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Abstract We take into account the dynamics of a com-
plete third post-Newtonian conservative Hamiltonian of two
spinning black holes, where the orbital part arrives at the
third post-Newtonian precision level and the spin–spin part
with the spin–orbit part includes the leading-order and next-
to-leading-order contributions. It is shown through numeri-
cal simulations that the next-to-leading-order spin–spin cou-
plings play an important role in chaos. A dynamical sensi-
tivity to the variation of single parameter is also investigated
in some cases. In particular, there are a number of observ-
able orbits whose initial radii are large enough and which are
chaotic before coalescence.

1 Introduction

Massive binary black-hole systems are likely the most
promising sources to be used for future gravitational wave
detectors. The successful detection of the waveforms means
using matched-filtering techniques to best separate a faint sig-
nal from the noise and requires a very precise modeling of the
expected waveforms. Post-Newtonian (PN) approximations
can satisfy this requirement. Up to now, high-precision PN
templates have already been known for the non-spin part up
to 3.5PN order (i.e the order 1/c7 in the formal expansion
in powers of 1/c2 with c being the speed of light) [1,2], the
spin–orbit part up to 3.5PN order including the leading-order
(LO, 1.5PN), next-to-leading-order (NLO, 2.5PN), and next-
to-next-to-leading-order (NNLO, 3.5PN) interactions [3–6],
and the spin–spin part up to 4PN order consisting of the LO
(2PN), NLO (3PN), and NNLO (4PN) couplings [7–9].

However, an extremely sensitive dependence on initial
conditions as the basic feature of chaotic systems would pose
a challenge to the implementation of such matched filters,
since the number of filters required to detect these waveforms
is exponentially large with increasing detection sensitivity.
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This has led some authors to focus on research of chaos in the
orbits of two spinning black holes. Chaos was first found and
confirmed in the 2PN Lagrangian approximation of compa-
rable mass binaries with the LO spin–orbit and LO spin–spin
effects [10]. Moreover, it was reported in [11] that the pres-
ence of chaos should be ruled out in these systems because no
positive Lyapunov exponents could be found. As an answer
to this claim, [12,13] obtained some positive Lyapunov expo-
nents and pointed out these zero Lyapunov exponents of [11]
due to the less rigorous calculation of the Lyapunov expo-
nents of two nearby orbits with unapt rescaling. In fact, the
conflicting results on Lyapunov exponents are because the
two papers [11,12] used different methods to compute their
Lyapunov exponents, as was mentioned in [14]. Schnittman
and Rasio [11] computed the stabilizing limit values of Lya-
punov exponents, and [12] worked out the slopes of the fit
lines. This is the so-called doubt regarding different chaos
indicators causing two distinct claims on the chaotic behav-
ior. Besides this, there was a second point of doubt on dif-
ferent dynamical approximations giving the same physical
system distinct dynamical behaviors. The 2PN harmonic-
coordinates Lagrangian formulation of the two-black-hole
system with the LO spin–orbit couplings of one body spin-
ning allows for chaos [15], but the 2PN ADM (Arnowitt–
Deser–Misner) coordinates Hamiltonian does not [16,17].
Levin [18] thought that there is no formal conflict between
them since the two approaches are not exactly but approxi-
mately equal, and different dynamical behaviors between the
two approximately related systems are permitted according
to the dynamical system theory. Seen from the canonical,
conjugate spin coordinates [19], the former non-integrability
and the latter integrability are clearer. As extensions, any PN
conservative Hamiltonian binary system with one body spin-
ning and a conservative Hamiltonian of two bodies spinning
without the constraint of equal mass (or with the spin–orbit
couplings not restricted to the leading order) are still inte-
grable. Recently, [20,21] argued for the integrability of the
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2PN Hamiltonian without the spin–spin couplings and with
the NLO and/or NNLO spin–orbit contributions included.
On the contrary, the corresponding Lagrangian counterpart
with spin effects limited to the spin–orbit interactions up
to the NLO terms exhibits the stronger chaoticity [22]. A
third point of doubt relates to the different dependence of
chaos on a single dynamical parameter or initial condition.
The description of the chaotic regions and chaotic parameter
spaces in [15] is inconsistent with that in [23]. The different
claims are regarded to be correct according to the statement
of [24] that chaos does not depend only on a single physical
parameter or initial condition but a complicated combination
of all parameters and initial conditions.

