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Abstract

Background: Breast cancer (BC) is the most prevalent cancer in women and a major public health problem in
Morocco. Several Moroccan studies have focused on studying this disease, but more are needed, especially at the
genetic and molecular levels. Therefore, we investigated the potential association of several functional germline
variants in the genes commonly mutated in sporadic breast cancer.

Methods: In this case–control study, we examined 36 single nucleotide polymorphisms (SNPs) in 13 genes
(APOBEC3A, APOBEC3B, ARID1B, ATR, MAP3K1, MLL2, MLL3, NCOR1, RUNX1, SF3B1, SMAD4, TBX3, TTN), which were
located in the core promoter, 5’-and 3’UTR or which were nonsynonymous SNPs to assess their potential
association with inherited predisposition to breast cancer development. Additionally, we identified a ~29.5-kb
deletion polymorphism between APOBEC3A and APOBEC3B and explored possible associations with BC. A total
of 226 Moroccan breast cancer cases and 200 matched healthy controls were included in this study.

Results: The analysis showed that12 SNPs in 8 driver genes, 4 SNPs in APOBEC3B gene and 1 SNP in APOBEC3A gene
were associated with BC risk and/or clinical outcome at P≤ 0.05 level. RUNX1_rs8130963 (odds ratio (OR) = 2.25; 95 % CI
1.42-3.56; P = 0.0005; dominant model), TBX3_rs8853 (OR = 2.04; 95 % CI 1.38-3.01; P = 0.0003; dominant model),
TBX3_rs1061651 (OR = 2.14; 95 % CI1.43-3.18; P = 0.0002; dominant model), TTN_rs12465459 (OR = 2.02; 95 % confidence
interval 1.33-3.07; P = 0.0009; dominant model), were the most significantly associated SNPs with BC risk. A strong
association with clinical outcome were detected for the genes SMAD4 _rs3819122 with tumor size (OR = 0.45; 95 % CI
0.25-0.82; P = 0.009) and TTN_rs2244492 with estrogen receptor (OR = 0.45; 95 % CI 0.25-0.82; P = 0.009).

Conclusion: Our results suggest that genetic variations in driver and APOBEC3 genes were associated with the risk of BC
and may have impact on clinical outcome. However, the reported association between the deletion polymorphism and
BC risk was not confirmed in the Moroccan population. These preliminary findings require replication in larger studies.
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Background
Breast Cancer (BC) is one of the most frequent malignant
disease and primary cause of death in women worldwide.
Approximately 522,000 women died on BC in 2012 and
1.67 million new cancer cases were diagnosed worldwide
[1, 2].

The vast majority of sporadic and familial breast cancer
cases arise due to lifelong accumulation of genetic factors
in the breast tissue. Recent genome-wide association
studies (GWASs) focusing on evaluating common single
nucleotide polymorphisms (SNPs) have identified more
than 70 genetic susceptibility loci for breast cancer [3–25].
Partial and full tumor genome sequences have revealed
the existence of hundreds to thousands of mutations in
most cancers [26–32]. However, genome sequencing has
revealed that many cancers, including breast cancer, have
somatic mutation spectra dominated by C-to-T transitions
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[27–32]. Recently, the International Cancer Genome Con-
sortium (ICGC) was launched to identify those somatic
mutations and consequently to determine those genes
which are required for human cancer development [29, 33].
Approximately 10 % of those are driver mutations, which
initiate the carcinogenic process [34].
Additionally, recent studies have shown that copy num-

ber variations (CNVs), another type of genetic variation,
occur frequently in the genome and account for more
nucleotide sequence variation than single-nucleotide poly-
morphisms [35]. This variation accounts for roughly 12 %
of human genomic DNA, and each variation may range
from about 1 kb to several megabases in size [36]. Re-
cently, through CNV GWAS, Long et al. [37] discovered a
common CNV locus for breast cancer in Chinese women,
which was located between exon 5 of APOBEC3A and exon
8 of APOBEC3B, resulting in a fusion gene with a protein
sequence identical to APOBEC3A, but with a 3’-UTR of
APOBEC3B. This deletion has been associated with in-
creased BC risk in both Chinese and a Caucasian popula-
tion with a population frequency of around 37 and 6 %
respectively [37–39]. In addition to decreased expression of
APOBEC3B, the deletion may lead to alteration in APO-
BEC3A RNA stability.
Considering the potential function of driver and APO-

BEC3 gene in the process of tumorigenesis in BC, it is
possible that germline variations and CNV in those genes
could influence the risk of BC. For this reason, we con-
ducted this case–control study in a sample of Moroccan
women.

Methods
Study population
The present case–control study was performed involving
226 cases, recruited from the Department of Oncology
of the Littoral Clinic of Casablanca during 2013. The
control group included a total of 200 healthy women
with no personal history of cancer diseases selected from
DNA bank volunteers of the Genetics and Molecular
Pathology Laboratory. Clinico-pathological parameters
including age at diagnosis, menopausal status, histology
type, tumor size, Scarff-Bloom-Richardson (SBR) grade,
lymph nodes status, and hormone receptors status were
obtained from patients’ medical records. The study proto-
cols have been approved by the Ethic Committee for Bio-
medical Research in Casablanca (CERBC) of the Faculty
of Medicine and Pharmacy and written informed consent
was obtained from each subject.

