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Abstract

Background: A wealth of protein interaction data has become available in recent years, creating an urgent need
for powerful analysis techniques. In this context, the problem of finding biologically meaningful correspondences
between different protein-protein interaction networks (PPIN) is of particular interest. The PPIN of a species can be
compared with that of other species through the process of PPIN alignment. Such an alignment can provide
insight into basic problems like species evolution and network component function determination, as well as
translational problems such as target identification and elucidation of mechanisms of disease spread. Furthermore,
multiple PPINs can be aligned simultaneously, expanding the analytical implications of the result. While there are
several pairwise network alignment algorithms, few methods are capable of multiple network alignment.

Results: We propose SMAL, a MNA algorithm based on the philosophy of scaffold-based alignment. SMAL is capable of
converting results from any global pairwise alignment algorithms into a MNA in linear time. Using this method, we have
built multiple network alignments based on combining pairwise alignments from a number of publicly available
(pairwise) network aligners. We tested SMAL using PPINs of eight species derived from the IntAct repository and
employed a number of measures to evaluate performance. Additionally, as part of our experimental investigations, we
compared the effectiveness of SMAL while aligning up to eight input PPINs, and examined the effect of scaffold network
choice on the alignments.

Conclusions: A key advantage of SMAL lies in its ability to create MNAs through the use of pairwise network aligners for
which native MNA implementations do not exist. Experiments indicate that the performance of SMAL was comparable
to that of the native MNA implementation of established methods such as IsoRankN and SMETANA. However, in terms
of computational time, SMAL was significantly faster. SMAL was also able to retain many important characteristics of the
native pairwise alignments, such as the number of aligned nodes and edges, as well as the functional and homologene
similarity of aligned nodes. The speed, flexibility and the ability to retain prior correspondences as new networks are
aligned, makes SMAL a compelling choice for alignment of multiple large networks.

Introduction
With the advent of high-throughput experimental techni-
ques such as yeast two-hybrid screening [1-3] and co-
immunoprecipitation coupled mass spectrometry [4,5]
there has been a substantial increase in the data available

on protein-protein interactions (PPIs). The experimental
data is supplemented by computationally predicted PPIs
[6-9]. Put together, a vast amount of PPI data is now
accessible through multiple databases [10-13]. Compara-
tive network analysis of PPINs complements traditional
sequence and structure based-methods, providing
insights into species evolution [14], conserved functional
components [15,16], protein function prediction [17,18].
In addition to their role in elucidating a mechanistic
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understanding of the fundamental biological processes
from the molecular to the evolutionary scales [19], PPI-
data can also be invaluable in translational contexts, for
instance, by explaining mechanisms of infection spread
[13,20-23] and through discovery of novel targets, such
as dependency factors [24].
The complexity of protein-protein interactions

coupled with the volume and noisy nature of PPI data,
underline the acute need for automated analysis of PPIs.
For computational analysis, the standard way of repre-
senting PPI data is through a protein-protein interaction
network (PPIN), which is a (possibly disconnected)
graph G = (V, E), where each node represents a protein
and each edge denotes an experimentally or computa-
tionally determined interaction between the correspond-
ing two proteins. Depending on the detection/prediction
method, the edge weights may be binary or real-valued.
An important problem in PPIN analysis, much like with
traditional sequence-based genomics, is the establish-
ment of correspondences between proteins and interac-
tions across different species. This can be accomplished
through PPI network alignment, where, by incorporating
network topology, notions of protein similarity and
other related data, members of one PPIN are matched
with their closest analogues in another PPIN.
In the following, for simplicity, we introduce the basic

notions and notations related to network alignment
using the pairwise network alignment formulation; the
extension of these concepts to the multiple network
alignment setting is facile. Formally, given two PPI net-
works, G1 = (V1, E1) and G2 = (V2, E2), where, ϑ1 ⊆ V1

and ϑ2 ⊆ V2, solving the alignment problem requires
finding a correspondence C : ϑ1 → ϑ2. Intuitively, the
objective of any such mapping is to establish correspon-
dences between similar proteins (nodes) and similar
intermolecular interactions across the networks. The
problem of PPIN alignment was initially tackled as a
local alignment problem (that is, the setting considered
was with ϑ1 ⊂ V1 and ϑ2 ⊂ V2), where sub-networks
with similar topology and/or sequence similarity were
identified within the networks being aligned. Later
methods have tried to solve the global alignment pro-
blem, that is, aligning two PPINs in their entirety
(ϑ1 = V1 and ϑ2 = V2). Both the local and the global
alignment problems are known to be NP-hard [25,26],
and remain active areas of research. Another perspective
takes into account the number of networks that need to
be aligned, leading to two problem settings: pair-wise
network alignment (PNA), involving alignment of two
networks at a time and multiple network alignment
(MNA), where three or more PPINs have to be aligned
to each other. In Additional File 1 (Overview of PPIN
alignment algorithms), we classify and summarize the
existing methods based on the Cartesian product of the

aforementioned formulations and tabulate the results.
As can be seen from this table, at the state of the art,
the number of pairwise aligners significantly exceeds the
number of multiple network alignment algorithms.
Furthermore, there are few global multiple network
aligners and those that are available tend to rapidly
degrade in performance as the number of networks
being aligned increases.
The research presented in this papers seeks to address

the aforementioned lacunae through the design of a glo-
bal multiple network aligner called SMAL (Scaffold-
Based Multiple Network Aligner, pronounced small),
which is based on the notion of combining pairwise
alignments using a star-like alignment topology with a
central “scaffold” PPIN. SMAL allows the use of pair-
wise network aligners without native MNA implementa-
tions (like Pinalog [27] and NETAL [28] for instance),
to create MNAs. The star-alignment heuristic, used in
SMAL, as is well known, has been applied to other NP-
hard problems in bioinformatics including multiple
sequence alignment and more recently for aligning
RNA-seq data [29]. The key features and contributions
of SMAL include:

• Generality: the star-alignment-like methodology
proposed by us can be employed to convert results
from any number of global pairwise alignments into
a single multiple network alignment. Furthermore,
the proposed approach does not restrict the specific
pairwise aligner that a biologist may seek to employ.
• Alignment Persistence: as networks are added to an
already obtained MNA, previously identified align-
ments are retained.
• Measure consistency: For pairwise alignments, a
number of statistics have been proposed to quantify
the alignment quality. As a corollary to alignment
persistence, in the MNAs obtained with the pro-
posed method, the statistics characterizing any con-
stituent pairwise alignment do not change in the
multiple alignment.
• Invariance to alignment order: It is desirable that a
MNA be invariant to the order in which the indivi-
dual networks are considered. The proposed
approach guarantees this property.
• Conceptual simplicity: The multiple network align-
ments obtained with the proposed method can be
related to pairwise alignment in conceptually
straightforward manners, reducing thereby the cog-
nitive load required for data interpretation by a
domain specialist.
• Low complexity: The proposed approach has linear-
time complexity with respect to the number of net-
works being aligned. Consequently, as the number of
networks that need to be aligned increases, the
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proposed approach, when compared to competitive
methods, yields considerable advantages in terms of
time required to obtain a MNA.
• Alignment quality: SMAL allows creation of MNAs
based on any existing pairwise alignment algorithm.
In many cases, this leads to MNAs yielding better
results on a given set of measures compared to
alignments created by existing native MNA
algorithms.