It is worth emphasizing that the spin–spin effects are the
most important source for causing chaos in spinning com-
pact binaries, but they were only restricted to the LO term in
the published papers on research of the chaotic behavior. It
should be significant to discuss the NLO spin–spin couplings
included in the contribution of chaos. For the sake of this, we
shall consider a complete 3PN conservative Hamiltonian of
two spinning black holes, where the orbital part is up to the
3PN order and the spin–spin part as well as the spin–orbit
part includes the LO and NLO interactions. In this way, we
want to know whether the inclusion of the NLO spin–spin
couplings has an effect on chaos, and whether there is chaos
before the coalescence of the binaries.

2 Third post-Newtonian order Hamiltonian approach

It is too difficult to strictly describe the dynamics of a sys-
tem of two mass comparable spinning black holes in general
relativity. Instead, the PN approximation method is often
used. Suppose that the two bodies have masses m1 and
m2 with m1 ≤ m2. Other mass parameters are the total
mass M = m1 + m2, the reduced mass μ = m1m2/M ,
the mass ratio β = m1/m2, and the mass parameter η =
μ/M = β/(1 +β)2. As to other specified notations, a three-
dimensional vector r represents the relative position of body
1 to body 2, its unit radial vector is n = r/r with the radius
r = |r|, and p stands for the momenta of body 1 relative to the
center. The momenta, distances, and time t are, respectively,
measured in terms of μ, M , and M . Additionally, geomet-
ric units, c = G = 1, are adopted. The two spin vectors
are Si = Si Ŝi (i = 1, 2) with unit vectors Ŝi and the spin
magnitudes Si = χi m2

i /M2 (0 ≤ χi ≤ 1). In ADM coor-
dinates, the system can be expressed as the dimensionless
conservative 3PN Hamiltonian,

H(r, p, S1, S2) = Ho(r, p) + Hso(r, p, S1, S2)

+Hss(r, p, S1, S2). (1)

In the following, we write its detailed expressions although
they are too long.

For the conservative case, the orbital part Ho does not
include the dissipative 2.5PN term (which is the leading-
order radiation damping level) but the Newtonian term HN

and the PN contributions H1PN, H2PN, and H3PN, that is,

Ho = HN + H1PN + H2PN + H3PN. (2)

As given in [25], they are

HN = p2

2
− 1

r
, (3)

H1PN = 1

8
(3η − 1) p4 − 1

2
[(3 + η) p2 + η(n · p)2]1

r
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The spin–orbit part Hso is a linear function of the two spins.
It is the sum of the LO spin–orbit term HLO

so and the NLO
spin–orbit term HNLO

so ,

Hso = HLO
so (r, p, S1, S2) + HNLO

so (r, p, S1, S2). (7)

Nagar [6] gave their expressions:

Hso = 1

r3 [g(r, p)S + g∗(r, p)S∗] · L, (8)

where the related notations are

S = S1 + S2, S∗ = 1

β
S1 + βS2,

g(r, p) = 2 +
[

19

8
ηp2 + 3

2
η(n · p)2 − (6 + 2η)

1

r

]
,
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g∗(r, p) = 3

2
+

[
−

(
5

8
+ 2η

)
p2 + 3

4
η(n · p)2

−(5 + 2η)
1

r

]
,

and the Newtonian-looking orbital angular momentum vec-
tor is

L = r × p. (9)

The constant terms in g and g∗ correspond to the LO part,
and the others to the NLO part.

Similarly, the spin–spin Hamiltonian Hss also consists of
the LO spin–spin coupling term HLO

ss and the NLO spin–spin
coupling term HNLO

ss ,

Hss = HLO
ss (r, S1, S2) + HNLO

ss (r, p, S1, S2). (10)

The first sub-Hamiltonian reads [25]

HLO
ss = 1

2r3 [3(S0 · n)2 − S2
0] (11)

with S0 = S + S∗. The second sub-Hamiltonian is made of
three parts,

HNLO
ss = Hs2

1 p2 + Hs2
2 p2 + Hs1s2 p2 . (12)

They are written in [7,8] as

Hs2
1 p2 = 1
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4
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2
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1
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Hs2
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Hs1s2 p2 = 1
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{
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2
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Note that p1 = −p2 = p. In particular, the mass factors
in Eqs. (13) and (15) are different from those in [7,8] due
to the present rescaling actions on the variables, which are
p1 → μp1, p2 → μp2, r → Mr , and HNLO

ss → μHNLO
ss .

