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Abstract In recent years, repetitive transcranial magnet-
ic stimulation, a technique used to produce human cen-
tral neurostimulation, has attracted increased interest and
been applied experimentally in the treatment of dysphagia.
This review presents a synopsis of the current research
for the application of repetitive transcranial magnetic
stimulation (rTMS) on dysphagia. Here, we review the
mechanisms underlying the effects of rTMS and the results
from studies on both healthy volunteers and dysphagic
patients. The clinical studies on dysphagia have primarily fo-
cussed on dysphagia post-stroke.We discuss why it is difficult
to draw conclusions for the efficacy of this neurostimulation
technique, given the major differences between studies. The
intention here is to stimulate potential research questions not
yet investigated for the application of rTMS on dysphagic
patients prior to their translation into clinical practice for
dysphagia rehabilitation.
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Introduction

Deglutition is one of the most important bodily functions,
allowing the intake of required nutrients and hydration. The
ability to swallow safely is of importance, since the conse-
quences of unsafe swallowing (dysphagia) can directly threat-
en an individual’s well-being.

Currently, the clinical guidelines for the management of
dysphagic patients constitute mainly of compensatory strate-
gies or postural changes to try and prevent complications [1].
Delivered by speech and language therapists, dysphagia reha-
bilitation approaches include a variety of head and neck exer-
cises (chin tuck, head turn or Mendelsohn manoeuvre) but
with little limited evidence to support their efficacy [1, 2].

The therapeutic procedures for oropharyngeal dysphagia
have changed dramatically mainly due to advances in medical
experimental imaging and neurostimulation along with our
knowledge on the neurophysiological properties of
deglutition.

Here, we will briefly discuss the neurophysiological under-
pinnings of deglutition before examining recent advances in a
new therapeutic neurostimulation technique for dysphagia,
namely repetitive transcranial magnetic stimulation (rTMS),
which has attracted increased interest over the past decade.

Neurophysiology of Deglutition

Deglutition is the output of a very precise multidimensional
interplay between different brain areas, translated into a well-
tuned coordinated muscle activity in the periphery.

Historically, the central neural control of swallowing was
believed to be almost entirely dependent on brainstem reflex-
ive mechanisms [3]. However, in recent years, the role of the
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cerebral cortex in swallowing has received increased recogni-
tion and has been the subject of much research [4, 5].

Much of our understanding of the neural control of
swallowing has come from invasive neurophysiological obser-
vations in animals [6], replicated by many other groups in dif-
fering animal species [3, 7–14]. Artificially stimulating cortical
swallowing areas using invasive electrical microstimulation of
either cortical hemisphere in anaesthetised animals is capable of
inducing full swallow responses, which provided evidence that
swallowing musculature is bilaterally controlled over the cortical
level. In humans, neural cartographer and neurosurgeon Wilder
Penfield and colleagues, using the same techniques of invasive
electrical microstimulation in anaesthetised patients undergoing
neurosurgery, demonstrated that stimulation to certain parts of
the cerebral cortex could also induce swallowing [15].

One of the first non-invasive studies of swallowing con-
ducted in dogs showed that with the use of transcranial mag-
netic stimulation (TMS), activation of the cerebral cortex
through the scalp surface could elicit full swallowing
responses [16].

Nowadays, a number of TMS techniques are used for rou-
tine diagnostic application in neurophysiological settings [17,
18]. TMS is a safe and non-invasive technique which uses a
high-current pulse generator discharging currents of several
thousand amperes that flow through a coil of wire. The result
is the generation of a brief magnetic pulse with field strengths
up to several Tesla. When the coil is placed over the subject’s
head, the magnetic field undergoes little attenuation by
extracerebral tissues (scalp, cranial bone, meninges and cere-
brospinal fluid layer) and induces an electrical field sufficient
to depolarise superficial axons and to activate cortical neural
networks. Several physical and biological parameters play a
role in the outcome of the stimulation, such as the type and
orientation of coil; the distance between the coil and the brain;
the magnetic pulse waveform; and the intensity, frequency and
pattern of stimulation [19]. Perpendicular currents of sufficient
strength are generated to depolarise neuronal elements and
evoke electromyographic responses on the targeted muscula-
ture, called motor evoked potentials (MEPs).

With TMS, the midline structures involved in swallowing,
mylohyoid, pharyngeal and oesophageal musculature were
mapped in healthy volunteers by Hamdy and colleagues
[20]. In health, human swallowing musculature in the cerebral
cortex was shown to be discretely and somatotopically repre-
sented bilaterally (motor and premotor cortices) with a marked
display of interhemispheric asymmetry, independent of hand-
edness, thereby inferring the presence of ‘dominant’ and ‘non-
dominant’ hemispheres for the task of swallowing.