Gene/SNP selection
Regarding driver genes, we focused on genes described
to carry BC driver mutations in at least two of the fol-
lowing publications: Stephens et al. 2012; Banerji et al.
2012; Ellis et al. 2012; Shah et al. 2012 [32, 40–42]. The

well-known and intensively studied genes such as BRCA1
or PTEN were excluded from this study. A total of 36
SNPs across 11 driver genes (ARID1B, ATR, MAP3K1,
MLL2, MLL3, NCOR1, RUNX1, SF3B1, SMAD4, TBX3,
TTN) and 2 genes of APOBEC3 family (APOBEC3A,
APOBEC3B) were selected to the study based on data
obtained from Ensembl Genome browser (http://www.en-
sembl.org/index.html) for the CEU (Utah residents with
Northern and Western European ancestry from the CEPH
collection). The SNPs selection was based on these cri-
teria: (1) minor allele frequency (MAF) value over 10 %;
(2) location within the coding region (non synonymous
SNPs), core promoter regions and 5’- and 3’-untranslated
regions (UTRs), (3) Haploview was used to select SNPs on
the basis of linkage disequilibrium (LD; r2 ≥ 0.80)) to
minimize the number of SNPs to be genotyped. Regulo-
meDB (http://www.regulomedb.org/) was used to explore
the potential function of the associated SNPs.

Genotyping
Genomic DNA was extracted from peripheral blood leu-
kocytes using the salting out procedure [31]. Genomic
DNA was dissolved in TE (10 mM Tris–HCl and 0.1 mM
EDTA, pH8.0). Spectrophotometry was used to quantify
DNA using the Nanovue TM Plus spectrophotometer.
Genotyping was performed using TaqMan SNP Genotyp-

ing Assay from Life Technologies (Darmstadt, Germany) or
KASPar SNP Genotyping system from KBioscience (Hod-
desdon, Great Britain) in a 384-well plate format. Master
Mix for the the KASPar assay was prepared according to
the KBioscience’s conditions and products, whereas
5× HOT FIREPol Probe qPCR Mix Plus from Solis
BioDyne (Tartu, Estonia) for TaqMan SNP Genotyp-
ing Assay was used. The Polymerase chain reactions
(PCR) were performed in a final reaction volume of
5 μl per well. The PCR poducts were analyzed using
ViiA7 Real-Time PCR System from Applied Biosys-
tems (Weiterstadt, Germany).

Screening for APOBEC3 deletion
Polymerase chain reaction (PCR) was carried out to amp-
lify APOBEC3 gene in a final volume of 10 μl containing
10× reaction buffer, 50 mM MgCl2, 10 mM dNTPs,
10 μM primers, 5U Taq DNA polymerase, and 10 ng
genomic DNA. The PCR amplification parameters were
40 cycles of 1 min of denaturing at 95 °C, 1 min of anneal-
ing at 60 °C, and 1 min of extension at 72 °C.
The insertion and deletion alleles were detected by amp-

lifying genomic DNA with the following oligonucleotide
sequences:
Deletion_F:TAGGTGCCACCCCGAT;Deletion_R:TT-

GAGCATAATCTTACTCTTGTAC; Insertion1_F: TTG
GTGCTGCCCCCTC; Insertion1_R: TAGAGACTGAG
GCCCAT; and Insertion2_F: TGTCCCTTTTCAGAGT
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TTGAGTA; Insertion2_R: TGGAGCCAATTAATCACTT-
CAT. Deletion alleles resulted in 700 bp fragment, Insertio-
n1alleles resulted in 490 bp fragment and Insertion2 alleles
resulted in 705 bp fragment. Insertion and deletion PCR
assays were performed separately, the products pooled, and
visualized by ethidium bromide staining on a standard
1.5 % agarose gel.

Statistical analysis
The Hardy Weinberg equilibrium (HWE) was tested by
comparing observed and expected genotype frequencies
in both cases and controls using χ2 test. Odds ratio with
a confidence intervals (CIs) of 95 % were calculated
using multiple logistic regression (PROC LOGISTIC,
SAS Version 9.2; SAS Institute, Cary, NC) to assess the
strength of the association between genotypes and breast
cancer risk. The P value ≤ 0.05 was considered statisti-
cally significant.

In Silico prediction
To investigate how the SNPs can influence the gene expres-
sion and their consequences on protein binding sites, chro-
matin structure and promoter and enhancer strength, we
used HaploReg (http://www.broadinstitute.org/mammals/
haploreg/haploreg.php). To identify the possible effects on
histone modification we used RegulomeDB (http://regulo-
me.stanford.edu/). These effects were proofed for data in
MCF7 (Michigan Cancer Foundation-7 breast cancer cell
line), T-47D (epithelial cell line derived from mammary
ductal carcinoma), HMEC (human mammary epithelial
cells) or MCF10A-ER-SRc (breast epithelial cell line -es-
trogen receptor –src) cell lines. SIFT and PolyPhen predic-
tions were used to determine the possible effect of amino
acid substitutions on protein function and structure (En-
semble release 75, http://www.ensembl.org/index.html).
The MicroSNiPer was used to predict the impact of all
the significant SNPs of this study located in 3’UTR on
micro-RNA binding using microSNiPer (http://epicent-
er.ie-freiburg.mpg.de/services/microsniper/).