Naturally, 1/M4 is a rescaling factor of the action on the spin-
squared interactions. This shows that the rescaling factor of
the spin variables in the Hamiltonian (1) is 1/M2 rather than
1/(μM). To put it another way, we should use Si → M2Si as
rescaled spin transformations. In this sense, the conservative
system (1) at the 3PN order is no longer dependent on any
mass but the mass ratio.

The evolutions of position r and momentum p satisfy the
canonical equations of the Hamiltonian (1):

dr
dt

= ∂ H

∂p
,

dp
dt

= −∂ H

∂r
. (16)

The spin variables vary with time according to the following
relations:

dSi

dt
= ∂ H

∂Si
× Si . (17)

Besides the two spin magnitudes, there are four conserved
quantities in the Hamiltonian (1), including the total energy
E = H and three components of the total angular momentum
vector J = L + S. A fifth constant of motion is absent, so
the Hamiltonian (1) is non-integrable.1 Its high nonlinearity
may imply that it is a richer source for chaos. Next, we shall
search for chaos, and particularly investigate the effect of the
NLO spin–spin interactions on the dynamics of the system.

1 Based on the idea of [19], the Hamiltonian (1) can be expressed as a
completely canonical Hamiltonian with a ten-dimensional phase space
when the canonical, conjugate spin coordinates are used instead of the
original spin variables. If the system is integrable, at least five inde-
pendent integrals of motion beyond the constant spin magnitudes are
necessary.
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3 Detection of chaos before coalescence

With numerical simulations, we use some chaos indicators to
describe dynamical differences between the NLO spin–spin
couplings excluded and included. The appropriate ones of
the indicators are selected to study the dependence of chaos
on a single parameter when the NLO spin–spin couplings are
included so that a lot of chaotic orbits can be conveniently
found, and we can further find some of the chaotic orbits
before coalescence by estimating the Lyapunov and in-spiral
decay times.

3.1 Comparisons

Numerical methods are convenient to study the nonlinear
dynamics of the Hamiltonian (1). Symplectic integrators are
efficient numerical tools since they have good geometric
and physical properties, such as the symplectic structure
being conserved and energy errors being without secular
changes. However, they cannot provide high enough accu-
racies, and the computations are expensive when the mixed
symplectic integration algorithms [21,26] with a composite
of the second-order explicit leapfrog symplectic integrator
and the second-order implicit midpoint rule are chosen. In
this sense, we would prefer to adopt an eighth-(ninth-)order
Runge–Kutta–Fehlberg algorithm of variable time steps. In
fact, it gives such a high accuracy to the energy error in the
magnitude of about order 10−13–10−12 when the integra-
tion time reaches 106, as shown in Fig. 1. Here, for orbit
1 we consider that it has initial conditions ( p(0); r(0)) =
(0, 0.39, 0; 8.55, 0, 0), which correspond to the initial eccen-
tricity e0 = 0.30 and the initial semi-major axis a0 = 12.2.
Other parameters and initial spin angles are, respectively,
β = 0.79, χ1 = χ2 = χ = 1.0, θi = 78.46◦, and
φi = 60◦, where the polar angles θi and azimuthal angles φi

satisfy the relations Ŝi = (cos φi sin θi , sin φi sin θi , cos θi ),
as commonly used in physics. The NLO spin–spin cou-
plings are not included in Fig. 1a, but in Fig. 1b. It can be
seen clearly that the inclusion of the NLO spin–spin cou-

plings with a rather long expression decreases only slightly
the numerical accuracy. Therefore, our numerical results are
shown to be reliable although the energy errors have secular
changes.

We apply several chaos indicators to compare dynami-
cal behaviors of orbit 1 according to the two cases without
and with the NLO spin–spin couplings. The method of the
Poincaré surface of a section can provide a clear description
of the structure of phase space of a conservative system whose
phase space has four dimensions. However, it is not suitable
for such a higher dimensional system (1). Fortunately, power
spectra, Lyapunov exponents, and fast Lyapunov indicators
would work well in finding chaos regardless of the dimen-
sionality of phase space.

