2560
s82a

5(−12 + 90a2 + 120a3 − 72a5 − 30a6)Ai(0)A
′
i(0). (3.17)

The term U (4) from the sum of the contributions of J4 to J10. We have

J10 =
1

1 + a3
(2a3K1 − a3K2)

J9 = −K2 − J10

J8 =
a3 + 2a4 − 2a6 − a7

(1 + a3)2
L

J7 =
1

a3
J8

J6 =
6a3

1 + a3
J7

J5 = −
1

a3
J6

J4 = a3J5 − 3J9 (3.18)

with L = Ai(0)A
′
i(0), and K1,K2 are given below. We have also the following relations

between J1, J2 and J3,

J1 =
1

1 + a3
(30J5 + 12J3)

J2 =
1

1 + a3
(−5J5 + 4J4)

J3 =
1

1 + a3
(−5a3J5 − 4J4) (3.19)

Thus U (4) becomes

U (4) =
1

1152
s82(a+ 5a4 − 20a7 + 23a10 + 16a13

−19a16 + 13a19 + 2a22 + (2a2 + 13a5 − 19a8

+16a11 + 23a14 − 20a17 + 5a20 + a23))Ai(0)A
′
i(0). (3.20)

Since a = (s1/s2)
1/3, the above expression for U(s1, s2) is a symmetric function in s1 and

s2. Denoting

sm+ 1+j
3 = tm,j (3.21)

and dividing U(s1, s2) by 1/gp, i.e. 1/27 in this case, we obtain the intersection numbers

< τm1,j1τm2,j2 >g=3 as the coefficient of tm1,j1tm2,j2 in U(s1, s2) taking into account the

spin factors. The following spin factor appears as a over all factor in U(s1, s2) at genus 3.

Ai(0)A
′
i(0) = −

1

(2π)231/3
Γ

(

1

3

)

Γ

(

2

3

)

(3.22)
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where Γ(13), Γ(
2
3) are spin 1 and spin 2 factors, respectively, as (3.1). All the integrals

J1, . . . , J10 are expressed by (3.22), and there are no terms like (3.8), which appeared in

the integrals for the g=1,g=2 cases. Finally we have to compute the following terms

K1 =

∫

dyA′′
i (y)Ai(−ay) = −Ai(0)A

′
i(0)−K2

K2 =

∫

dyA′
i(y)A

′
i(−ay). (3.23)

For these integrals, we find

K1 = −
1 + a

1 + a3
Ai(0)A

′
i(0), K2 =

a− a3

1 + a3
Ai(0)A

′
i(0) (3.24)

and all the integrals reduces to the spin factor (3.22). Summing up the results of U (1) to

U(4), we obtain the intersection numbers for p = 3, g = 3,

< τ0,0τ7,1 >g=3 =
1

31104
, < τ0,1τ7,0 >g=3 =

1

15552

< τ1,0τ6,1 >g=3 =
5

31104
, < τ1,1τ6,0 >g=3 =

19

77760

< τ2,0τ5,1 >g=3 =
103

217728
, < τ2,1τ5,0 >g=3 =

47

77760

< τ3,0τ4,1 >g=3 =
443

544320
, < τ3,1τ4,0 >g=3 =

67

77760
(3.25)

The above results are in complete agreement with the previous results [14, 16], which were

obtained by recursion relations.

4 Intersection numbers for p > 3

For higher multicritical points the algebra is similar, except that we have to deal with

generalized Airy functions. For instance for p = 4 instead of Ai(x) we have to work with

φ(x) defined as

φ(x) =

∫ ∞

0
dve−

1
4
v4+vx (4.1)

which satifies

φ′′′(x) = xφ. (4.2)

Then, similarly

U(s1, s2) =
2

(s1 + s2)(4s2)1/4

∫ ∞

0
dx

∫ ∞

0
dv1dv2sh

(

s1 + s2
2

(4s1)
1/4x

)

(4.3)

×e
−

s31
2
( 1
4s1

)1/2v21−
s32
2
( 1
4s2

)1/2v22e−
1
4
v41+xv1−

1
4
v42−axv2

where a = (s1/s2)
1/4. In complete analogy with the p = 3 case, a repeated use of integration

by parts and of (4.2) leads to the expansion of U(s1, s2). In the genus one case,

U(s1, s2)|g=1 =
1

4
(φ′′(0))2s

1/4
1 s

1/4
2 (s21 + s1s2 + s22)

+
1

12
(s1s2)

3/4(s1 + s2)(φ(0))
2 (4.4)
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with

φ′′(0) = 21/2Γ

(

3

4

)