Results
The baseline characteristics of the population sample
analyzed in our study are listed in Table 1. In total, 226
BC cases and 200 controls were successfully genotyped
for 36 selected SNPs in 13 potential genes. Altogether
12 SNPs in 8 driver genes, 4 SNPs in APOBEC3B gene
and 1 SNP in APOBEC3A gene were associated with BC
risk and/or clinical outcome at P ≤ 0.05 level (Tables 2
and 3).
The most significant associations with BC risk were

observed for RUNX1_rs8130963 (OR = 2.25; 95 % CI
1.42-3.56; P = 0.0005; dominant model), TBX3_rs8853
(OR = 2.04; 95 % CI 1.38-3.01; P = 0.0003; dominant
model), TBX3_rs1061651 (OR = 2.14; 95 % CI 1.43-

3.18; P = 0.0002; dominant model), TTN_rs12465459
(OR = 2.02; 95 % CI 1.33-3.07; P = 0.0009; dominant
model). However, the strongest significant associations
were observed for TBX3_rs2242442, ATR_rs2227928,
RUNX1_rs17227210; both heterozygous and homozygous
carriers of the minor allele were at increased risk of BC
(Table 2). Considering driver gene, only the SNP rs2227928
in ATR was associated both with risk (OR 1.68, 95 % CI

Table 1 Characteristics of breast tumors at time of diagnosis

Characteristics Samples

Cases/Controls 226/200

Age at diagnosis, mean ± SD (years) 41 ± 11

Range (years) 27 – 67

Menopausal Status No. (%)

Premenopausal 162(71.68)

Postmenopausal 63(27.87)

Missing 1(0.44)

Estrogen receptor

Positive 130 (57.52)

Negative 78(34.51)

Missing 18 (7.96)

Progesterone receptor

Positive 136 (59.29)

Negative 72(31.85)

Missing 18 (7.96)

Estrogen/Progesterone receptor

ER+/PR+ 111 (49.11)

ER+/PR− 25 (11.06)

ER−/PR+ 19 (8.40)

ER−/PR− 53 (23.45)

Tumor size

<2 cm 30 (13.27)

>2 cm 105 (46.46)

>5 cm 41(18.14)

Tumor of any size with extension 37 (16.37)

Histological grade

1 8 (3.53)

2 141 (62.38)

3 59 (26.10)

Lymph node status

Negative 86(38.55)

Positive 132 (58.40)

Distant metastases

Negative 170(75.22)

Positive 38 (16.81)

ER estrogen receptors, PR progesterone receptors
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Table 2 SNPs associated with breast cancer risk

Breast cancer risk

Gene/SNP Genotype Cases (%) Controls (%) OR (95 % CI) P-value

APOBEC3B CC 181 (80.09) 176 (88.00) 1.00

rs8142462 TC 42 (18.58) 24 (12.00) 1.70
(0.99-2.93)

0.0500

TT 3 (1.33) 0 (0.00) 0 (0) 0.9839

Dom 45 (19.91) 24 (12.00) 1.82
(1.07-3.12)

0.0300

Overall 0.1584

APOBEC3A GG 111 (49.12) 125 (62.50) 1.00

rs17370615 GA 102 (45.13) 66 (33.00) 1.74
(1.16-2.60)

0.0068

AA 13 (5.75) 9 (4.50) 1.63
(0.67-3.95)

0.2826

Dom 115 (50.88) 75 (37.50) 1.73
(1.17-2.54)

0.0050

Overall 0.0217

APOBEC3B CC 95 (42.0) 69 (34.50) 1.00

rs28401571 CT 93 (41.15) 80 (40.00) 0.84
(0.55-1.30)

0.4412

TT 38 (16.81) 51 (25.50) 0.54
(0.32-0.91)

0.0212

Add 0.75
(0.58-0.97)

0.0300

Overall 0.0682

APOBEC3B TT 82 (36.28) 93 (46.50) 1.00

rs6001376 CT 106 (46.90) 87 (43.50) 1.38
(0.92-2.08)

0.1226

CC 38 (16.81) 20 (10.00) 2.15
(1.16-4.00)

0.0148

Add 1.44
(1.09-1.91)

0.0100

Overall 0.0390

APOBEC3B CC 44 (19.47) 49 (24.50) 1.00

rs1065184 CT 128 (56.64) 119 (59.50) 1.20
(0.74-1.93)

0.4587

TT 54 (23.89) 32 (16.00) 1.88
(1.03-3.42)

0.0385

Add 1.36
(1.01-1.84)

0.0400

Overall 0.1000

ATR GG 78 (34.51) 94(47.00) 1.00

rs2227928 AG 110 (48.67) 87(43.50) 1.52
(1.01-2.30)

0.0448

AA 38 (16.81) 19(9.50) 2.41
(1.29-4.51)

0.0060

AG + AA 148 (65.49) 106(53.00) 1.68
(1.14-2.49)

0.0090

Overall 0.0123

ARID1B CC 50 (22.12) 63 (31.50) 1.00

rs73013281 CT 126 (55.75) 90 (45.00) 1.76
(1.11-2.79)

0.0154

Table 2 SNPs associated with breast cancer risk (Continued)