As part of the investigations presented in this paper,
we demonstrate the multiple network alignments
obtained with the proposed approach by utilizing prior
(pairwise) alignments from SMETANA [30], IsoRankN
[31], PINALOG [27] and NETAL [28] as inputs. The
four methods selected by us are well known or recent
and have publicly available implementations. We com-
pare the MNA obtained using our method with those
produced by the native multiple network alignment
implementations present as part of some of these
algorithms.

Past Work
The problem of PPIN alignment has received significant
recent attention. The first PPIN network aligners were
primarily designed to identify closely matching subnet-
works, rather than solve the global PPIN alignment pro-
blem. In and of itself, this is a very challenging problem,
as matching two graphs by determining the largest com-
mon subgraph is known to be NP-hard [25]. Early algo-
rithms, such as PathBLAST [16] and NetworkBLAST
[32], used BLAST based search methodology. Path-
BLAST searched for high-scoring pathway alignments
involving linear chains of linked proteins. Proteins in a
linear chain from the first input network were paired
with their putative homologs in a linear chain in the sec-
ond input network. Similarity was determined by
sequence similarity as determined by BLAST. Network-
BLAST further expanded on this approach by including
dense clusters of protein in the search for matching sub-
graphs. These were followed by MaWISH [33], which
adopted an evolutionary model that extended the con-
cepts of match, mismatch, and gap in sequence align-
ment to that of match, mismatch, and duplication in
network alignment, and evaluated similarity between
graph structures through a scoring function that
accounted for evolutionary events. By contrast, in [34] a
statistical model was used to compare the link pattern of
each node in the PPIN. Nodes were aligned only if both
the sequence and the link pattern were sufficiently simi-
lar. The match and split algorithm in [35], is notable for
being one of the first to have provable criteria for cor-
rectness and efficiency in the context of network align-
ment. The method Phunkee [36] used the surrounding

context of each subgraph within the adjacent network in
conjunction with subgraph topology and BLAST data to
obtain alignments. Finally, one of the most recent entries
into the field is AlignNemo [37], which combined data
from PPIN topology and protein homology to iteratively
grow local alignments from a seed.
While a local network alignment algorithm seeks to

find a set of homologous regions within the two PPINs, a
global network alignment seeks to find the best overall
alignment between them. That is, a global network align-
ment algorithm must define a single mapping across all
parts of the input. These two problems are, in some
sense, analogous to global and local sequence alignment;
much like local sequence alignment is used to find con-
served functional motifs, local network alignment can be
used to find conserved functional components in PPINs
(such as pathways, protein complexes etc.) Global
sequence alignments, on the other hand, are used to
compare whole genomes to understand variations
between species; similarly, global PPIN alignment algo-
rithms can be used to compare interactomes across spe-
cies. However, the global network alignment problem has
been shown to be NP-hard [26].
While, some of the above local network alignment

methods can and have been expanded to produce global
alignment, one of the earliest methods to address the
global network alignment problem was the eigendecom-
position-based method IsoRank [18]. IsoRank conducts
its analysis in two steps: it first constructs an eigenvalue
problem using PPIN and protein sequence data and
solves it to produce a vector R, which contains the simi-
larity scores for all protein pairs between the two input
networks. In the second step, IsoRank extracts from R
high-scoring, pairwise, mutually consistent matches and
constructs the alignment. Other notable global network
alignment algorithms include Graemlin 2.0 [38], which
is a hill-climb algorithm that can be trained on a data
set to optimize its scoring function, and a relatively
large number of algorithms utilizing greedy heuristics,
such as PISwap [39], GRAAL [40], MI-GRAAL [14] and
variants [41,42]. This problem has also been formulated
as a relaxation of a cost function by PATH and GA
[43]. In both of these algorithms, the global network
alignment problem is expressed as a balance between
matching similar protein pairs and having many con-
served interactions. The resulting cost function is opti-
mized through two relaxations, one concave and one
convex, over doubly stochastic matrices by PATH; and
through permutation in the direction of the gradient
starting from an initial solution by GA. Finally, one of
the most recent efforts, SPINAL [26], is a polynomial
time heuristic algorithm that constructs a global align-
ment in two stages. First, SPINAL constructs pairwise
similarity scores though local pairwise neighborhood
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matching. It then iteratively grows a locally improved
solution set to produce the final one-to-one mapping. In
both stages SPINAL takes advantage of neighborhood
bipartite graphs and the contributors as a common
primitive.
More complex than the formulations described above, is

the problem of multiple network alignment (MNA), where
more than two PPIN network have to be aligned. The
computational complexity of MNA grows exponentially as
the number of networks increases. MNA algorithms
remain relatively rare. Of the few that exist, prominent
ones include IsoRankN [31], which is based on spectral
clustering on the induced graph of pairwise alignment
scores, Submap [44], which utilizes subnetwork mapping
followed by vertex selection strategy to extract the map-
pings from a maximum weight independent set (MWIS),
and SMETANA [30], which uses a combination of prob-
abilistic similarity measures to score the nodes and a
greedy approach to construct the final alignment.

Data
In the experiments presented in this paper, we use PPINs
from eight different species. These are listed in the
following along with the abbreviations we use to refer to
them: Arabidopsis thaliana (Arabi), Caenorhabditis
elegans (Celeg), Drosophila melanogaster (Droso), Escher-
ichia coli (Ecoli), Homo sapiens (Human), Mus musculus
(Mouse), Rattus norvegicus (Rat), and Saccharomyces cer-
evisiae (Yeast). The PPINs and corresponding BLAST bit
scores are identical to those reported in PINALOG [29],
compiled from IntAct [45]. We note that BLAST bit
scores were used only for pairs of proteins with a BLAST
E-value < 10-5.

Methods
The proposed approach begins by determining which of
the participating networks can be used as an alignment
scaffold (denoted hereafter simply as scaffold or center
PPIN) - the network relative to which the entire multiple
network alignment is subsequently constructed. The
remaining networks are aligned in a pairwise manner with
the scaffold PPIN using a pairwise alignment algorithm of
choice. In the final step, the pairwise alignments are
related to each other. Conceptually, the proposed method
is related to the general methodology of star-based meth-
ods employed in multiple sequence alignment.