3.1.1 Power spectrum analysis

Power spectrum analysis reveals a distribution of various fre-
quencies ω of a signal x(t). It is the Fourier transformation

X (ω) =
∫ +∞

−∞
x(t)e−iωt dt, (18)

where i is the imaginary unit. In general, the power spec-
tra X (ω) are discrete for periodic and quasi-periodic orbits
but continuous for chaotic orbits. That is to say, the classi-
fication of orbits can be distinguished in terms of different
features of the spectra. On the basis of this, we know through
Fig. 2 that the orbit seems to be regular when the NLO spin–
spin couplings are not included, but chaotic when the NLO
spin–spin couplings are included. Notice that the method of
power spectra is only a rough estimation of the regularity
and chaoticity of orbits. More reliable chaos indicators are
strongly desired.

3.1.2 Lyapunov exponents

The maximum Lyapunov exponent is used to measure the
average separation rate of two neighboring orbits in the phase
space and gives quantitative analysis to the strength of chaos.

Fig. 1 Energy errors of orbit 1.
The NLO spin–spin couplings
are not included in a but in b

(a) (b)
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Fig. 2 Power spectra
corresponding to Fig. 1

(a) (b)

Fig. 3 The maximum
Lyapunov exponents λ

corresponding to Fig. 1

(a) (b)

Its calculations are usually based on the variational method
and the two-particle method [27]. The former needs solving
the variational equations as well as the equations of motion,
and the latter needs solving the equations of motion only.
Considering the difficulty in deriving the variational equa-
tions of a complicated dynamical system, we pay attention
to the application of the latter method. In the configuration
space, it is defined in [28] as

λ = lim
t→∞

1

t
ln

|�r(t)|
|�r(0)| , (19)

where |�r(0)| and |�r(t)| are the separations between the
two neighboring orbits at times 0 and t , respectively. The
initial distance cannot be too big or too small, and 10−8 is
regarded as to a suitable choice in the double precision [27].
For the sake of the overflow avoided, renormalizations from
time to time are vital in the tangent space. A bounded orbit
is chaotic if its Lyapunov exponent is positive, but regular
when its Lyapunov exponent tends to zero. In this way, we
can know from Fig. 3 that orbit 1 is regular for the case
without the NLO spin–spin couplings, but chaotic for the
case with the NLO spin–spin couplings. Of course, it takes
much computational cost to distinguish between the ordered
and chaotic cases.

3.1.3 Fast Lyapunov indicators

A quicker method to find chaos than the method of Lyapunov
exponents is a fast Lyapunov indicator (FLI). This indicator,
originally considered to measure the expansion rate of a tan-
gential vector [29], does not need any renormalization, while
its modified version dealing with the use of the two-particle
method [30] does. The modified version is of the form

FLI (t) = log10
|�r(t)|
|�r(0)| . (20)

Its computation is based on the following expression:

FLI = −k(1 + log10 |�r(0)|) + log10
|�r(t)|
|�r(0)| , (21)

where k denotes the sequential number of renormalization.
The FLI of Fig. 4a, corresponding to Fig. 3a, increases alge-
braically with logarithmic time log10 t , and that of Fig. 4b,
corresponding to Fig. 3b, increases exponentially with loga-
rithmic time. The former indicates the character of order, but
the latter the feature of chaos. Only when the integration time
adds up to 1 × 105 can the ordered and chaotic behaviors be
identified clearly for the use of FLI unlike the application of
Lyapunov exponent. There is a threshold value of the FLIs
between order and chaos, 5. Orbits whose FLI are larger than
5 are chaotic, whereas those whose FLIs are <5 are regular.
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Fig. 4 The fast Lyapunov
indicators (FLIs) corresponding
to Fig. 1

(a) (b)

Table 1 Values of FLIs and λTd for different orbits. FLIa corresponds to the NLO spin–spin couplings turned off. FLIb, λ, λd , and λTd correspond
to the NLO spin–spin couplings included