, φ(0) = 2−1/2Γ

(

1

4

)

(4.5)

which provide the j = 0, j = 2 spin factors respectively. Replacing s1, s2 by tm, j,

(sm+(1+j)/p = tm,j),

U(s1, s2)|g=1 =
1

2
(t2,0t0,0 + t1,0t1,0 + t0,0t2,0)

(

Γ

(

3

4

))2

+
1

24
(t1,2t0,2 + t0,2t1,2)

(

Γ

(

1

4

))2

(4.6)

Multiplying by a factor 1
pg , we obtain the intersection numbers as coefficients of (4.6) for

p = 4 in the genus one case,

< τ0,0τ2,0 >g=1=
1

8
, < τ1,0τ1,0 >g=1=

1

8
, < τ0,2τ1,2 >g=1=

1

96
(4.7)

For g = 2, p = 4, from the term s
18
4
2 s

2
4
1 , we have similarly

< τ0,1τ4,1 >g=2=
1

320
(4.8)

For general p we have to deal with the generalized Airy functions φ(x) for p > 2, which

satisfy the differential equation,

φ(p)(x) = xφ(x) (4.9)

where φ(p)(x) means the p-th derivative of φ(x). The generalized Airy function has an

integral representation,

φ(y) =

∫ ∞

0
du e

−up

p
+yu

. (4.10)

As examples of what the method can provide we give a few results: for the case p = 5, we

obtain

< τ1,3τ0,2 >g=1 = < τ1,2τ0,3 >g=1 =
1

60

< τ1,0τ1,0 >g=1 = < τ0,0τ2,0 >g=1 =
1

6

< τ0,1τ4,1 >g=2 =
7

1200
. (4.11)

For the case p = 6,

< τ0,3τ1,3 >g=1=
1

36
, < τ0,2τ1,4 >g=1=

1

48
, < τ0,4τ1,2 >g=1=

1

48
. (4.12)

For the case p = 7,

< τ0,2τ1,5 >g=1 = < τ1,2τ0,5 >g=1 =
1

42

< τ0,4τ1,3 >g=1 = < τ0,3τ1,4 >g=1 =
1

28

< τ1,0τ1,0 >g=1 = < τ0,0τ2,0 >g=1 =
1

4
. (4.13)

– 8 –



J
H
E
P
0
2
(
2
0
1
3
)
0
3
5

5 The p dependence of the intersection numbers

In a previous article [19], we have considered the intersection numbers with one marked

point for arbitrary p, and found results such as

< τ1,0 >g=1 =
p− 1

24

< τn,j >g=2 =
(p− 1)(p− 3)(1 + 2p)

p · 5! · 42 · 3

Γ(1− 3
p)

Γ(1− 1+j
p )

< τn,j >g=3 =
(p− 5)(p− 1)(1 + 2p)(8p2 − 13p− 13)

p2 · 7! · 43 · 32
Γ(1− 5

p)

Γ(1− 1+j
p )

< τn,j >g=4 =
(p− 7)(p− 1)(1 + 2p)(72p4 − 298p3 − 17p2 + 562p+ 281)

p3 · 9! · 44 · 15

×
Γ(1− 7

p)

Γ(1− 1+j
p )

(5.1)

with n = 2g−1+ 2g−2−j
p . In the large p limit, the intersection numbers < τn,j >g behave as

< τn,j >g=
Bg

(2g)!(2g)
pg +O(pg−1) (5.2)

with Bg is a Bernouilli number, B1 = 1
6 , B2 = 1

30 , B3 = 1
42 , B4 = 1

30 . Note the well known

relation to ζ(2g) as
Bg

(2g)!(2g)
=

1

(2π)2gg
ζ(2g) (5.3)

We have derived (5.2) from U(s) in the large p limit. The one point function U(s) has

the following expression [17],

U(s) =
1

Ns

∫

du

2iπ
exp

(

−
c

p+ 1

((

u+
1

2
s

)p+1

−

(

u−
1

2
s

)p+1))

(5.4)

With s = σ
p , and u

p+1 = x2, we have

U(s) =
2

Nσ

∫

dx

2iπ
x
−1+ 2

p e
− c

p+1
x2(eσ/2−e−σ/2)

(5.5)

Thus we obtain

U(s) =
2

Nσ
Γ

(

2

p

)(

2c

p+ 1
sh
σ

2

)−1/p

(5.6)

This may be written as

U(s) =
2

Nσ
Γ

(

2

p

)(

2c

p+ 1

)− 1
2
(

σ

2

)− 1
p

exp

(

−
1

p
log

shσ
2

σ
2

)