TT 50 (22.12) 47 (23.50) 1.34
(0.78-2.31)

0.2915

CT + TT 176 (77.88) 137 (68.50) 1.62
(1.05-2.50)

0.0293

Overall 0.0500

MAP3K1 CC 130 (57.52) 137 (68.50) 1.00

rs832583 AC 80 (35.40) 58 (29.00) 1.45
(0.96-2.20)

0.0770

AA 16 (7.08) 5 (2.50) 3.37
(1.20-9.47)

0.0210

AC + CC 96 (42.48) 63 (31.50) 1.61
(1.08-2.39)

0.0197

Overall 0.0236

NCOR1 CC 102 (45.13) 108 (54.00) 1.00

rs178831 CT 103 (45.58) 82 (41.00) 1.33
(0.89-1.98)

0.1589

TT 21 (9.29) 10 (5.00) 2.22
(1.00-4.95)

0.0500

CT + TT 124 (54.87) 92 (46.00) 1.43
(0.97-2.09)

0.0681

Overall 0.0908

RUNX1 AA 153 (67.70) 165 (82.50) 1.00

rs8130963 AG 70 (30.97) 33 (16.50) 2.29
(1.43-3.65)

0.0005

GG 3 (1.33) 2 (1.00) 1.62
(0.27-9.81)

0.6010

AG + GG 73 (32.30) 35 (17.50) 2.25
(1.42-3.56)

0.0005

Overall 0.0024

RUNX1 CC 53 (23.45) 71 (35.50) 1.00

rs17227210 CT 123 (54.42) 92 (46.00) 1.79
(1.15-2.80)

0.0106

TT 50 (22.12) 37 (18.50) 1.81
(1.04-3.15)

0.0359

CT + TT 173 (76.55) 129 (64.50) 1.80
(1.18-2.74)

0.0066

Overall 0.0249

SMAD4 AA 145 (64.16) 157 (78.50) 1.00

rs12456284 AG 72 (31.86) 39 (19.50) 2.00
(1.27-3.14)

0.0026

GG 9 (3.98) 4 (2.00) 2.44
(0.73-8.08)

0.1457

AG + GG 81 (35.84) 43 (21.50) 2.04
(1.32-3.15)

0.0013

Overall 0.0053

TBX3 CC 104 (46.02) 127 (63.50) 1.00

rs8853 CT 106 (46.90) 60 (30.00) 2.16
(1.43-3.25)

0.0002

TT 16 (7.08) 13 (6.50) 1.50
(0.69-3.27)

0.3037

CT + TT 122 (53.98) 73 (36.50) 2.04
(1.38-3.01)

0.0003
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1.14-2.49 dominant model), tumor size and hormone re-
ceptor status (Table 3).
An increased risk was observed for homozygous car-

riers of the minor allele for rs178831 in NCOR1 (OR
2.22, 95%CI 1.00-4.95) (Table 2), however no association
with clinical tumor characteristics was observed. Two of
the six genotyped SNPs in TTN were associated with
less aggressive tumor features: rs12463674 with low
histological grade and rs2244492 with low hormone
receptor status (Table 3). Additionally, the minor allele
carriers of the SNPs rs6001376 in APOBEC3B and
rs832583 in MAP3K1 had an increased risk of BC (OR
2.15, 95 % CI 1.16-4.00; OR and OR 3.37, 95 % CI 1.20-
9.47, respectively) (Table 2). Three additional SNPs in
APOBEC3B showed associations with clinic-pathological
features: large tumor size and hormone receptor status
(Table 3). An increased risk was observed for rs12456284

in SMAD4(OR 2.04, 95%CI 1.32-3.15). The SNP was also
associated with histologic grade. No correlation was ob-
served between APOBEC3 deletion and clinic-pathological
parameters of breast cancer either in the hormone receptor
status, tumor size, histological grade, lymph node status
and distant metastases (Table 4). In addition, no statistically
significant association was observed between APOBEC3
deletion and breast cancer risk (Table 5).

Discussion
In this population-based case–control study, we investi-
gated for the first time the influence of the germline
variation and CNVs in the potential driver genes and APO-
BEC3 genes on breast cancer susceptibility in a North
African population.
The APOBEC3 genes family, including APOBEC3A,

APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3E, APO-
BEC3F, APOBEC3G, and APOBEC3H, plays pivotal roles in
intracellular defense against viral infections [43]. The APO-
BEC3 genes family encodes cytosine deaminases that have
been implicated in innate immune responses by restricting
retroviruses, mobile genetic elements like retro-transposons
and endogenous retroviruses [44]. Furthermore, the APO-
BEC3 genes may play a role in carcinogenesis by triggering
DNA mutation through dC deamination [45]. Moreover,
expression of the APOBEC3 genes is regulated by estrogen
[46], a hormone that plays a central role in the etiology of
breast cancer. Very recently, Burns et al. provided evidence
that APOBEC3B is overexpressed in breast cancer tumors
and cell lines and that the APOBEC3B mutation signature
is statistically more prevalent in the breast tumor database
of The Cancer Genome Atlas (TCGA) than is expected
[47]. Interestingly, the APOBEC3B mutation signature was
detectable in colorectal and prostate cancers only when
whole- genome, but not whole-exome, data were used,
suggesting a tissue-specific bias against enrichment of mu-
tations by APOBEC3B in coding regions. Both studies from
Burns et al. and Roberts et al. reached the same conclusion
that the APOBEC3B mutation signature is specifically
enriched in six types of cancers, including those of the cer-
vix, bladder, lung (adeno and squamous cell), head and
neck, and breast [47, 48].
Furthermore, the APOBEC3 deletion is 29.5 kb in