Orbit β χ x py e0 a0 FLIa FLIb λ λd λTd

2 0.80 1.0 8.55 0.39 0.30 12.2 4.2 14.5 3.2E-4 8.0E-4 0.4

3 0.50 0.84 14.5 0.24 0.16 12.4 3.9 21.6 4.7E-4 5.2E-4 0.9

4 0.50 0.85 14.5 0.24 0.16 12.4 4.5 15.3 3.2E-4 5.2E-4 0.6

5 0.71 0.95 17.5 0.20 0.30 13.5 3.9 17.7 3.8E-4 5.3E-4 0.7

6 0.65 0.90 35.4 0.10 0.65 21.5 4.2 9.6 1.8E-4 3.8E-4 0.5

7 0.50 0.97 18.7 0.19 0.32 14.1 9.4 24.2 5.7E-4 4.3E-4 1.3

The above numerical comparisons seem to tell us that
chaos becomes easier when the NLO spin–spin terms are
included. This sounds reasonable. As claimed in [20,21],
the system (1) is integrable and not at all chaotic when the
spin–spin couplings are turned off. The occurrence of chaos
is completely due to the spin–spin couplings, which include
particularly the NLO spin–spin contributions, leading to a
sharp increase in the strength of nonlinearity. In fact, we
employ FLIs to find that there are other orbits (such as orbits
2–6 in Table 1), which are not chaotic for the absence of the
NLO spin–spin couplings but for the presence of the NLO
spin–spin couplings. In addition, the strength of the chaoticity
of orbit 7 increases. To illustrate, the other initial conditions
beyond Table 1 are those of orbit 1; the starting spin unit
vectors of orbit 2 are those of orbit 1, and those of orbits 3–7
are θ1 = 84.26◦, φ1 = 60◦, θ2 = 84.26◦, and φ2 = 45◦.
Hereafter, only the dynamics of the complete Hamiltonian
(1) with the NLO spin–spin effects included is focused on.

3.2 Lyapunov and in-spiral decay times

Now we take β = 0.5, the initial conditions ( p(0); r(0)) =
(0, 0.19, 0; 18.7, 0, 0) with the initial eccentricity e0 = 0.32
and the initial semi-major axis a0 = 14.1, and the initial unit
spin vectors of orbit 3. Then we start with the spin parameter
χ at the value 0.2, which is increased in increments of 0.01
up to a final value of 1. Finally, dependence of FLI on χ is
plotted in Fig. 5a. This makes it clear that chaos occurs when

χ ≥ 0.45. Precisely speaking, the larger the spin magnitudes
get, the stronger the chaos gets. Note that this dependence
of chaos on χ relies typically on the choice of the initial
conditions, the initial unit spin vectors, and the mass ratio
parameter. As claimed in [24], there is a different dependence
of chaos on χ if the choice changes. That means that there is
not a general result as regards the relationship between chaos
and the parameter. On the other hand, taking the initial spin
angles of orbit 3, fixing the spin parameter χ = 0.95 and
the initial conditions ( p(0); r(0)) = (0, 0.2, 0; 17.5, 0, 0),
which correspond to the initial eccentricity e0 = 0.30 and the
initial semi-major axis a0 = 13.5, we study the range of the
mass ratio β beginning at 0.5 and ending at 1 in increments of
0.01. At once, the dependence of FLI on β can be described
in Fig. 5b. There is chaos for most values of β ≤ 0.8 and
chaos seems easier for a smaller mass ratio. When the mass
ratio is further decreased, all orbits become unstable and tend
to mergers, so that whether chaos gets stronger is unclear.
Of course, this result is given only under the present initial
conditions, initial unit spin vectors, and other parameters, as
is described in panel a. Although there is no a universal rule
about the dependence of chaos on single parameter or initial
condition for any case, insights into the dependence of the
dynamics on these parameters are convenient and helpful to
search for a large number of chaotic orbits in the case of the
given conditions. In this way, we shall further determine that
some of them are indeed chaotic before the merger of the
binaries.
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Fig. 5 The FLIs as a function
of χ or β when the NLO
spin–spin interactions are
included. All FLIs larger than 5
mean chaos

(a) (b)

Fig. 6 The maximum
Lyapunov exponents λ

corresponding to Fig. 5. Note
that λ > λc means chaos, and
λ > λd with λd = 1/Td
indicates the occurrence of
chaos before coalescence of the
binaries

(a) (b)

Table 2 Values of λTd for
chaotic orbits with big initial
radii when the NLO spin–spin
contributions are included