(5.7)

and expanding the exponent in 1
p , we find

U(s) =
2

Nσ
Γ

(

2

p

)(

2c

p+ 1

)− 1
2
(

σ

2

)− 1
p
(

1−
1

p
log

(

sh(σ2 )

(σ2 )

))

(5.8)
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If we use the expansion

log

(

shσ
2

σ
2

)

=

∞
∑

n=1

(−1)n−1 Bnσ
2n

(2n)!2n
(5.9)

and drop the factors ( 2c
p+1)

− 1
p , and (σ/2)−1/p which are close to one in the large p limit,

we obtain

U(s) =

(

1−
1

p

∞
∑

n=1

(−1)n−1 Bn

(2n)!2n
σ2n

)

p

Nσ
Γ

(

1 +
2

p

)

(5.10)

Since the intersection numbers < τn,j >g are related to U(s) by [17]

U(s) =
∑

g

< τn,j >g
1

Nπ
Γ

(

1−
1 + j

p

)

s
(2g−1)(1+ 1

p
)
pg−1 (5.11)

with (p+ 1)(2g − 1) = pn+ j + 1, we have rederived the large p behavior of (5.2).

From (5.9), taking a derivative with respect to σ, gives,

1

eσ − 1
+

1

2
−

1

σ
=

∞
∑

n=1

(−1)n−1 Bn

(2n)!
σ2n−1, (5.12)

Using this relation one obtains

d

dσ
(σU(σ)) =

1

σ
−

1

2
−

1

eσ − 1
(5.13)

The di-gamma function ψ(z) has the following expression,

ψ(z) =
d

dz
logΓ(z) = logz −

1

2z
−

∫ ∞

0
dσ

(

1

2
−

1

σ
+

1

eσ − 1

)

e−σz. (5.14)

From (5.13) and (5.14) we find thus in the large p limit,

d

dz
logΓ(z) = logz −

1

2z
+

∫ ∞

0
dσ

(

d

dσ
(σU(σ))

)

e−σz (5.15)

= logz −
1

2z
− z

d

dz

∫

dσU(σ)e−σz

The last integral is related to the density of states. In (2.2), s is replaced by s = it, and

if we replace z by iE, and take the imaginary part, we obtain the density of states ρ(E).

After integration by parts, we obtain

ρ(E) =
d

dE
Im logΓ(iE)−

π

2
−

1

2E
(5.16)

We will discuss this expression in connection to the density of states of the SL(2, R)/U(1)

black hole sigma model in the next section.

Next we consider the two point correlation function U(s1, s2). For general p, U(s1, s2)

is expressed as

U(s1, s2) =
2

(s1 + s2)(ps2)1/p

∫ ∞

0
dx

∫ ∞

0
dv1dv2sh

(

s1 + s2
2

(ps1)
1/p

)

(5.17)

×e−
v
p
1
p
+xv1−

p(p−1)
24

s31(ps1)
2−p
p vp−2

1 +...
e
−

v
p
2
p
−axv2−

p(p−1)
24

s32(ps2)
2−p
p vp−2

2 +...

– 10 –
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The exponent of (5.17) follows from the binomial expansion,

(

u+
s

2

)p+1

= up+1 + (p+ 1)up
(

s

2

)

+ (p+ 1)p
1

2
up−1

(

s

2

)2

+ . . . (5.18)

and we use c(p + 1) = 1, ups = vp/p. As in the case of p=3, polynomials in a (3.15) give

the intersection numbers. Therefore we expand (5.17) in power series of a. At lowest order

in a, we obtain two terms from (5.17),

U1 =
1

3!4
(s1 + s2)

2 (ps1)
3
p

(ps2)
1
p

∫

dxx3φ(x)φ(−ax)

U2 = −
p(p− 1)

24

(

s1
s2

)
1
p

s32(ps2)
2−p
p

∫

dxxφ(x)φ(p−2)(−ax)(−a)2−p (5.19)

From U2 we find a term proportional to as
2+ 2

p

2 , namely

∆U2 =
p− 1

24
p

2
pas

2+ 2
p

2 (φ(p−2)(0))2 (5.20)

with

φ(p−2)(0) =

∫ ∞

0
duup−2e

−up

p

= p
− 1

pΓ

(

1−
1

p

)

. (5.21)

Since s
2+ 1

p

2 s
1
p

1 = t2,0t0,0, we obtain

< τ0,0τ2,0 >g=1=
p− 1

24
(5.22)

From U1 and U2, we collect terms proportional to a3s
2+ 2

p

2 and obtain

< τ0,2τ1,p−2 >g=1=
p− 3

24p
(5.23)

This result agrees with those obtained previously for p = 4, 5, 6 and 7 in (4.7), (4.11),

(4.12) and (4.13). The intersection number (5.23) can be neglected in the large p limit in

comparison with (5.22).