length, located between exon 5 of APOBEC3A gene and
exon 8 of APOBEC3B gene resulting in complete re-
moval of the coding region of the APOBEC3B gene. This
deletion is associated with decreased expression of the
APOBEC3B gene in breast cancer cells [46]. Somatic de-
letion of this 29.5 kb has also been observed in breast
and oral cancer tumor tissue [39, 46]. In the present
study, our results did not reveal significant association
between APOBEC3 deletion polymorphism and breast
cancer risk (Table 5). This result is in agreement with a
Japanese case–control study of 50 cases and 50 controls

Table 2 SNPs associated with breast cancer risk (Continued)

Overall 0.0011

TBX3 TT 118 (52.21) 140 (70.00) 1.00

rs1061651 TC 97 (42.92) 50 (25.00) 2.30
(1.51-3.50)

0.0001

CC 11 (4.87) 10 (5.00) 1.31
(0.54-3.18)

0.5579

TC + CC 108 (47.79) 60 (30.00) 2.14
(1.43-3.18)

0.0002

Overall 0.0005

TBX3 GG 89 (39.38) 106 (53.00) 1.00

rs2242442 AG 104 (46.02) 84 (42.00) 1.47
(0.99-2.21)

0.0500

AA 33 (14.60) 10 (5.00) 3.93
(1.84-8.42)

0.0004

AG + AA 137 (60.62) 94 (47.00) 1.74
(1.18-2.55)

0.0050

Overall 0.0012

TTN AA 131 (57.96) 139(69.50) 1.00

rs12463674 AG 85 (37.61) 53(26.50) 1.70
(1.12-2.58)

0.0127

GG 10 (4.42) 8(4.00) 1.33
(0.51-3.46)

0.5641

AG + GG 95 (42.04) 61(30.50) 1.65
(1.11-2.47)

0.0140

Overall 0.0436

TTN CC 135 (59.73) 150 (75.00) 1.00

rs12465459 CT 84 (37.17) 46 (23.00) 2.03
(1.32-3.11)

0.0012

TT 7 (3.10) 4 (2.00) 1.94
(0.56-6.79)

0.2972

CT + TT 91 (40.27) 50 (25.00) 2.02
(1.33-3.07)

0.0009

Overall 0.0041

OR odds ratio, CI confidence interval, SNP single nucleotide polymorphism
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Table 3 SNPs associated with clinico-pathological features

Gene/SNP Genotype Significant
association

No. of
patients
Group
1(%)

No. of
patients
Group
2(%)

OR (95 % CI) P-value Significant
association

No. of
patients
Group
1(%)

No. of
patients
Group
2(%)

OR (95 % CI) P-value

APOBEC3B Tumor size ≤2 cm >2 cm

rs8142462 CC 68 (87.18) 105
(76.09)

1.00

TC 8 (10.26) 32 (23.19) 2.59
(1.13-5.96)

0.0300

TT 2 (2.56) 1 (0.72) 0.32
(0.03-3.64)

0.3600

TC + TT 10 (12.82) 33 (23.91) 2.14
(0.99-4.62)

0.0500

Overall 0.0500

APOBEC3B Estrogen
receptor/
Progesterone
receptors

ER+/PR+ ER-/PR- Estrogen
receptor

ER+ ER-

rs28401571 CC 48 (43.24) 21 (39.62) 1.00 59 (43.38) 30 (41.67) 1.00

CT 49 (44.14) 16 (30.19) 0.75
(0.35-1.60)

0.4500 62 (45.59) 22 (30.56) 0.70
(0.36-1.34)

0.2800

TT 14 (12.61) 16 (30.19) 2.61
(1.08-6.31)

0.0300 15 (11.03) 20 (27.78) 2.62
(1.18-5.84)

0.0200

CT + TT 63 (56.76) 32 (60.38) 1.16
(0.60-2.26)

0.6600 77 (56.62) 42 (58.33) 1.07
(0.60-1.91)

0.8100

Overall 0.0200 0.0100

APOBEC3B Estrogen
receptor/
Progesterone
receptors

ER+/PR+ ER-/PR-

rs2076111 CC 40 (36.04) 11 (20.75) 1.00

CT 67 (60.36) 41 (77.36) 2.23
(1.03-4.82)

0.0400

TT 4 (3.60) 1 (1.89) 0.91
(0.09-8.98)

0.9300

CT + TT 71 (63.96) 42 (79.25) 2.15
(1.00-4.64)

0.0500

Overall 0.1000

ATR Tumor Size ≤2 cm >2 cm Estrogen
receptor/
Progesterone
receptors

ER+/PR+ ER+/PR-

rs2227928 GG 33 (42.31) 40 (28.99) 1.00 33 (29.73) 13 (52.00) 1.00

AG 34 (43.59) 71 (51.45) 1.72
(0.93-3.19)

0.0800 58 (52.25) 10 (40.00) 0.44
(0.17-1.11)

