
J
H
E
P
1
2
(
2
0
1
5
)
1
3
8

Published for SISSA by Springer

Received: October 12, 2015

Accepted: December 1, 2015

Published: December 21, 2015

Regularization of the light-cone gauge gluon

propagator singularities using sub-gauge conditions

Giovanni A. Chirilli, Yuri V. Kovchegov and Douglas E. Wertepny

Department of Physics, The Ohio State University,

191 W Woodruff Ave, Columbus, OH 43210, U.S.A.

E-mail: chirilli.1@osu.edu, kovchegov.1@osu.edu, wertepny.1@osu.edu

Abstract: Perturbative QCD calculations in the light-cone gauge have long suffered from

the ambiguity associated with the regularization of the poles in the gluon propagator.

In this work we study sub-gauge conditions within the light-cone gauge corresponding

to several known ways of regulating the gluon propagator. Using the functional integral

calculation of the gluon propagator, we rederive the known sub-gauge conditions for the

θ-function gauges and identify the sub-gauge condition for the principal value (PV) reg-

ularization of the gluon propagator’s light-cone poles. The obtained sub-gauge condition

for the PV case is further verified by a sample calculation of the classical Yang-Mills field

of two collinear ultrarelativistic point color charges. Our method does not allow one to

construct a sub-gauge condition corresponding to the well-known Mandelstam-Leibbrandt

prescription for regulating the gluon propagator poles.

Keywords: QCD Phenomenology, NLO Computations

ArXiv ePrint: 1508.07962

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP12(2015)138

mailto:chirilli.1@osu.edu
mailto:kovchegov.1@osu.edu
mailto:wertepny.1@osu.edu
http://arxiv.org/abs/1508.07962
http://dx.doi.org/10.1007/JHEP12(2015)138


J
H
E
P
1
2
(
2
0
1
5
)
1
3
8

Contents

1 Introduction 1

2 θ-function sub-gauges 4

3 PV sub-gauge 11

4 Mandelstam-Leibbrandt prescription 12

5 Classical Yang-Mills field 14

5.1 Abelian case 15

5.2 Non-Abelian corrections 16

5.3 Diagrammatic calculation 18

6 Summary 20

A On the Lorenz-type sub-gauge condition 21

B Contribution of the Feynman pole at x
− boundary 22

1 Introduction

Consider a gluon (or photon) propagator in the

η ·A = A+ = 0 (1.1)

light-cone gauge:

Dµν(x, y) ≡ 〈0|TAµ(x)Aν(y)|0〉=
∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iǫ

[

gµν − kµην + kνηµ

k+

]

. (1.2)

(The gluon propagator given by eq. (1.2) is diagonal in the color indices.) Our convention

for four-vectors is vµ = (v+, v−, ~v⊥) with v± = (v0 ± v3)/
√
2. The gauge condition (1.1)

and the propagator (1.2) are defined with the help of a light-like four-vector

ηµ ≡ (0, 1,~0⊥), (1.3)

such that

η2 = 0, η · x = x+ . (1.4)

Using the gluon propagator (1.2) in practical perturbative calculations one invariably

faces the need to find a suitable way of regulating the k+ = 0 pole. (See [1, 2] for a

retrospective of works on the subject.) Without such regularization the k+-integral in
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eq. (1.2) is ill-defined. The singularity of eq. (1.2) at k+ = 0 appears to be due to incomplete

gauge fixing: the A+ = 0 light-cone gauge is preserved under any x−-independent gauge

transformation, given by

Aµ(x) → Aµ(x) + ∂µΛ(x+, ~x⊥) (1.5)

in the Abelian case and by

Aµ(x) → S(x+, ~x⊥)A
µ(x)S−1(x+, ~x⊥)−

i

g

[

∂µS(x+, ~x⊥)
]

S−1(x+, ~x⊥) (1.6)

in the non-Abelian case. It is usually assumed that regularization of the k+ = 0 pole

should follow from further gauge fixing, stemming from sub-gauge constraints imposed in

addition to eq. (1.1).

The most commonly used regularization prescriptions for the k+ = 0 pole of the gluon

light-cone gauge propagator are as follows:

• θ-function sub-gauges [3–5]:

Dµν
1 (x, y) ≡

∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iǫ

[

gµν − kµην

k+ − iǫ
− kνηµ

k+ + iǫ

]

, (1.7)

Dµν
2 (x, y) ≡

∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iǫ

[

gµν − kµην

k+ + iǫ
− kνηµ

k+ − iǫ

]

. (1.8)

The name stems from the fact that the classical field of a point (color) charge moving

along the x− = 0 light cone is proportional to Aµ
⊥ ∼ θ(−x−) in the first case and

Aµ
⊥ ∼ θ(x−) in the second case [4, 6–10].