Definitions and notations
Let G1 ... Gn denote n protein-protein interaction net-
works, where Gi = (Vi, Ei). A global multiple network
alignment of n graphs can be expressed as a mapping,
Ψ: Gn ® G, that projects the original graphs onto a
structure called the alignment graph A′ = (V′, E′), such
that a cost function for the mapping is optimized. The

vertices in the alignment graph represent sets of aligned
proteins and its edges correspond to conserved interac-
tions. In the following, variables superscripted with a
prime will refer to alignment graphs and unprimed vari-
ables will represent elements (graphs, edges and ver-
tices) of specific PPINs. Given a vertex v′ ∈ V′ in the
alignment graph, the vertex alignment cluster of v′,
denoted C(v′) is the set of all nodes mapped to it. For-
mally, for an alignment involving a set of m networks
N = {Gi, Gj, . . . Gm}, the notion of a vertex alignment
cluster is formally defined as:

C(v′) =
{
vj, . . . , vl

}
: vj . . . vl → v′ ∧ vj ∈ Gj, . . . , vl ∈ Gl, Gj . . . Gl ∈ N (1)

That is, for a node in the alignment graph, its vertex
alignment cluster consists of a set of proteins from the
networks being mapped to it. It follows that, all nodes
mapped to a specific node in an alignment graph may
be considered to be aligned to each other. Similarly,
given a node v ∈ V from any of the original networks,
we define the vertex co-alignment cluster of v as the set
of all nodes aligned to node v in a multiple network
alignment and denote it as V(v). A vertex co-alignment
cluster can be accessed using any of its nodes as a key
(e.g. {a, b} = V(a) = V(b)). A vertex co-alignment cluster
V(v) of a node v will at minimum always contain v
itself. The reader may note that the notion of vertex co-
alignment clusters is defined on vertices of PPINs while
its dual notion of vertex alignment clusters is defined
for vertices of the alignment graph.
The notions of alignment cluster and co-alignment

cluster can be extended to edges leading to edge align-
ment clusters and edge co-alignment clusters (we omit
the formal definitions as they are analogous to the ones
for vertices). Edges in the alignment graph are induced
by the vertex alignment and represent conserved inter-
actions. For a pairwise alignment, for example, a given
edge (u, v) in a network Gi is said to be conserved in
another network Gj if there is an interaction (s, t) ∈ Ej
such that s ∈ V(u) and t ∈ V(v). For the edge (u, v) ∈ Ei,
its edge co-alignment cluster Eij(u, v), can be computed
as in Eq. (2):

E(u, v) = {(s, t)V(u) × V(v) : ∃Gj = (Vj, Ej) : (s, t) ∈ Ej} (2)

In Eq. (2), j can denote the index of any of the net-
works included in the alignment including the network
that contains the interaction (u, v). In multiple network
alignment involving n PPINs, generally only very few
nodes have correspondences across all n species and
consequently few edges are conserved across all the n
species. To model this situation, we use the parameter k
to consider sets of edges at different levels of conserva-
tion. That is, we specifically refer to the set of edges
conserved in k species when evaluating the alignments.
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A given interaction (u, v) ∈ Ei is conserved in k ≤ n
species, when there are k-1 distinct species, such that
there exist pairs of nodes (s, t) ∈ Ej such that s ∈ V(u),
t ∈ V(v), with the variable j indexing these species.

Overview of SMAL
The proposed method comprises four major steps:
(1) Selection of a network as the scaffold for MNA,
(2) Computing pairwise alignments between the scaffold
and all other networks, (3) Combining pairwise node
alignments with respect to the scaffold, and (4) Comput-
ing conserved edges.
Selection of the scaffolding network as the center of the
star-based MNA
Since selecting an appropriate scaffold has significant
influence on the quality of the MNA, the intuition would
be to use a network as the center of the star which is
most complete, well annotated and evolutionary most
similar to the rest (Figure 1). This can be determined
based on characteristics such as the maximum number of
nodes or edges or the highest count of significant pair-
wise protein similarities between the networks (e.g. estab-
lished by BLAST bit scores). By contrast, in certain cases,
the specific biological question motivating the MNA, or a
researcher’s domain knowledge, might dictate which
PPIN needs to be chosen as the scaffold.
The proposed algorithm for selecting the scaffold can

be described as follows: first, a measure of similarity Sij
defined for a pair of networks is selected. We then pick
as the scaffold that specific PPIN for which the sum of
Sij is maximized over all pairs of networks. That is, the
network Gs is chosen as the scaffold, if:

s = argmaxi(
∑

j Sij) (3)

In Eq. (3) s is the index of the identified scaffold
PPIN. Similarity between a pair of networks can be

directly computed, using for example a measure like the
Graphlet Degree Distribution agreement [45]. Alterna-
tively, a pairwise alignment can be constructed and a
measure of the alignment quality can be used. Such
measures derived from pairwise alignments are
described in some detail and further investigated in the
“Results” section.
Pairwise alignments
Given a pairwise network alignment algorithm of choice,
the n-1 pairwise alignments between the center and the
remaining networks Gsj can be computed independently.
That is, computation of one alignment has no influence
on the results of another alignment. As we will show
next, due to this property, the order of alignments in
our approach can be arbitrary. Factors that may influ-
ence the choice of the alignment algorithm include:
characteristics of the obtained alignments such as
whether they map proteins in a one-to-one or many-to-
many manner, optimization criteria such as maximizing
the number of aligned proteins, maximizing conserved
interactions or maximizing the size of connected com-
ponents, computational efficiency, and ease of use. For
more details on the characteristics of different pairwise
alignment algorithms and implementations, we refer the
reader to [47].
Combining pairwise node alignments to form the MNA
node mappings
From this point onwards, we refer to the co-alignment
cluster of a node v ∈ Vs in the pairwise alignment
between networks Gi and Gj as Vij(v). Let Gs = (Vs, Es)
denote the scaffold network. Given the terminology
introduced above, for each node v ∈ Vs, V(v) denotes
its vertex co-alignment cluster. It is constructed as the
union of all co-alignment clusters from the pairwise
alignments between the networks Gj ∈ N and the scaf-
fold Gs.

Figure 1 Network alignment overview. Similar shapes represent similar proteins that should be aligned. Dotted lines and shapes represent
parts that are missing from the respective networks. Arrows represent identified correspondences. The figure on the left shows a network,
checkered in the center, which is used to optimally align the other two networks on the left and right. Missing nodes and interactions can be
inferred. The figure in the center shows an alignment between only the two outer networks without a central PPIN serving as a scaffold. The
alignment will either have to ignore the middle node or accept a suboptimal node alignment. No information about missing nodes and their
potential location can be inferred from these two networks alone. Finally, the figure on the right shows an alignment of three networks. The
two topmost proteins (diamond and square) are aligned across all three networks and they each interact in their respective PPIN. The interaction
diamond-square is thus conserved in all three species. Since the pentagon has only an aligned protein that also forms an interaction in the two
leftmost PPINs, square-pentagon is conserved in two species only. Pentagon and circle are aligned but since the interaction pentagon-circle is
missing from the middle PPIN, the edge is not considered conserved.
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V(v) = ∪Vsj(v) (4)

The node alignment obtained with the proposed
method can be described as a set of sets containing the
alignments for all vertices (proteins) in the scaffold
PPIN:

V∗ = ∪{V(v)} : ∀v ∈ Vs (5)