In the recent years, neuroimaging and neurostimulation
studies have provided insights into the activation patterns of
the swallowing sequence andmuscle activities (for reviews [4,
21]) and verified the earlier results. An activation likelihood
estimation meta-analysis of imaging studies on swallowing

[22] showed that the most consistent areas that are activated
in these neuroimaging studies include the primary sensorimo-
tor cortex (M1/S1), sensorimotor integration areas, the insula
and frontal operculum, the anterior cingulate cortex and sup-
plementary motor areas (SMAs). Recently, Mihai et al. [23]
using dynamic causal modelling examined the potential effec-
tive connectivity of areas such as SMA, M1/S1 and insula
during swallowing and showed that there is high probability
of bidirectional connections of the areas such as the SMA and
M1/S1 during swallowing. In addition, the cerebellum, impor-
tant in planning and executing complex motor tasks, has been
strongly implicated in the neurophysiological control of
swallowing, both through animal studies [24] and human
functional brain imaging [25–32] and TMS studies as de-
scribed below.

Recently, TMS has been used to study the role of cerebel-
lum in swallowing. Jayasekeran et al. [33] systematically
probed this relationship using single-pulse TMS and discov-
ered that distinctive cerebellar-evoked pharyngeal motor
evoked potentials with similar response latencies to cortically
evoked (cortical) PMEPs could be evoked from cerebellar
sites (both the cerebellar midline and hemispheres).
Interestingly, when paired pulses of cerebellar–cortical condi-
tioning were delivered at short interstimulus intervals (ISIs)
(50, 100 and 200 ms), this strongly excited pharyngeal
corticobulbar projections [33].

Dysphagia and Plasticity

Following a focal brain lesion such as stroke, patients may
experience swallowing disorders (dysphagia), a devastating
complication resulting in increased risk of aspiration pneumo-
nia [34–36]. Evidence exists for the effective recovery of
swallowing function after unilateral stroke, which is associat-
ed with increase in cortical excitability and cortical area map
size of the unaffected hemisphere [37–39]. In a seminal study
of swallowing in stroke using TMS, both dysphagic and non-
dysphagic patients had the cortical topography of their pha-
ryngeal musculature serially mapped over several months
[20]. A follow-up study [37] showed that the cortical map
representation of the pharyngeal musculature in the undam-
aged hemisphere markedly increased in size in dysphagic pa-
tients who recovered swallowing, whilst there was no change
in patients who had persistent dysphagia or in patients who
were non-dysphagic throughout. Furthermore, changes seen
in the damaged hemisphere in any of the groups of patients
were not significant. These observations implied that over a
period of weeks or months, the recovery of swallowing after
stroke may be reliant on compensatory strategies of cortical
reorganisation, through neuroplastic changes, mainly ob-
served in the undamaged hemisphere.
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Given this increase in our knowledge on swallowing neu-
rophysiology and pathophysiology, there is now a plethora of
stimulus-driven neuroplasticity protocols being trialled in or-
der to augment and accelerate these cortical changes in
dysphagic patients [21, 40].

Repetitive TMS and Underlying Mechanisms

In the recent years, rTMS has become widely used in the form
of two treatment regimens: low-frequency rTMS, which is
defined by stimulation at frequencies lower than or equal to
1 Hz, and high-frequency rTMS, which is defined by stimu-
lation at frequencies higher than or equal to 5 Hz. Low-
frequency rTMS reduces neuronal excitability, whereas
high-frequency rTMS increases cortical excitability [41].

A number of randomised placebo-controlled studies have
generally demonstrated that rTMS efficaciously treats a vari-
ety of pathological conditions and diseases such as stroke,
depression, tinnitus, obsessive–compulsive disorders, pain
syndromes, migraines, refractory epilepsy, dystonia, tremors
and spasticity (for reviews, see [19, 42] and [43]). In an ex-
tensive evidence-based synthesis of established and potential
therapeutic applications of rTMS, Lefaucher and colleagues
[19] concluded that level A recommendation has been
achieved so far for the beneficial effect of high-frequency
rTMS on neuropathic pain (target: M1 contralateral to pain
side) and major depression but highlighted the fact that more
controlled studies should take place to verify the utility while
controlling for factors as time of introduction of the treatment
and concurrent pharmacological interventions.

However, although numerous studies have investigated the
effects of TMS and found beneficial effects, two primary is-
sues remain unclear: first, the underlying mechanisms for the
induction of changes following rTMS in such a range of dis-
eases and, secondly, why are there long-lasting changes man-
ifested and what are the mechanisms behind maintenance of
the effects (usually the effects last more than 6 months).