• Principal value (PV) sub-gauge [11]

Dµν
PV (x, y) ≡

∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iǫ

[

gµν −
(

kµην + kνηµ
)

PV

{

1

k+

}]

. (1.9)

• Mandelstam-Leibbrandt (ML) prescription [12, 13]

Dµν
ML(x, y) =

∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iǫ

[

gµν − kµην + kνηµ

k+ + iǫk−

]

. (1.10)

The goal of this work is to identify the sub-gauge conditions leading to the propagators

in eqs. (1.7), (1.8), (1.9) and (1.10) and to demonstrate that these sub-gauge conditions

result in the propagators listed in those formulas when implemented in Feynman func-

tional integration. We would like to stress that the regularizations of the gluon propagator

poles given in eqs. (1.7), (1.8), (1.9) and (1.10) are by no means exhaustive, and other

regularizations exist which will not be considered in this work (see e.g. [14]).

The paper is structured as follows. We begin with the θ-function sub-gauges in sec-

tion 2. Motivated by the A0 = 0 gauge we propose the sub-gauge condition in eq. (2.1),

impose this sub-gauge condition within the functional integral, and derive an expression

for the gluon propagator (with the k+ = 0 pole regulated) by carefully evaluating surface
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terms inside the functional integral. In the process we show that the sub-gauge condi-

tion (2.1) can only be imposed at x− = ±∞. The final results for the light-cone gluon

propagators are given in eqs. (2.28) and (2.29), with the corresponding sub-gauge condi-

tions stated immediately above these propagators. The same sub-gauge conditions were

employed previously in [5, 15].

We move on to the case of the PV sub-gauge in section 3. There we tackle the problem

in reverse order: we search for a sub-gauge condition which yields the propagator (1.9) in

the functional integral calculation similar to that in section 2. In the end we obtain

~∂⊥ · ~A⊥(x
− = +∞) + ~∂⊥ · ~A⊥(x

− = −∞) = 0 (1.11)

as the sub-gauge condition necessary to obtain the PV regularization of the light-cone

gauge gluon propagator (1.9).

The same reverse strategy is applied to the Mandelstam-Leibbrandt prescription in sec-

tion 4. Starting from the Mandelstam-Leibbrandt propagator (1.10) we try to reconstruct

the sub-gauge condition corresponding to this propagator. Unfortunately this procedure

fails to yield a valid sub-gauge condition for the ML case.

Finally, in section 5 we illustrate and test our conclusion about the proper sub-gauge

fixing condition (1.11) for the PV case by constructing the classical gluon field of two

ultrarelativistic color charges moving in the same direction. Problems like this arise in

describing the gluon distribution of a single large nucleus in the framework of the McLerran-

Venugopalan (MV) model [4, 7–10, 16]. The classical gluon field of a single nucleus was

constructed in the MV model in [10, 16] by using one of the θ-function sub-gauges. In

section 5, for the first time the field is obtained in the PV sub-gauge. The gluon field is

constructed both by solving the classical Yang-Mills equations and by diagram summation.

In particular we show that at the Abelian lowest-order in the coupling g level one may use

the sub-gauge condition (see e.g. [5])

~A⊥(x
− = +∞) + ~A⊥(x

− = −∞) = 0 (1.12)

instead of that in eq. (1.11). However, at higher orders in g, when the non-Abelian cor-

rections become important, it is impossible to enforce the condition (1.12) even for the

classical gluon field. At the same time the condition (1.11) appears to work even at the

non-Abelian level. Combined with the derivation in section 3, this result appears to put

on a more solid footing the PV regularization of light-cone gluon propagator singularities,

which was used in perturbative calculations in the past [11].

We conclude in section 6 by restating our main results.

For future use let us define another light-like four-vector,

η̃µ ≡ (1, 0,~0⊥), η̃2 = 0, η̃ · x = x− . (1.13)

Any four-vector can be decomposed as kµ = k+η̃µ + k−ηµ + kµ⊥, where kµ⊥ = (0, 0, k1, k2)

and a⊥ · b⊥ = aibi = −a⊥µb
µ
⊥ with i = 1, 2 and µ = 0, . . . , 3. We also define ~k⊥ ≡ (k1, k2).

– 3 –
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2 θ-function sub-gauges

In this section we will re-derive the sub-gauge conditions and the gluon propagator for

the θ-function sub-gauges of the A+ = 0 light-cone gauge using the functional integral

formalism. We start with a conjecture for the sub-gauge condition. Note that in the

case of temporal A0 = 0 gauge one has a similar situation: the gluon propagator and

the prescription for regulating the singularity at k0 = 0 in it are obtained by imposing a

sub-gauge condition at a specific point in time: ~∂ · ~A(t0, ~x) = 0 [17–21]. Motivated by the

A0 = 0 gauge example, we impose the following sub-gauge condition:

∂⊥µA
µ
⊥(x

+, x− = σ, ~x⊥) = 0 . (2.1)

In other words, we require that the transverse divergence of the gauge field vanishes at

x− = σ with the value of σ not specified yet. (In the A0 = 0 gauge the corresponding time

t0 at which the sub-gauge condition is specified remains arbitrary.) Clearly, eq. (2.1) is not

the only sub-gauge choice that can be made. For example, an alternative gauge choice is to

require that the four-divergence is zero at a generic point in x−, ∂µA
µ(x+, x− = σ, ~x⊥) = 0.