Due to the commutative and associative nature of the
union operation over multiple sets, the order in which
aligned proteins from the pairwise network alignments
are combined can be arbitrary. While the resulting node
alignment V*is clearly dependent on the choice of the
scaffolding network, the order in which pairwise align-
ments are themselves computed, or the order in which
they are combined, does not matter.
We distinguish two types of pairwise alignments: one-

to-one and many-to-many. Methods of the first type
aim to find a single correspondence for a given node
while methods of the second type can create clusters
containing multiple nodes from each of the species that
are all related to one another and thus account for phe-
nomena like gene-duplication. The aforementioned dis-
tinction, which might inform the choice of the pairwise
network alignment algorithm, is preserved in SMAL. If
V(v) contains at most one node from PPIN Gj for any
node v ∈ Vs, as would be the case for a one-to-one
alignment algorithm, the resulting alignment cluster
V(v) ∈ V∗ generated by Eq. (4) will also contain at most
one node from each of the aligned species. In this case,
each node, including those from the scaffold, will be
present in at most one alignment cluster. On the other
hand, when multiple nodes of a given species are aligned
to a given node v ∈ Vs in V(v), Eq. (4) ensures that
same multiple node alignment is also present in V*.
Further, if multiple nodes from the scaffold are aligned
to one another, this leads to node duplication, vide infra.
The combination of aligned nodes, as described above,

induces a relationship, which we term as weak correspon-
dence transitivity. As an explanation, consider two net-
works Ga and Gb being aligned to a scaffold Gs. Further, let
node a ∈ Va and b ∈ Vb correspond to the node u ∈ Vs

based on their respective pairwise alignments. Then
V(b) = {u, b}, V(b) = {u, b}, and V(u) = {u, a, b}. Such a
grouping implies a putative correspondence between nodes
a and b. However, not all of these putative alignments may
be found in a multiple network alignment. This is either
due to noise in the data or because strict transitivity of the
correspondences does not hold. We present results of our
studies of this effect in detail in the “Results” section.
Computing conserved edges
For each edge (u, v) in the scaffold Gs of a MNA, the set
of associated conserved edges is given by its edge co-
alignment cluster defined by Eq. (2). The following

equation can be formulated alternatively as shown in
Eq. (5), or implemented directly.

E(u, v) = {(k, l) ∈ V(u) × V(v)|∃t : (k, l) ∈ Et} (6)

That is, the conserved edges relative to a given edge in
the scaffold PPIN in the MNA can be directly computed
from the node alignment set V* defined in Eq. (5). Ana-
logous to the node alignment, the set of induced edges
as derived by the proposed method then can be
described as:

{E∗ = ∪{E(u, v)} : ∀(u, v) ∈ Es (7)

As with the node alignment, the conserved edges will
depend on the choice of the center PPIN but will other-
wise be independent from the order in which networks
are aligned pairwise or combined in our star-based
approach.
Differences to established MNA algorithms
In network alignments in general, a given vertex from
any of the original networks is either dropped (not
aligned to any other node) or included in the alignment
graph V’ exactly once.
Since SMAL maps alignment clusters from pairwise

alignments onto a central PPIN, proteins can be dupli-
cated. To elucidate, let’s assume a scenario where the
scaffold PPIN Gs is aligned relative to two networks Ga

and Gb. Consider the following two alignment clusters
from pairwise alignments for given nodes u, v, w ∈ Vs,
a ∈ Va and b ∈ Vb:

Vsa(u) = {u, v, a} = Vsa(v)

Vsb(u) = {u, w, b} = Vsb(w)

This will result in the following three alignment clus-
ters in a star-based MNA as proposed here:

V(u) = Vsa(u) ∪ Vsb(u) = {u, v, w, a, b}
V(v) = {v, u, a}
V(w) = {w, u, b}

On the other hand, since the alignment graph of
SMAL V* contains only alignment clusters for the nodes
of the center PPIN, some correspondences established
by native multiple network alignments are not consid-
ered. Let there be nodes a ∈ Va, b ∈ Vb that correspond
when aligning Gs, Ga and Gb with a native multiple net-
work alignment algorithm but neither corresponds to
any vertex in the scaffolding PPIN. That is, there exists
an alignment cluster V(a) = {a, b, X} = V(b), where X is
a set of nodes that are not part of the center PPIN or
the empty set. Such correspondences would not be
included by SMAL. Expanding SMAL to such corre-
spondences could be achieved by considering all pair-
wise alignments (as opposed to only alignments between
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a center PPIN and the remaining networks) and mer-
ging resulting alignment clusters with V*.
Implementation and complexity
Pseudo-code 1: Method outline
1 Designate scaffold PPIN Gs

# Obtain pairwise alignments with the scaffold PPIN
using a method of choice.
2 For all remaining networks Gj:
3 Gsj ¬ pairwise_alignment(Gs, Gj)
# Create node alignment
4 Initialize V* = Ø
5 For each node of Gs, v ∈ Vs:
6 Initialize V(v) = {v}
7 For each pairwise alignment Gs, Gj:
8 V(v) ← V(v) ∪ Vsj(v)
9 V∗ ← V∗ · V(v) # concatenate sets
# Compute induced edges
10 Initialize E* = Ø
11 For each edge of Gs, (u, v) ∈ Es:
12 Initialize E (u, v) = {(u, v)}
13 For each pair (k, l) ∈ V(u) × V(v) :
14 if (k, l) form an edge, e.g. $t : (k, l) ∈ Et:
15 E (u, v) ← E (u, v) ∪ (k, l)
16 E∗ ← E∗ · E(u, v) # concatenate sets
In the pseudo-code, selection of the scaffold is sum-

marized in line 1. Different approaches of varying com-
plexities have been mentioned and will be evaluated in
the “Results” section. In terms of computational com-
plexity, scaffold selection based on domain expertise
does not incur a computational cost. A simple heuristic
like the number of associated BLAST bit scores above a
certain E-Value for a given PPIN is also extremely fast
(O (n), where n is the number of networks). Selection
based on a similarity measure between all pairs of net-
works has complexity O(n2 × O(φ)), where O (φ) is the
complexity of the applied similarity measure. The
approach using measures over pairwise alignments out-
lined in the Methods section can be further broken
down to O

(
n2 × (O(ϕ) + O(μ))

)
, where O (ϕ) is the

complexity of the pairwise alignment algorithm and
O (μ) the complexity of the measure over the alignment.
For our node-based measures, O (μ) = O(� |Vs|), where
� = max(|V(v)|); v ∈ Vs, the maximum number of nodes
in an alignment cluster in V*. The actual size of �

depends on the alignment algorithm. For one-to-one
alignment algorithms, we know that � ≤ n. For many-
to-many algorithms, no non-trivial boundary can be
established.
Once a scaffolding PPIN is selected, (n − 1) pairwise

alignments are computed (lines 2 and 3). This step has
complexity O

(
n × O(ϕ)

)
though no computation might

be necessary if pairwise alignments have already been
created during the scaffold-selection process.

Creation of the node alignments (lines 4 to 9) has
complexity O (n |Vs|) . The alignment clusters V(v) are
sets of distinct nodes that get extended in each iteration
of line 8. V* consists of a list of such sets of elemental
nodes. The structure is implemented as a dictionary of
sets where each key is a node v ∈ Vs and the corre-
sponding value represents V(v).
The last step (lines 10 to 16) is not specific to our

approach and most of the established alignment algo-
rithms just omit it. It can be applied to any kind of
node alignment. We include it in our algorithm since
providing insights into conserved interactions is essen-
tial for many of the research questions that motivate
MNAs in the first place. It also provides insights into
the quality of the alignment via various measures as
described later. Complexity of this last step has an
upper bound of O

(
�2 |Es|

)
.