Orbit χ β x py e0 a0 λ λd λTd

8 0.95 0.50 14.5 0.24 0.16 12.5 5.7E-4 5.2E-4 1.1

9 0.94 0.50 25.5 0.14 0.50 17.0 5.7E-4 3.8E-4 1.5

10 0.96 0.50 25.5 0.14 0.50 17.0 4.0E-4 3.8E-4 1.1

11 0.97 0.50 25.5 0.14 0.50 17.0 5.3E-4 3.8E-4 1.4

12 0.90 0.50 35.4 0.10 0.65 21.5 5.2E-4 3.6E-4 1.4

13 0.90 0.54 35.4 0.10 0.65 21.5 6.0E-4 3.7E-4 1.6

To find the chaotic orbits needed, we have to compare the
Lyapunov time Tλ = 1/λ (i.e. the inverse of the Lyapunov
exponent) with the in-spiral decay time Td , estimated in [31]
by

Td = 12

19

c4
0

γ

∫ e0

0

e29/19[1 + (121/304)e2]1181/2299

(1 − e2)3/2 de, (22)

where the two parameters are

c0 = a0

(
1 − e2

0

)
e−12/19

0

(
1 + 121

304
e2

0

)−870/2299

(23)

and γ = 64m1m2/(5M2). When Tλ is less than Td (or λTd

> 1), chaos would be observed. Because Tλ = 3.0 × 103

and Td = 1.3 × 103 for orbit 1, the chaoticity cannot be
seen before the merger. Values of λTd for orbits 2–7 are
listed in Table 1. Clearly, only chaotic orbit 7 is what we

expect. Besides these, we plot two panels a and b of Fig.
6 regarding the dependence of the Lyapunov exponent on a
single parameter, which correspond, respectively, to Fig. 5a,
b. There are two facts to mention. First, the results in Fig. 6
are almost the same as those in Fig. 5. Second, lots of chaotic
orbits whose Lyapunov times are many times greater than the
in-spiral times should be ruled out, and there are only a small
quantity of desired chaotic orbits left.

In order to make the accuracy of the PN approach bet-
ter, we should choose orbits whose initial radii are larger
enough than roughly 10M . Besides the above-mentioned
chaotic orbits with initial radii larger than 10M and Lya-
punov times less than the in-spiral times, all chaotic orbits in
Table 2 are expected. Notice that the other initial conditions
of these orbits beyond this table are y = z = px = pz = 0,
and the starting spin angles are still the same as those of orbit
3. Although an orbit has a large initial radius, it may still be
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chaotic when its initial eccentricity is high enough. This sup-
ports the result of [23] that only highly eccentric orbits with
very low pericenters could be chaotic. The results about the
dependence of chaos on the initial eccentricity in the present
paper and the work [23] are really linked to the choice of
the other fixed parameters and initial conditions. As claimed
in [15,24], the eccentricity alone is not at all responsible
for chaos and a general result for the dependence of chaos on
the initial eccentricity is absent under various circumstances.
Although chaos does not necessarily need a large eccentricity
or a small periastron, we still consider the choice of a high
eccentricity for our purpose, which is not to obtain a general
result as regards the relationship between the initial eccen-
tricity and chaos for any case but to find some chaotic orbits
with larger initial radii before the merger. To be compared
with our intuition, a high eccentricity seems to make chaos
easy in our considered conditions even if the initial radius is
large enough. This is because it can get the orbit’s periastron
close enough in a highly nonlinear regime so that the spin–
spin coupling contributions become larger and chaos may get
stronger.

4 Conclusions

This paper is devoted to the study of the dynamics of the
complete 3PN conservative Hamiltonian of spinning com-
pact binaries in which the orbital part is accurate to the 3PN
order and the spin–spin part as well as the spin–orbit part
includes the LO and NLO contributions. Because of the high
nonlinearity, the NLO spin–spin couplings included give rise
to the occurrence of strong chaos in contrast with those
excluded. By scanning a single parameter with the FLIs, we
have obtained the dependence of chaos on the parameter for
given conditions. It is shown sufficiently that chaos appears
more easily for larger spins or smaller mass ratios under the
present considered initial conditions, starting unit spin vec-
tors, and other parameters. By means of such a case-by-case
scan on chaos versus single parameter, a large number of
chaotic orbits can be provided conveniently. Some of them,
which become chaotic before the merger, are further given.
It is worth noting that an orbit with a large initial radius is
still possibly chaotic if its initial eccentricity is high enough.
Above all, there are some observable chaotic orbits whose
initial radii are suitably large and whose Lyapunov times are
less than the corresponding in-spiral times.
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