0.0800

AA 11 (14.10) 27 (19.57) 2.02
(0.88-4.69)

0.0900 20 (18.02) 2 (8.00) 0.25
(0.05-1.24)

0.0900

AG + AA 45 (57.69) 98 (71.01) 1.80
(1.01-3.21)

0.0400 78 (70.27) 12 (48.00) 0.39
(0.16-0.95)

0.0300

Overall 0.1300 0.0900

MLL2 Tumor Size ≤2 cm >2 cm Histologic
grade

1 + 2 3

rs11614738 GG 26 (33.33) 61 (44.20) 1.00 18 (30.51) 69 (46.31) 1.00

CG 37 (47.44) 64 (46.38) 0.74
(0.40-1.36)

0.3200 35 (59.32) 59 (39.60) 0.44
(0.23-0.86)

0.0100

CC 15 (19.23) 13 (9.42) 0.37
(0.15-0.88)

0.0200 6 (10.17) 21 (14.09) 0.91
(0.32-2.60)

0.8600

CG + CC 52 (66.67) 77 (55.80) 0.63
(0.35-1.13)

0.1100 41 (69.49) 80 (53.69) 0.51
(0.27-0.97)

0.0300

Overall 0.0800 0.0300

SMAD4 Histologic
grade

1 + 2 3

rs12456284 AA 36 (61.02) 99 (66.44) 1.00
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Table 3 SNPs associated with clinico-pathological features (Continued)

AG 18 (30.51) 47 (31.54) 0.95
(0.49-1.84)

0.8700

GG 5 (8.47) 3 (2.01) 0.22
(0.05-0.96)

0.0400

AG + GG 23 (38.98) 50 (33.56) 0.79
(0.42-1.48)

0.4600

Overall 0.1300

SMAD4 Tumor Size ≤2 cm >2 cm Estrogen
receptor/
Progesterone
receptors

ER+/PR+ ER+/PR-

rs3819122 AA 22 (28.21) 64 (46.38) 1.00 43 (38.74) 15 (60.00) 1.00

AC 45 (57.69) 52 (37.68) 0.40
(0.21-0.74)

0.0030 48 (43.24) 7 (28.00) 0.42
(0.16-1.12)

0.0800

CC 11 (14.10) 22 (15.94) 0.69
(0.29-1.64)

0.3900 20 (18.02) 3 (12.00) 0.43
(0.11-1.66)

0.2100

AC + CC 56 (71.79) 74 (53.62) 0.45
(0.25-0.82)

0.0090 68 (61.26) 10 (40.00) 0.42
(0.17-1.02)

0.0500

Overall 0.0100 0.1600

TBX3 Histologic
grade

1 + 2 3

rs3759173 GG 11 (18.64) 47 (31.54) 1.00

GT 34 (57.63) 69 (46.31) 0.47
(0.22-1.03)

0.0500

TT 14 (23.73) 33 (22.15) 0.55
(0.22-1.37)

0.1900

GT + TT 48 (81.36) 102
(68.46)

0.50
(0.24-1.04)

0.0600

Overall 0.1600

TBX3 Regional
lymph node
met

N- N+

rs8853 CC 67 (50.76) 33 (38.37) 1.00

CT 53 (40.15) 49 (56.98) 1.88
(1.06-3.32)

0.0300

TT 12 (9.09) 4 (4.65) 0.68
(0.20-2.26)

0.5200

CT + TT 65 (49.24) 53 (61.63) 1.66
(0.95-2.88)

0.0700

Overall 0.0400

TTN Regional
lymph node
met

N- N+

rs2303838 CC 87 (65.91) 50 (58.14) 1.00

CT 42 (31.82) 29 (33.72) 1.20
(0.67-2.16)

0.5400

TT 3 (2.27) 7 (8.14) 4.06
(1.00-16.4)

0.0400

CT + TT 45 (34.09) 36 (41.86) 1.39
(0.80-2.44)

0.2400

Overall 0.1300

TTN Estrogen
receptor

ER+ ER- Estrogen
receptor/
Progesterone
receptors

ER+/PR+ ER-/PR-

rs2244492 CC 36 (26.47) 32 (44.44) 1.00 31 (27.93) 23 (43.40) 1.00

CT 77 (56.62) 32 (44.44) 0.47
(0.25-0.88)

0.0100 63 (56.76) 25 (47.17) 0.53
(0.26-1.09)

0.0800

TT 23 (16.91) 8 (11.11) 0.39
(0.15-1.00)

0.0400 17 (15.32) 5 (9.43) 0.40
(0.13-1.23)

0.1000

CT + TT 100
(73.53)

40 (55.56) 0.45
(0.25-0.82)

0.0090 80 (72.07) 30 (56.60) 0.51
(0.26-1.00)