Overall, the complexity of SMAL with selection of the
center PPIN via measures over pairwise alignments is
O

(
n2 × (

O(ϕ) + O(μ)
)

+ n |Vs| + �2 |Es|
)
. When the cen-

ter is selected manually based on domain knowledge or
any other accessible proxy as outlined above, complexity
is reduced to O

(
n × O(ϕ) + n |Vs| + �2 |Es|

)
. By far the

most expensive step is computation of the pairwise
alignments, that is O(ϕ) � O(|Vs|) and O(ϕ) � O(|Es|).
Comparison between SMAL and native MNAs
To compare a native MNA generated by a given MNA
algorithm to a SMAL MNA, where the pairwise align-
ments have been generated by the same algorithm, we
first have to relate the native MNA to our chosen scaf-
fold PPIN. This can be achieved by only retaining those
node clusters that contain a protein from the designated
scaffold PPIN and by duplicating clusters containing
more then one scaffolding node (see pseudo-code 2 in
Additional file 2).

Measures for assessment
Since there is no single gold standard for evaluating bio-
logical network alignments, we use a number of differ-
ent measures in our analysis. In addition to evaluating
the overall quality of the alignments, we investigate the
extent to which correspondences implied by combining
pairwise alignments are valid biologically. For this pur-
pose, we define two types of measures: Measures desig-
nated with the subscript s, which only evaluate
correspondences with the scaffold. In other words, for
each node v ∈ Vs only the pairs v, u : u ∈ V(v) and for
each edge e ∈ Es only the pairs e, f : f ∈ E(e) are taken
into account in these measures. Thus, these measures
represent a baseline as to how the pairwise alignments
perform on the given data. The measures without sub-
script on the other hand evaluate all correspondences,
that is for all V(v) ∈ V∗, consider all pairs s, t ∈ V(v)
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and for all E(e) ∈ E∗, all f, g ∈ E(e) respectively. These
measures also capture putative alignments (Figure 2).
Since alignment clusters containing more than one node
or edge from the scaffold PPIN are associated with each
contained scaffolding node or edge, such clusters are
counted multiple times. We investigated this effect and
computed measures for distinct clusters (without double
counting). We determined that the key findings of this
investigation are the same for both approaches.
Aligned nodes with high functional similarity (NF) or
homology (NH)
To measure how well the biological functionality of the
proteins is reflected in the alignment graph, we define
an auxiliary function.

F (k, l) =
{

1, if nodes k and l have functional similarity score > 0.5
0, else (8)

Functional similarity scores for each pair of aligned pro-
teins are according to the funSim score in FunSimMat
[48]. The funSim score combines similarity scores with
respect to both involvement in biological processes and
molecular function for a pair of proteins. Scores reach
from 0 (no similarity) to 1 (maximum similarity) and are
computed based on semantic similarity of the GO terms
of the two proteins and their respective probabilities. Man-
ual review appears to suggest that this threshold could be
lowered further to capture more relevant protein-protein
correspondences without significantly increasing the num-
ber of false positives (Table 1 Figure 3). The threshold of
0.5 has been used in the literature to evaluate alignments
[27] and is thus used here for easier comparison.
To capture how well the alignment recovers the evo-

lutionary relationship of the nodes in the input net-
works, we define a set of related measures accounting

for pairwise homologous proteins based on another aux-
iliary function.

H(k, l) =
{

1, if k, l share a homologene group ID
0, else

(9)

In Eq. (9), the homologene group identifiers for each
protein are retrieved from the NCBI homologene reposi-
tory. Often when the NH and NF measures disagree, the
reason is either incomplete (missing) data or, in the case
of NF, the specification of a threshold value that is overly
restrictive for identifying biologically relevant mappings.
We introduce a combined measure that counts all nodes
that are either functionally similar or homologous. As
outlined above, we define two variations of each measure.

NFs =
∑

u∈Vs

∑
t∈V(u),t �=u

F(u, t) (10)

NF =
∑

u∈Vs

∑
{s,t}∈V(u),s�=t F(s, t) (11)

NHs =
∑

u∈Vs

∑
t∈V(u),t �=u H(u, t) (12)

NH =
∑

u∈Vs

∑
{s,t}∈V(u),s�=t

H(s, t) (13)

NForHs =
∑

u∈Vs

∑
t∈V(u),t �=u min(1, F(u, t) + H(u, t)) (14)

NForH =
∑

u∈Vs

∑
{s,t}∈V(u),s�=t min(1, F(s, t) + H(s, t)) (15)

Number of aligned nodes (NA) and derived measures of
precision
The number of aligned nodes is considered only to nor-
malize other measures. Dividing by NA allows for

Figure 2 Examples and explanations of measures. This figure shows two node alignment clusters, V(u) = {u, o, q, s} and

V(v) = {v, p, r, t}, and a corresponding cluster of induced edges E(u, v) = {(o, p), (q, r)}. Note that not all aligned nodes induce edges
in general; s and t in this example are assumed to not interact in any of the aligned PPINs. The pairs u:o, v:p, v:r and p:r all contribute to the
number of aligned nodes with high functional similarity NF but only u:o, v:p and v:r count towards the scaffold centric measure NFs. p:r does
not contribute to NFs as the pair does not contain V, the root node of the alignment cluster. Equally, q:s and v:t contribute to the number of
aligned homologous nodes NH while only v:t adds to NHs, the scaffold centric version of the same measure. Each of the node alignment
clusters contributes a count of 3 to NAs, the number of nodes that are aligned to the scaffold nodes, and 6 to the number of all possible pairs
of aligned nodes NA. Considering the conserved interaction (o, p), since both endpoints are functionally similar to the endpoints of the
interaction between the scaffolding nodes spanning the respective alignment clusters (e.g. u, o and v, p are functionally similar), it contributes to
EFs (and also to EF). Note that u, v (and thus o, p) do not need to be functionally similar to each other. The fact that s and t are homologous
does not lead to any contributions. The cluster of induced edges adds 2 to the total number of interactions aligned to the scaffold interactions
EAs and 3 to the same measure accounting for all possible pairs of aligned interactions EA. Even though there are three conserved interactions,
this cluster contributes to EA-2 only since the three edges belong to only two distinct species.
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establishing a measure of precision since NA captures all
aligned nodes (e.g. true positives and false positives)
while other metrics like NF or NH can be considered
the true positives according to their specific biological
perspective. For normalization of the two different vari-
eties for each metric we define

NAs =
∑

u∈Vs

∑
t∈V(u),t �=u 1 = −|Vs| +

∑
u∈Vs

|V(u)|(16)

NA =
∑

u∈Vs

∑
{s,t}∈V(u),s�=t 1 (17)

Eq. (16) specifies the number of nodes aligned to the
nodes of the center PPIN. The scaffolding nodes them-
selves are excluded. This gives NAs the same range as
NFs, NHs and NForHs and allows for normalization of
those measures in the range [0 1].

Conserved interactions with functionally similar (EF) or
homologous (EH) endpoint proteins
Conserved interactions in general are a relevant measure
of alignment quality (see number of aligned edges, EA,
below). EF is a biologically motivated variation of this
measure where the two pairs of interacting proteins, the
endpoints of the edges, are considered as well. Only
interactions where the aligned endpoint proteins are
pairwise functionally similar as defined in Eq. (8) are
counted towards this measure.