Similarly one obtains the g=2 terms from the coefficients of ams
4+ 4

p

2 (m=1,2,3),

< τ0,0τ4,2 >g=2 =
(p− 1)(p− 3)(2p+ 1)

5760p

< τ0,1τ4,1 >g=2 =
(p− 1)(p− 2)(p+ 2)

2880p

< τ0,2τ4,0 >g=2 =
(p− 1)(p− 3)(2p+ 11)

5760p
(5.24)
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For the particular values of p = 3, 4, 5, the above expressions agree with the previous

results (3.12), (4.8) and (4.11) for the genus two case.

From the a5s
4+ 4

p

2 term, one finds

< τ0,4τ3,p−2 >g=2=
2p3 + 13p2 − 158p+ 215

5760p2
(5.25)

which is valid for p ≥ 6.

In the large p limit, the three terms of (5.24) become equal, and coincide with the

result for the one point intersection number (5.2).

< τ0,mτ4,2−m >g=2=
B2p

2

4! · 4
(p→ ∞) (5.26)

Note that (5.25) is order p, and is negligible compared to (5.24).

From the terms ams
6+ 6

p

2 in the small a expansion of U(s1, s2), we obtain the g=3 (genus

3) terms. In the case m=1, we have

< τ0,0τ6,4 >g=3=
(p− 1)(p− 5)(2p+ 1)(8p2 − 13p− 13)

p2 · 7!4332
(p > 5) (5.27)

This is identical to < τ5,4 >g=3 in (5.1). The identity follows from the string equation, in

which the insertion of τ0,0 reduces the intersection number from s to s− 1 marked points:

< τ0,0

s
∏

i=1

τni,ji >g=
s

∑

l=1

< τnl−1,jl

s
∏

i=1,i 6=l

τni,ji >g (5.28)

In our formulation, this string equation follows from the integral representation for the

intersection numbers, when one collects the terms proportional to a. By explicit calculation

of two marked points, we verified this string equation. It might be possible to verify this

string equation for n-marked points by the taking account of the term of a.

From a2s
6+ 6

p

2 , we have for p > 5,

< τ0,1τ6,3 >g=3=
(p− 1)(p− 2)(p− 4)(p+ 2)(2p+ 1)

p2 · 7! · 8 · 32
(5.29)

From a3s
6+ 6

p

2 ,

< τ0,2τ6,2 >g=3=
(p− 1)(p− 3)(16p3 + 34p2 − 155p− 129)

p2 · 7! · 64 · 32
(5.30)

In the large p limit, these g=3 terms exhibit same behavior as in (5.2),

< τ0,mτ6,4−m >g=3=
B3

6! · 6
p3 +O(p2) (p→ ∞) (5.31)

– 12 –
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6 Analytic continuation to negative p

One may analytically continue the integral representations of the correlation functions to

negative values of p. This continuation was already examined in [19], and we recall some

of the results here:

U(s) =
1

Ns

∫

du

2iπ
e−c[(u+ 1

2
s)p+1−(u− 1

2
s)p+1] (6.1)

where c = N
p2−1

∑ 1

ap+1
α

.

Expanding the exponent, we obtain

U(s) =

∫

du

2iπ
exp

[

−c

(

sup+
p(p− 1)

3!4
s3up−2+

p(p− 1)(p− 2)(p− 3)

5!42
s5up−4+· · ·

)]

. (6.2)

This integrals yield Gamma functions after the replacement u = ( t
cs)

1/p,

U(s) =
1

Nsp
·

1

(cs)1/p

∫ ∞

0
dtt

1
p
−1e−(t+

p(p−1)
3!4

s
2+ 2

p c
1
p t

1− 2
p+

p(p−1)(p−2)(p−3)

5!42
s
4+ 4

p c
4
p t

1− 4
p+··· )

=
1

Nsp
·

1

(cs)1/p

[

−
p− 1

24
c

2
p yΓ

(

1−
1

p

)

+
(p− 1)(p− 3)(1 + 2p)

5! · 42 · 3
y2Γ

(

1−
3

p

)

−
(p− 5)(p− 1)(1 + 2p)(8p2 − 13p− 13)

7!4332
y3Γ

(

1−
5

p

)

+(p− 7)(p− 1)(1 + 2p)(72p4 − 298p3 − 17p2 + 562p+ 281)

×
1

9!4415
y4Γ

(

1−
7

p

)

· · ·

]

(6.3)

with y = c
2
p s

2+ 2
p .