0.0500
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reporting a non-statistically significant risk of breast
cancer associated with homozygous deletion of this re-
gion (OR = 3.91, 95 % CI = 0.77 to 19.83) [49]. Neverthe-
less, there are some studies showing an important role
of this CNVs in breast cancer and provide additional evi-
dence to implicate APOBEC3 deletion as a novel suscep-
tibility factor for breast cancer risk [37, 39].
In addition, our genetic data pointed to the possible

involvement of genetic variants within the studied genes
NCOR1, RUNX1, SMAD4, TBX3, TTN, ATR, ARID1B
and MAP3K1. The most significant association with
breast cancer risk was identified by RUNX1_rs8130963,
RUNX1_ rs17227210, TBX3_rs8853, TBX3_ rs1061651,
TBX3_2242442, TTN_rs12463674, and ATR_rs2227928.
The other driver gene did not reveal an important role
in breast cancer risk.
RUNX1 (Run-Related Transcription Factor 1) also

known as AML1 (acute myeloid leukemia 1 gene) is a
tumor suppressor gene with a length of 1,196,949 bp
and was original identified in acute myeloid leukemia
(AML). Previously, several studies have suggested that
the RUNX1 gene is highly expressed in breast epithelial

cells and it is frequently mutated in breast cancer [50].
Down regulation of RUNX1 is part of a 17-gene signa-
ture that has been suggested to predict breast cancer
metastasis [51]. In the present study, 2 of 3 genotyped
SNPs (rs8130963 and rs17227210) were associated with
breast cancer risk. Rs8130963 shows a strong genetic
differentiation between the European and African popu-
lation (Fst = 0.346), which is an indication for positive
selection. Interestingly rs17227231 which is linked with
an r2 = 92 to rs17227210 could change the protein bind-
ing of GATA3 (GATA binding protein3) as well as the
transcription factor binding site of GATA. GATA3 was
already classified as a high confident driver gene for
breast [52]. On the other hand, rs17227210 has an effect
in splicing. The variant C do not bind SF2/ASF which is
involved in alternative mRNA splicing. It is a member of
the serine/arginine rich protein family and was found to
be up regulated in diverse tumors [49].
The T-box transcription factor 3 (13,910 bp) is

expressed in mammary tissues and plays therefore a
context-dependent role in mammary gland development
as well as in mammary tumor genesis [53]. In addition,

Table 3 SNPs associated with clinico-pathological features (Continued)

Overall 0.0300 0.1300

TTN Progesterone
receptor

PR+ PR- Estrogen
receptor/
Progesterone
receptors

ER+/PR+ ER-/PR-

rs12465459 CC 87 (66.92) 40 (51.28) 1.00 74 (66.67) 27 (50.94) 1.00

CT 39 (30.00) 36 (46.15) 2.01
(1.12-3.61)

0.0200 34 (30.63) 24 (45.28) 1.93
(0.98-3.83)

0.0500

TT 4 (3.08) 2 (2.56) 1.09
(0.19-6.18)

0.9200 3 (2.70) 2 (3.77) 1.83
(0.29-11.54)

0.5200

CT + TT 43 (33.08) 38 (48.72) 1.92
(1.08-3.42)

0.0200 37 (33.33) 26 (49.06) 1.93
(0.99-3.75)

0.0500

Overall 0.0600 0.1500

TTN Progesterone
receptor

PR+ PR- Regional
lymph node
met

N- N+

rs12463674 AA 70 (53.85) 51 (65.38) 1.00 71 (53.79) 56 (65.12) 1.00

AG 56 (43.08) 22 (28.21) 0.54
(0.29-0.99)

0.0400 56 (42.42) 25 (29.07) 0.57
(0.31-1.02)

0.0500

GG 4 (3.08) 5 (6.41) 1.72
(0.44-6.71)

0.4300 5 (3.79) 5 (5.81) 1.27
(0.35-4.60)

0.7100

AG + GG 60 (46.15) 27 (34.62) 0.62
(0.35-1.10)

0.1000 61 (46.21) 30 (34.88) 0.62
(0.36-1.09)

0.0900

Overall 0.0700 0.1300

Histologic
grade

1 + 2 3 Estrogen
receptor/
Progesterone
receptors

ER+/PR+ ER-/PR+

34 (57.63) 88 (59.06) 1.00 64 (57.66) 6 (31.58) 1.00

19 (32.20) 58 (38.93) 1.18
(0.61-2.26)

0.6100 44 (39.64) 12 (63.16) 2.91
(1.02-8.33)

0.0400

6 (10.17) 3 (2.01) 0.19
0.05-0.82)

0.0200 3 (2.70) 1 (5.26) 3.56
(0.32-39.70)

0.3000

25 (42.37) 61 (40.94) 0.94
(0.51-1.74)

0.8400 47 (42.34) 13 (68.42) 2.95
(1.04-8.33)

0.0400

0.0500 0.1200

OR odds ratio, CI confidence interval, SNP single nucleotide polymorphism, No total number
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The TBX3 is overexpressed in a number of breast cancer
cell lines [54] and could serve as a biomarker [55]. Our
results reveal that one of genotyped SNPs in TBX3 was as-
sociated both with breast cancer risk and clinical outcome.
Rs8853 apparently has an impact on the transcription
factor binding site STAT (signal transducer and activator
of transcription). Gene expression of TBX3 could be influ-
enced by the SNP rs8853 and its impact on miR-3189.
However an association to breast cancer could not be
discovered. Furthermore Douglas and Papaioannou ob-
served TBX3 overexpression in estrogen-receptor-positive
breast cancer cell lines [53]. However, other publications
describe an effect of TBX3 overexpression results in a pool
of estrogen receptor negative cancer stem-like cells [56].
TTN (Titin or connectin) is the largest polypeptide