EFs =
∑

(u,v)∈Es

∑
(s,t)∈E(u,v),s∈V(u),t∈V(v),(s,t) �=(u,v) F(u, s) ∗ F(v, t) (18)

EF =
∑

(u,v)∈Es

∑
{(q,r),(s,t)}∈E(u,v),{q,s}∈V(u),{r,t}∈V(v) F(q, s) ∗ F(r, t) (19)

Table 1. funSim scores and homolgene ID matches in RNA Polymerase complex compared to manual classification

Scaffold Gene Aligned Gene FunSim Homologene Manual

P52435 Polr2j A1Z9J6 mRpL53 0 mismatch mismatch

P19387 POLR2C Q9V3G9 BACR37P7.5 0 mismatch mismatch

P53803 Polr2k Q9VG44 CG6225 0.02 mismatch mismatch

P52434 POLR2H Q9VKS9 CG18284 0.03 mismatch mismatch

P62487 POLR2G Q9VJB3 CG5681 0.04 mismatch mismatch

P62875 POLR2l P14284 REV3 0.09 mismatch match

P19388 POLR2e Q8SXU3 CG8207 0.12 mismatch mismatch

O15514 POLR2d P20433 RPB4 0.31 match match

P52434 POLR2H P20436 RPB8 0.34 match match

P19387 POLR2C P16370 RPB3 0.43 match match

P62487 POLR2G P34087 RPB7 0.47 match match

P52435 Polr2j P38902 RPB11 0.48 match match

P19388 POLR2e P20434 RPB5 0.48 match match

P24928 POLR2a P04050 RPO21 0.51 match match

P61218 POLR2F P20435 RPO26 0.6 mismatch match

P30876 POLR2B P08518 RPB2 0.6 match match

O15514 POLR2d Q9VEA5 Rpb4 0.73 match match

P24928 POLR2a P04052 RpII215 0.77 match match

P61218 POLR2F Q24320 RpII18 0.77 match match

P30876 POLR2B P08266 RpII140 0.87 match match

P19387 POLR2C P97760 Polr2c 0.93 match match

P62875 POLR2l Q9VC49 Rpb10 0.93 match match

P30876 POLR2B Q8CFI7 Polr2b 0.95 match match

A threshold of 0.2 for NF would better cover the biologically relevant protein mappings than the currently used value of 0.5. While NH has both high coverage
and accuracy in this complex, it is in general also missing many valid correspondences. NForH is most consistent with manual classification.

Figure 3 funSim scores versus manual classification in RNA Polymerase complex. The y-axis represents manual classification (1 signifying a
biologically relevant match). A threshold of around 0.2 appears adequate for capturing biologically relevant protein correspondences in this case.
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Analogous, based on Eq. (9) we define

EHs =
∑

(u,v)∈Es

∑
(s,t)∈E(u,v),s∈V(u),t∈V(v),(s,t) �=(u,v) H(u, s) ∗ H(v, t) (20)

EH =
∑

(u,v)∈Es

∑
{(q,r),(s,t)}∈E(u,v),{q,s}∈V(u),{r,t}∈V(v)

H(q, s) ∗ H(r, t) (21)

With the same reasoning we presented for the com-
bined node-based measure NForH we define corre-
sponding interaction-based measures as follows

EForHs =
∑

(u,v)∈Es

∑
(s,t)∈E(u,v) min(1, (F(u, s) + H(u, s)) ∗ (F(v, t) ∗ H(v, t))) (22)

EForH =
∑

(u,v)∈Es

∑
{(q,r),(s,t)}∈E(u,v) min(1,

(
F

(
q, s

)
+ H

(
q, s

)) ∗ (F (r, t) + H (r, t))) (23)

where q, s ∈ V(u); r, t ∈ V(v), (s, t) ≠ (u, v) and (q, r) ≠
(s, t).
Number of conserved edges (EA)
The number of conserved edges in the alignment graph
reflects how well the aligned proteins capture the topol-
ogy and biological processes expressed in the input net-
works and allow evaluation of the quality of the
alignment independent of biological measures like func-
tional similarity or homology.

EAs =
∑

e∈Es

∑
d∈E(e),d�=e 1 = −|Es| +

∑
e∈Es

|E (e) | (24)

EA =
∑

e∈Es

∑
{c,d}∈E(e) 1 (25)

Analogous to NA, EA can also be used to derive biolo-
gically inspired precision measures on edges.
Number of interactions conserved in at least k distinct
species (EA-k)
In addition to the total number of conserved interactions
EA, we define the number of interactions that are conserved
in at least k species EA-k as the number of edges (u, v) ∈ Es
that have induced edges from at least k-1 non-scaffold spe-
cies associated with them. An edge with one induced edge
from a different species would count towards EA-2. An
edge with induced edges from two additional distinct spe-
cies would contribute to EA-2 but also count towards EA-3
and so forth. The tautological EA-1 = |Es| does not provide
information for characterizing an alignment.

Results
Effect of the scaffold selection on the SMAL MNA
To demonstrate measure consistency, we compared the
performance of SMAL to that of pairwise network
aligners. To estimate pairwise performance, for each
algorithm, we computed all pairwise alignments and
took the sum of each measure across all alignments
involving a given algorithm and species. The highest,
and second highest scoring species for each algorithm
and measure is presented in Table 2. To generate a
comparable table for SMAL, we produced a SMAL

alignment for each algorithm in turn using each of the
eight species PPINs as the scaffold, and computed the
same measures for each of these MNAs. The scores of
the highest and second highest scoring MNAs together
with the corresponding scaffold species for each algo-
rithm are presented in Table 3.
We observe that choice of algorithm and scaffold net-

work greatly affect the alignment results. For instance,
Human, Yeast and Drosophila networks, which contain
a large number of proteins and interactions (Table 4),
receive maximum scores when summing up over their pair-
wise alignments in almost all of the measures (Table 2).
Arabidopsis, which is a small but highly clustered network,
scores high on edge-based measures for alignment algo-
rithms (IsoRankN and SMETANA), which can compute
many-to-many node alignments (Table 2). This is in line
with the suggested heuristic of using simple network statis-
tics like the number of nodes and edges as a proxy for
selecting the scaffold put forward in the “Methods” section.
Comparing Table 2 and Table 3 we observe that a

given choice of algorithm and measure will yield a simi-
lar species ranking. We term this effect measure consis-
tency, whereby knowledge of an algorithm’s pairwise
performance on a given dataset can be extrapolated to
estimate the expected performance of said algorithm in
a SMAL alignment.

Precision of implied SMAL mappings compared to native
MNAs
As mentioned in the “Methods” section, correspondences
between nodes mapped to the same vertex in pairwise
alignments with the scaffold are implied when creating
the SMAL MNA. To evaluate this transitivity assump-
tion, we measure the biological significance of the puta-
tive alignments made by SMAL. This is achieved by
calculating the following measure of precision:

Precision (NForH) = (NForH − NForHs)/(NA − NAs) (26)

Eq. (26) represents the ratio of biologically significant
implied node alignments and the total number of
implied node alignments. The same equation can be
applied to other measures, such as NF, NH, EF, EH or
EForH to obtain corresponding measures of precision.
We compare and present the relative change in preci-
sion between SMAL and native MNAs.