Chervyakov et al. [43] reviewed the various potential
mechanisms relative to the actions of TMS at neural network
(mutual exCitation and inhibition of cerebral regions), synap-
tic and/or molecular genetic (changes in gene expression, en-
zyme activity and neuromediator production) levels. One of
the most important mechanisms underlying the changes fol-
lowing rTMS is now considered the change in neurotransmit-
ter concentrations following rTMS, such as endogenous do-
pamine [44, 45].

Moreover, results from research studies employing rTMS
have reported some dependence of benefits from TMS and
genetic polymorphisms [46–48].

Similar to all brain neurostimulation techniques, several
parameters play a role for the effective application of rTMS
application, including coil orientation, coil type, target

selection, distance to target (from the maximum output of
magnetic field to the brain area target for stimulation) and
specific parameters such as intra-train interval, pulse width,
frequency of the pulses, duration of the stimulation protocol
and intensity used to deliver the stimulation. Worth mention-
ing is that the repetition of application within a protocol (treat-
ment regimen) as well as factors such as time of the day
(circadian rhythms) and brain activation state prior to treat-
ment can play a role in the outcome [49].

Repetitive TMS in Health-Effective Deglutition

Studies for the effects for rTMS in healthy subjects usually serve
as a prelude to the application of the techniques to patients with
dysphagia. Gow et al. [50] explored the effects of 100 pulses of
rTMS over the pharyngeal motor cortex (80 % pharyngeal
threshold) and observed an increase in cortical excitability lasting
for over 1 h using a 5-Hz frequency. Comparing the effects of
different number of pulses in trains of 5 Hz, Jefferson et al. [51]
found that 250 pulses were as effective as longer 5-Hz rTMS
trains (1000 pulse) at inducing increase in cortico-bulbar MEPs
from pharyngeal M1. Conversely, Mistry et al. [52] showed that
with an inhibitory, 1-Hz rTMS paradigm for 10 min (600 mag-
netic stimulation pulses) at the 120 % of pharyngeal threshold
was possible to generate a unilateral ‘virtual lesion’, inhibition of
cortico-bulbar output, in the pharyngeal motor cortex for up to
45 min and can also interfere with swallowing behaviour, as
measured using reaction time swallowing tasks.

Apart from MEPs, reaction time swallowing tasks, where
the subject has to perform a swallow within a specified time
window as measured by intra-pharyngeal manometry, have
been also used to examine the effects of 5-Hz excitatory stim-
ulation following the inhibition induced with 1 Hz rTMS in
healthy subjects [51]. The rationale behind these research
studies was to attempt to interfere temporarily with neuronal
function and inhibit the area of interest (with 1 Hz) on the
hemispheric ‘dominant’ side, thus simulating the effects of a
lesion. Thereafter, 5 Hz was delivered to both the pharyngeal
M1 hotspots ipsilateral or contralateral to the lesion on differ-
ent occasions (as well as no stimulation, control arm).
Comparing the effects of between the two different target lo-
cations, it was shown that when the 5 Hz was applied contra-
lateral to the virtual lesion, the inhibitory effects of the latter
were reversed. This non-competitive synergy between the two
pharyngeal M1s has been verified with other studies recently
[53, 54] following the similar translational model of virtual
lesion with outcome measures the changes in MEPs or SRTs.

Moreover, Verin et al. [55] have used videofluoroscopy to
examine the effects of 1 Hz rTMS on oropharyngeal motor
cortex and observed a transient change in swallowing behav-
iour in a way reminiscent to that seen in stroke patients with
hemispheric lesions.
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Recently, Vasant and colleagues [56••] examined the ef-
fects of differing frequencies of cerebellar rTMS on pharyn-
geal cortical and cerebellar excitability. High-frequency cere-
bellar rTMS (10 Hz) can robustly produce physiologically
relevant effects on the excitability of frequency specific of
corticobulbar projections to the pharynx. Of interest and as
before, these effects were frequency specific, and with the
advantage of neuronavigation, the authors were able to con-
firm the optimal posterior fossa sites where stimulation can be
applied to modulate pharyngeal corticobulbar excitability and
swallowing responses.

Repetitive TMS in Dysphagia

In deglutition, rTMS has been studied vastly over the last few
years as means to either augment or as a treat-alone avenue for
dysphagia rehabilitation. The effects of rTMS have been studied
mostly in healthy adults and stroke patients in studies where
various outcome measures were employed. There are now two
published systematic reviews and meta-analyses for brain stim-
ulation in dysphagia, where studies with rTMS on stroke patients
with dysphagia were included [57, 58]. Table 1 presents all the
studies where rTMS was performed to dysphagic patients.