encoded by the human genome [57] and it has been in-
tensely studied as a component of the muscle contractile
machinery [27]. However, TTN is expressed in many cell
types and has other functions that are compatible with a
role in oncogenesis [58–60]. The role of TTN as a cancer

gene is currently a mathematically based prediction and
will require direct biological evaluation. During the
present study, 2 out of 6 genotyped SNPs show significant
association with increased risk and 4 out of 6 genotyped
SNPs with clinical outcome. In addition, more than 50 %
of the statistical significant SNPs show an association with
negative estrogen or progesterone receptor status. A link
between hormones and calcium, which plays a major role
in the muscle contractile machinery were Titin is located,
could be seen in the estrogen signaling pathway, where
the Calcium signaling pathway is a part of. Furthermore, a
relation of Calcium signaling pathways and breast cancer
is proofed [61, 62].
ATR (Ataxia Telangiectasia mutated and Rad3-related),

an essential regulator of genomic integrity, controls and
coordinates DNA-replication origin firing, replication-
fork stability, cell cycle checkpoints, and DNA repair
[63]. Smith et al. showed that overexpression of the ATR
gene resulted in a phenocopy of the i(3q). The genetic
alteration of ATR leads to loss of differentiation as well
as cell cycle abnormalities [64]. Thus ATR has been stud-
ied as a target for cancer therapy [65]. However new In-
hibitors such as caffeine has been proven as fragile and
nonspecific [66]. In the present study, rs2227928 was
genotyped and statistical analyzed. It is predicted to be tol-
erated according to Ensembl release [67]. Rs2227928
could be associated with tumour size >2 cm and negative
estrogen or progesterone receptor status. It has been
frequently studied for an association in different popula-
tions. However, they have found no significant differences
[68, 69]. These conflicting results about the relationship
between rs2227928 and breast cancer could be related to
some factors such as sample size and environmental fac-
tors but not genetic background. All three populations
have European ancestry and can be summarized under
the phylogenetic definition Caucasian. In this context, by
increasing the sample size number of the French and
Finish population an association of rs2227928 and breast
cancer could be expected. Some SNPs which are linked
with an r2 between 85 and 97 to rs2227928 are located in
gene PLS1 (Plastin1). The encoded actin-binding protein

Table 4 Frequencies of APOBEC3 deletion according to clinic-
pathological features

APOBEC3 deletion

Variable II ID

Estrogen/Progesterone receptor No. (%) No. (%)

ER+/PR+ 103 (45.57) 8 (3.53)

ER+/PR− 21 (9.29) 4 (1.76)

ER−/PR+ 18(7.96) 1 (0.44)

ER−/PR− 50(22.12) 3 (1.32)

Tumor size

<2 cm 26 (11.50) 4 (1.76)

>2 cm 97 (42.92) 8 (3.53)

>5 cm 39 (17.25) 2 (0.88)

Tumor of any size with extension 32 (14.15) 5 (2.21)

Histological grade

1 7 (3.09) 1 (0.44)

2 127 (56.19) 14 (6.19)

3 56 (24.77) 3 (1.32)

Lymph node status

Negative 64 (28.31) 8 (3.53)

Positive

122 (53.98)

10 (4.42)

Distant metastases

Negative 158 (69.91) 12 (5.30)

Positive

31 (13.71) 7 (3.09)

II homozygous insertion, ID herozygous deletion, No total number, ER
estrogen receptors, PR progesterone receptors

Table 5 Genotype of APOBEC3 deletion polymorphism in breast
cancer patients and healthy controls

Breast cancer risk

Genotype Cases (%) Controls (%) OR (95 % CI) P-value

II 207 (91.59) 175 (87.50) 1.00

ID 19 (8.41) 25 (12.50) 0.64 (0.34-1.21) 0.1680

DD 0 (0) 0 (0) 0 (0)

ID + DD 19 (8.41) 25 (12.50) 0.64 (0.34-1.21) 0.1680

Overall 0.1680

II homozygous insertion, ID herozygous deletion, DD homozygous deletion, No
total number, OR odds ratio, CI confidence interval
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has been found at high levels in small intestine [70]. How-
ever an association with breast cancer could not be discov-
ered. Regarding signatures of selection rs2227928 shows a
significant value among the European vs. African popula-
tion (Fst =0.076).
Some limitations should be addressed in this study. The

statistical power to perform interaction analyses between
different SNPs and breast cancer risk is still limited be-
cause of our small sample size. In addition, because no
data were available on SNP frequencies in any North
African population, we used data on the CEU population
in our selection process. As also shown by our genotyping,
the genetic constitution of the Moroccan population is
very similar, and it has been influenced by both European
and Sub-Saharan gene flow. However, we may have missed
some SNPs private to the North African populations.
There may also be some rare SNPs with minor frequency
allele or SNPs with still-unknown regulatory properties
that were not covered by our study.

Conclusion
Our preliminary genetic analysis suggests a potential role
of germline variations in driver and APOBEC3 genes in
breast cancer susceptibility. These mutations can have
impact on clinical outcome and/or BC risk. We could
also show that there is a strong association between the
polymorphisms in RUNX1, TBX3, TTN, ATR genes and
the risk of BC. However to verify the results of breast
cancer risk and the influence of these polymorphisms
further researchers are necessary.
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