(Precision(NForH)SMAL − Precision(NForH)native)/Precision(NForH)native (27)

While there is a great deal of variability in the preci-
sion of MNA alignments produced by different algo-
rithms as computed by equation (27) (see Figure 4), the
precision of SMAL is on average -6.5% of the native
MNA implementation for a given algorithm (Table 5)
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when excluding 4-species MNAs, which are missing
Yeast and ignoring 8-species MNAs where SMETANA
performs exceptionally poorly. Including all MNAs,
SMAL is on average more precise than native MNA
implementations with a relative change of precision of
143% on this data set. In the worst case, SMAL can have
up to 24.5% worse precision than the native MNA. Thus,
for situations when a native MNA implementation per-
forms poorly (e.g. SMETANA with 8-species), or when

native MNA implementations do not exist (see “Case stu-
dies”), SMAL becomes a particularly useful alternative.
Also, for certain measures and scaffolds, SMAL outper-
forms existing algorithms by significant margins (Figure
4). Finally, we find that the simple transitivity assumption
made by SMAL holds up reasonably well (-6.5% loss of
precision on this dataset as outlined above) considering
the largely reduced complexity compared with the native
MNA implementations investigated here.

Table 3. Performance of SMAL

max-scores (SMAL) NA NF NH NForH EA-2 EA EF EH EForH

IsoRankN first Human
64812

Mouse
22464

Human
4676

Mouse
23598

Human
1665

Yeast
68329

Arabi
27733

Arabi
749

Arabi
28031

IsoRankN second Celeg
62677

Human
21849

Mouse
4459

Human
23090

Yeast
1458

Arabi
66757

Human
9038

Human
380

Human
9107

SMETANA first Human
349645

Human
165645

Celeg
19876

Human
170367

Human
5328

Human
1038837

Arabi
809249

Arabi
5420

Arabi
809594

SMETANA second Droso
313439

Droso
139636

Human
16432

Droso
144107

Yeast
3741

Arabi
1020591

Human
268958

Human
4155

Human
269553

PINALOG first Human
35996

Human
12093

Human
6873

Human
13930

Yeast
8541

Yeast
12174

Human
1509

Human
971

Human
1815

PINALOG second Yeast
35970

Droso
11325

Mouse
5217

Droso
12749

Human
7387

Human
10560

Yeast
1347

Yeast
644

Yeast
1595

NETAL first Droso
67555

Human
1523

Droso
7

Human
1526

Human
21947

Human
63412

Human
173

Droso,
Human
1

Human
174

NETAL second Human
66700

Droso
1437

Human
5

Droso
1440

Droso
14318

Droso
39302

Droso
56

-, 0 Droso
57

For a given algorithm and measure, the scaffold PPIN with the highest and second highest score obtained through SMAL MNA is presented, along with the
achieved score. For easy comparison with Table 2, the species with highest and second highest pairwise sum score are bold and underlined, respectively. For
every measure and algorithm tested, the highest scoring species from Table 2 is always either the highest or second highest scoring species in Table 3 (this
table), demonstrating measure consistency of SMAL and validating the proposed scaffold selection strategy.

Table 2. Pairwise algorithm performance

max-scores
(sum over pairs)

NAs NFs NHs NForHs EA-2 EAs EFs EHs EForHs

IsoRankN highest Human
20054

Human
8264

Human
2874

Human
8997

Human
1865

Arabi
7067

Arabi
1678

Human
213

Arabi
1767

IsoRankN second Droso
17968

Mouse
7047

Mouse
2411

Mouse
7633

Yeast
1630

Yeast
5586

Yeast
1370

Mouse
162

Yeast
1374

SMETANA highest Human
62172

Human
32028

Human
6774

Human
33942

Human
7099

Human
32344

Arabi
17783

Human
996

Arabi
17881

SMETANA second Droso
57266

Droso
27410

Droso
5290

Droso
29144

Yeast
5082

Arabi
25013

Yeast
7185

Yeast
741

Yeast
7477

PINALOG highest Human
17764

Human
7005

Human
4385

Human
8130

Yeast
10179

Yeast
10202

Human
1267

Human
832

Human
1516

PINALOG second Droso
17173

Droso
5711

Mouse
2984

Droso
6586

Human
8866

Human
8870

Yeast
1024

Yeast
477

Yeast
1220

NETAL highest Human
27869

Human
796

Droso
3

Human
797

Human
37852

Human
37852

Human
123

Droso
1

Human
123

NETAL second Droso
27283

Droso
448

Celeg,
Human
1

Droso
449

Droso
23888

Droso
23888

Droso,
Mouse
29

-,0 Droso
30

For a given algorithm and measure, the species PPIN with the highest (bold) and second highest (underlined) score sum over all pairwise alignments is
presented, along with the score obtained. The highest scoring network for a given algorithm and measure of choice is the one our methodology would
designate as the scaffolding PPIN. Note that NETAL found only one conserved interaction with endpoint proteins homologous to their aligned counterparts (EH).
We thus only present one value in the corresponding cell.
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Case studies
PINALOG: MNAs with a high ratio of aligned homologous
proteins
Pairwise alignment algorithms outnumber native multi-
ple network aligners. SMAL allows any pairwise align-
ment algorithm to be used to produce MNAs. As

outlined above, the characteristics of pairwise align-
ments are largely conserved in a SMAL MNA. Thus, if
the characteristics of a pairwise aligner are favorable in
a given research context, it becomes possible to create
MNAs with similar characteristics with SMAL. PINA-
LOG for example outperforms other network

Figure 4 Relative precision of alignments. Top two rows show relative precision of node mappings on the y-axis: (NForH - NForHs)/(NA -
NAs) in SMAL and native MNAs for different scaffold PPINs. The bottom two rows show relative precision of putative edge alignments (EForH -
EForHs)/(EA - EAs). This latter measure is characterized by higher variability when compared to the former. In edge precision, using Human PPIN
as the scaffold, SMAL consistently outperforms the native IsoRankN MNA. So does SMAL with SMETANA using mouse as the scaffold. In other
cases, the native MNA performs better. PINALOG and NETAL, which do not have native MNA implementations, are not shown in these graphs.

Table 4. PPIN Overview

Species Proteins Interactions BLAST (inter-species) Clustering Coefficient

Arabidopsis 2651 5235 73221 0.133

C. elegans 4305 7746 135907 0.023

Drosophila 8374 25610 261864 0.023

E. coli 2818 13841 15401 0.097

Human 9003 34935 340626 0.095

Mouse 2897 4372 171737 0.129

Rat 1150 1305 61318 0.075

Yeast 5674 49830 107616 0.127

The BLAST column shows the number of inter-species protein pairs where one protein is part of the species in the given row and for which we have a BLAST bit
score recorded in our data set. Bold typeface indicates the largest value in a column.
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alignment algorithms considered by us in aligning
homologous proteins. The average of the NH/NA mea-
sure over pairwise alignments of all eight species con-
sidered in this study was <0.01% for NETAL, 7.2% for
IsoRankN, 8.1% for SMETANA and 19.6% for PINA-
LOG respectively. A SMAL MNA based on PINALOG
outperforms existing native MNAs on the same mea-
sure with NH/NA=19.1% versus 14.2% for native Iso-
RankN, followed by 9.2% for SMAL based on
SMETANA, 8.4% for native SMETANA, 5.9% on
SMAL based on SMETANA and finally <.1% for
SMAL based on NETAL (Figure 5).
NETAL: MNAs with high numbers of conserved interactions
NETAL is the only algorithm in this study that does not
use biological information for its alignments (e.g. BLAST

bit scores for pairs of proteins) and consequently,
NETAL alignments score lower on the biologically
inspired measures. Yet NETAL is by far the fastest
algorithm and identifies the highest number of con-
served interactions in the pairwise alignments consid-
ered by us. Using NETAL with SMAL creates MNAs
that maintain these valuable characteristics as shown
in Figure 6.