Even though only the effects of single sessions of rTMS
have been investigated in health, several studies have used
either excitatory [59, 60, 61••, 62, 63] or inhibitory [55, 64,
65] rTMS treatment regimen in stroke patients with dysphagia
repeatedly over a different number of days with few excep-
tions [66••]. Also of interest is that fact that there are differ-
ences in the rationale behind the target selection (lesioned vs.
unlesioned cortical representation) to apply the stimulation.
Figure 1 shows the different protocols and the rationale used
in the literature. In addition, different cortical musculature
representations, i.e. representations of upper oesophageal
sphincter [60], mylohyoid [55, 65], pharyngeal [61••, 66••],
have been targeted with varying parameters or intensities.

As already reviewed in the meta-analysis [57], there
are four randomised controlled trials (RCTs) in the lit-
erature investigating the effects of the rTMS on
dysphagic stroke [60, 61••, 65, 66••]. The pooled effect
size showed a moderate significant overall effect size,
favouring the use of rTMS over the cortical representa-
tion of musculature involved in swallowing in stroke
patients. However, the issue here is that these studies
had several differences in target cortical representation
(mylohyoid, pharyngeal, oesophageal), time post-stroke
recovery phase of the patients studied, therapeutic regi-
mens (treatment repeats) and hemispheric application
with respect to the lesions.

Moreover, there seems to be variability in the out-
come measures used in the research studies. These out-
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videofluoroscopy and direct visualisation of changes in
physiology [65, 66••] to self-rated dysphagia awareness
measures [60].

Last but not least, patient characteristics differed
across studies. Stroke type (ischemic and haemorrhagic,
hemispheric and brainstem) and time post-onset (com-
bining acute and chronic stroke patients) are just a
few of the diverse variables that preclude direct
comparisons.

Conclusions

Repetitive TMS in health and swallowing disorders has pro-
vided valuable information towards further understanding of

the swallowing network and its capacity to change for bene-
ficial swallowing outcomes.

In health, rTMS was employed as a means to unravel
the connectivity and the ‘flexibility’ of the swallowing
network. Studies in health inform evidence-based deci-
sions about the optimal frequency and intensity amongst
other parameters of the stimulation protocols. Most im-
portantly, results from studies with a translational com-
ponent, such as inhibitory rTMS in health, assist in
identifying the optimal target locations prior to the use
of the neurostimulation technique as a treatment for
dysphagia. Currently, the use of rTMS in dysphagia
post-stroke seems to hold promise for beneficial changes
in behaviour, but no large (or multicentre) randomised
controlled study has yet been performed. To date, all
the published studies with rTMS have targeted

Fig. 1 Studies using rTMS on
dysphagic stroke patients. The
rationale for using either
excitatory (red upwards arrow) or
inhibitory (blue downwards
arrow) over the lesioned or
unlesioned (lesion marked with a
star) is shown in the third column
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dysphagia post-stroke. Applying neurostimulation ap-
proaches to different disease aetiologies and accounting
for several factors (age, lesion type, time from diagno-
sis), while measuring neurophysiological and functional
outcome measures, will provide us further information
about the endogenous plastic changes in humans with
regard to swallowing function.

Nevertheless, there are profound differences in studies
utilising rTMS in stroke dysphagic populations when consid-
ering the research methodologies utilised by different groups.
Comparisons between the studies are difficult since most of
the studies have applied rTMS on different targets (lesioned
vs. contralesioned hemisphere) and different muscle groups
(mylohyoid, pharyngeal, oesophageal).

Given the evidence that the mechanisms underlying
the effects of rTMS range from changes in neuronal
excitability to changes in neurotransmitter concentrations
along with the effect of genetic predisposition of re-
sponders vs. non-responders to neurostimulation, we
conclude that further work should be performed in the
field.

It is important to continue research into neurostimulation
techniques for swallowing rehabilitation for two reasons.
Firstly, there is a potential avenue for clinical utility of
neurostimulation in dysphagia rehabilitation clinics.
Secondly, by studying how we can modulate the swallowing
network, the optimal time window for swallowing modula-
tion and the exact neurophysiological and behavioural ef-
fects of neurostimulation, we will be able to accumulate a
greater knowledge about the adaptive changes that we can
promote to our patients.

To conclude, recent research studies investigating the
effects of rTMS for dysphagia rehabilitation have shown
promising results. There is some paucity that this
neurostimulation technique will be viewed as powerful
tool in the hand of a rehabilitation clinician in the fu-
ture. However, currently, the field of neurorehabilitation
science in dysphagia is diverse in nature and methodo-
logical differences across research studies are accentuat-
ing the need for further investigations.
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