From this expansion, we obtain the intersection numbers for one marked point as (5.1).

The intersection number < τn,j >g is obtained from the term ygΓ(1− 1
p − j

p) in (6.3).

The continuation to p < 0 is straightforward. The t-integral in (6.3) can be changed

to v by t = 1
v ,(0 < v < ∞), and one obtains the small s expansion for negative p.

Therefore the expression for the intersection numbers (5.1) can be analytically continued

to negative p. This analytic continuation can also be done for two marked points, since we

have computed them in the previous sections for general p. For instance, from (5.1), we

have the intersection numbers for p = −3,

< τ1,0 >g=1 = −
1

6
, < τ3,2 >g=2=

1

144

< τ6,1 >g=3 = −
35

34992
(6.4)

In a previous article [19], we have computed the intersection numbers < τ1,0 >g for

the case of p = −1 from U(s), which provides the orbifold Euler characteristics χ(Mg,1)

with one marked point,

< τ1,0 >g= χ(Mg,1) = ζ(1− 2g) = −
Bg

2g
(6.5)
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with the Bernoulli number Bg, (B1 =
1
6 , B2 =

1
30 , B3 =

1
42 , . . .). The s-point orbifold Euler

characteristics χ(Mg,s) may be obtained from the dilaton equation:

< τ1,0τn1,j1 · · · τnk,jk >g= (2g − 2 + k) < τn1,j1 · · · τnk,jk >g (6.6)

Since the Euler characteristics with s marked points is < τ1,0 · · · τ1,0 >g, the dilaton equa-

tion yields from (6.5),

χ(Mg,s) =< (τ1,0)
s >g= −

2g − 1

(2g)!
(2g + s− 3)!Bg (6.7)

This agrees with previous results obtained in [21–23].

For p = −2, we have considered previously the equivalence with the unitary matrix

model in a matrix source [27].

The central charge of the gauged Wess-Zumino-Witten model with symmetry

SU(2)k/U(1) is

C = 2−
6

k + 2
(6.8)

Changing p to p = −p′, k to k = −k′ (p < 0,k < 0), we have p′ = k′ − 2, and the central

charge C is given by

C = 2 +
6

k′ − 2
(6.9)

The analytic continuation to negative p yields a gauged WZW model for SL(2, R)k′/U(1).

It is known that this model represents a black hole σ model [10], in particular for the value

k′ = 9
4 (p = −1

4), for which the central charge C becomes 26.

The density of states for the SL(2, R)/U(1) black hole has been studied in [25, 26, 28],

ρ(E) =
1

π
logǫ+

1

4πi

d

dE
log

Γ(−iE + 1
2 −m)Γ(−iE + 1

2 + m̃)

Γ(+iE + 1
2 + m̃)Γ(+iE + 1

2 −m)
(6.10)

in which ǫ is a regularization factor, and m = 1
2(n− kw), m̃ = −1

2(kw+n) are eigenvalues

of J3
0 and J̄3

0 in CFT (J3
0 − J̄3

o = n, J3
0 + J̄3

0 = −kw). If we neglect m , m̃, and the 1
2 terms

in the large E limit, we obtain

ρ(E) =
1

π
logǫ+

1

2πi

d

dE
log

Γ(−iE)

Γ(+iE)
(6.11)

or

ρ(E) =
2

π

d

dE
Im log Γ(−iE) (6.12)

This expression agrees with (5.16), obtained from the intersection numbers for large

p. We have scaled s = σ/p, and the expression (5.16) is valid for small s. Therefore, the

Fourier transform of U(s) gives the large E behavior, in which the terms m,m̃ and 1/2

in (6.10) can be neglected.
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7 Discussion

In this article, we have shown that the correlation functions U(s1, s2, · · · , sn) of a Gaussian

matrix model in a tuned external source, provide the intersection numbers for p-spin curves.

For instance, from the two point function U(s1, s2), in the case of p=3, the intersection

numbers are computed up to genus 3,

We have also computed the intersection numbers for general p. They are given by

power series in a, a = ( s1s2 )
1
p . Then we have considered the large p behavior for the two

point functions. The density of states ρ(E) becomes a di-gamma function in the large

p limit, and this expression agrees with the density of states of a SL(2, R)k/U(1) WZW

model, which has been studied in the context of two dimensional black hole solutions.

The n-point correlation functions U(s1, · · · , sn) are known through the determinant of a

kernel for the p-spin curve case. It will be interesting to investigate further the detailed

comparison of those correlation functions, between SL(2, R)k/U(1) WZW theory and the

intersection numbers for negative p-spin curves.
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