Speed of alignments
In this study we worked with two native multiple net-
work aligners (SMETANA and IsoRankN) and two pair-
wise aligners (PINALOG and NETAL) to illustrate the
efficiency aspect of several very dissimilar approaches to
network alignment. Table 6 gives an overview over the
key parameters and characteristics that are relevant to
this study.
Since the pairwise alignments are independent from

each other, their computation can be parallelized and
distributed across multiple cores or machines. Even
without parallelization, SMAL outperformed native
MNA alignment algorithms by large margins in our
experiments, as shown in Figure 7. We note that the
most computationally expensive part in this process,
by far, was the creation of the pairwise alignments.
This step took us from a few minutes to many hours
depending on the pairwise aligner employed. By con-
trast, combining PNAs into a SMAL MNA including
computation of the conserved edges took less than 10
seconds even for the largest alignments conducted as
part of this study. All the time measurements
reported in this paper were from computations con-
ducted on a machine with dual six core 32nm Xeon
processors at 3.47 GHz (hyper-threaded for 24-fold
parallelism) and 86 GB of registered, ECC DDR3
RAM @1066 MHz.

Conclusions
In this paper we introduced SMAL, a method for com-
bining pairwise network alignments into a multiple

Figure 5 SMAL allows creation of MNAs based on pairwise
alignment algorithms that are superior to any existing native
MNA algorithm for a given measure. Alignments are shown for
six species with the human PPIN as the scaffold. The same overall
picture of SMAL based on PINALOG PNAs holds for 4, 5, 6, 7, 8-
species MNAs as well as for any choice of the scaffold. The y-axis
shows the fraction of all aligned nodes that are homologous.
Higher values represent a biologically more relevant alignment.
Algorithms are abbreviated: IR - IsoRankN, SM - SMETANA, PI -
PINALOG, NT - NETAL. Since PINALOG and NETAL do not have
native MNA implementations, there are no native data to report.

Table 5. Precision in SMAL and native MNA implementations

NForH IsoRankN SMETANA IsoRankN SMETANA IsoRankN SMETANA IsoRankN SMETANA

Relative change
in precision

Droso Droso Human Human Mouse Mouse Yeast Yeast

4-species -5.82% -11.13% -10.21% -3.74% -6.44% -2.03% NA NA

5-species 8.24% -13.41% -1.20% -9.97% -6.67% -7.83% -21.59% 0.24%

6-species 9.27% -13.67% 1.89% -12.02% -2.74% -10.39% -21.83% -1.79%

7-species 5.07% -13.99% 2.79% -9.50% -0.34% -9.86% -24.33% -1.52%

8-species -5.05% 1211.83% -4.18% 1239.56% -1.17% 1534.16% -24.44% 1697.95%

Comparison of alignment precision with regards to the NForH measure as expressed by Equation (26). Values represent the relative change in precision using the
native implementation as the reference according to Equation (27). Positive values in the table correspond to alignments where SMAL was more precise than the
native implementation. Negative values appear when SMAL was less precise. Since Yeast was not part of the 4-species MNA, no value is presented in the
respective cells.
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network alignment. In contrast with other established
methods, SMAL alignments are persistent in that estab-
lished node correspondences do not change as additional
networks are added. As the MNAs are also invariant to
the order in which pairwise alignment are computed,
SMAL can be enriched with additional PPINs at any
point in time. This property makes the alignments suita-
ble for iterative exploration of PPI data. SMAL is also sig-
nificantly faster than other MNA algorithms and can be
easily parallelized, allowing for the computation of very

large MNAs covering many species. Our experiments
indicate that native MNA algorithms, which are signifi-
cantly slower than SMAL, may produce alignments,
which, on average, score better than SMAL-based align-
ments produced using the pairwise versions of the same
algorithms. However, SMAL allows scientists to use any
of the (much larger number of) specialized pairwise
alignment algorithms available today to obtain MNAs. In
many cases, this leads to superior MNAs as compared to
those created with native MNA algorithms.

Figure 6 SMAL based on NETAL. The y-axis shows the number of interactions conserved in at least 3 species in a MNA. Each bar represents
the value of this measure achieved by a MNA computed with a specific algorithm abbreviated as: IR - IsoRankN, SM - SMETANA, PI - PINALOG,
NT - NETAL. SMAL MNAs based on NETAL achieve by far the highest scores. (Top) is a MNA with Human as the scaffold. (Bottom) is the same
measure for MNAs using Drosophila as scaffold. While overall less interactions are conserved in at least 3 species when using Drosophila, SMAL
based on NETAL again outperforms all other algorithms with SMAL based on PINALOG consistently ranking second. The native MNA
implementations (available only for SMETANA and IsoRankN) as well as their SMAL counterparts achieve much lower scores. These results show
that SMAL allows for creation of MNAs based on pairwise algorithms that outperform existing native MNA algorithms for specific applications or
measures.

Table 6. Algorithms used in this study and their key characteristics

Algorithm Commandline arguments Node alignment Notes

IsoRankN –K 30 –thresh 1e-4 –alpha 0.9 –maxveclen 1000000 many-to-many native MNA

NETAL -a 0.0001 -b 0 -c 0.5 -i 2 one-to-one no BLAST

PINALOG none primarily one-to-one

SMETANA none many-to-many native MNA

PINALOG and SMETANA do not require specific arguments when running the respective commandline implementations. Arguments for IsoRankN and NETAL
have been used following recommendations by the authors in the literature and can be used to specify parameters that control the internal cost functions and
put limits on iterations and other data that influence running time and memory requirements.
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Additional material

Additional File 1: Overview of PPIN alignment algorithms. Table in
landscape format; HTML, viewable in any browser; filename: 1471-2105-
16-S14-S11-S1.html. Abbreviations used in the table: LP - local pairwise
aligner, GP - global pairwise aligner, LM - local multiple aligner, GM -
global multiple aligner, FC - functional coherence, EC - edge correctness,
GOC - Gene Ontology consistency, Sp - specificity, NS - number of
solutions, HP - homologene pairs, NH - number of homologene pairs, CN
- correct nodes, NC - number of correct solutions. Footnotes to the table:
* n1 = V1, n2 = V2, m2 = E2, m2 = E2; ** n = max{|V1|,|V2|} m = max{|
E1|,|E2|}

Additional File 2: Pseudo-code 2 - transforming a native MNA for
comparison with SMAL. The pseudo-code outlines a method to
transform a MNA obtained from a native MNA algorithm into a SMAL-
like MNA. Protein alignments that are not relevant to a given scaffold are
stripped and alignment clusters containing multiple scaffold proteins are
duplicated. This process allows for comparison between SMAL and other
MNA algorithms.

List of abbreviations used
MNA: Multiple Network Alignment; PNA: Pairwise Network Alignment; PPI:
Protein-Protein Interaction; PPIN: Protein-Protein Interaction Network; SMAL:
Scaffold-Based Multiple Network Aligner.
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