However, as we will explain below (see e.g. appendix A), this sub-gauge choice is not

supported by the functional integral calculation.

In the functional integral formalism the propagator is obtained by applying functional

derivatives of the generating functional with respect to the sources,

〈0|TAµ(x)Aν(y)|0〉 = −
[

δ

δJµ(x)

δ

δJν(y)
e−

1
2

∫
d4x′d4y′ Jα(x′)Dαβ(x

′,y′) Jβ(y′)

]

∣

∣

∣

∣

∣

J=0

= −
[

δ

δJµ(x)

δ

δJν(y)

(

Z[J ]

Z[0]

)]

∣

∣

∣

∣

∣

J=0

, (2.2)

where Dµν(x, y) is the gluon propagator and Z[J ] is the generating functional. To arrive

at the expression for the gluon propagator Dµν(x, y) (with regularizations for all the poles

in momentum space) using the functional integration for constructing the generating func-

tional used in (2.2), one has to take special care of the surface terms arising from integration

by parts and of the gauge conditions. In what follows we will consider the x+ variable as

time, and will define the initial and final conditions at the light-cone times x+i and x+f
respectively. It will be implied that x+i is large and negative while x+f is large and positive.

In addition we assume that the system is localized in space but not in time: since now

x+ is our time variable, instead of the “standard” assumption that all fields go to zero as

|~x| → ∞, we will assume that the fields go to zero as |~x⊥| → ∞. As will become apparent

below, careful treatment will be needed of the functional integral at the boundaries in x+

and x− directions.

The generating functional for an Abelian gauge theory in the light-cone gauge with

the sub-gauge condition (2.1) is

Z[J ]= lim
ξ1,ξ2→0

∫

DAi DAfΨ0(Ai)Ψ
∗

0(Af )

∫

A(x+

i
,x−,~x⊥)=Ai

A(x+

f
,x−,~x⊥)=Af

DAµ exp

{

i

∫ x
+

f

x
+

i

dx
+

∫

dx
−
d
2
x⊥

[

L0(A) + Lfix(A) + JµA
µ

]

}

(2.3)
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with

L0(A) = −1

4
Fµν F

µν = −1

2
(∂µAν)(∂

µAν) +
1

2
(∂µAν)(∂

νAµ) (2.4)

and the gauge and sub-gauge fixing terms

Lfix(A) = − 1

2ξ1
Aµ η

µ ην Aν −
1

2ξ2

(

~∂⊥ · ~A⊥

)2
δ(x− − σ). (2.5)

The generating functional in eq. (2.3) can also be thought of as describing the Abelian

part of a non-Abelian theory such as gluodynamics. Notice that, as discussed above, in

the generating functional (2.3) we have used the light-cone coordinates with x+ as the

time direction. As is usually done, we have exponentiated the gauge conditions and the

parameters ξ1 and ξ2 will be sent to zero at the end of the calculation.

In eq. (2.3) Ψ0(A) represents the vacuum wave function in the Aµ-representation. In

the light-cone gauge it is

Ψ0(A) = exp

{

1

2

∫

dx−d2x⊥Aµ
√

−(∂+)2Aµ

}

. (2.6)

The expression (2.6) can be obtained by starting with the vacuum wave function in the

A0 = 0 gauge (see eq. (7.7) in [17])

Ψ0(A) = exp

{

−1

2

∫

d3xAi

√

−~∇2

[

δij − ∂i ∂j

~∇2

]

Aj

}

, (2.7)

(with ~∇ = (∂x, ∂y, ∂z) and i, j = 1, 2, 3 only in this formula) and performing an ultra-

boost along the +z direction to change the gauge into the A+ = 0 gauge and the wave

function (2.7) into (2.6).

It is known that one of the advantages of using axial-type gauge conditions is the

absence of ghost fields. However, now, in addition to the light-cone gauge, we have a sub-

gauge condition (2.1) which introduces a non trivial determinant, leading to a ghost field

c(x) localized at x− = σ:

det
[

∂⊥
µ Dµ

⊥(x
− = σ)

]

=

∫

Dc̄Dc exp

{

−i

∫

dx+ d2x⊥ c̄ ∂⊥
µ Dµ

⊥ c(x− = σ)

}

, (2.8)

where Dab
µ ≡ ∂µ δ

ab+g facbAc
µ is the covariant derivative and c̄(x) is the complex conjugate

ghost field. Just like in Feynman gauge, the ghost field is needed only in the non-Abelian

case. The ghost field does not affect the gluon propagator in question. The propagator of

this ghost field, along with the ghost-gluon vertices, depend only on transverse momenta,

and are independent of k−. Because of that it appears that ghost loops are zero in per-

turbative calculations using dimensional regularization. Therefore, in eq. (2.3) and in the

subsequent analysis we omit ghost contributions arising from sub-gauge conditions.

In order to put eq. (2.3) in the same form as the first line of eq. (2.2), we will adopt

the following standard procedure of “completing the square”. First we perform a shift of

the gauge field Aµ → Aµ + aµ and obtain

Z[J ] = lim
ξ1,ξ2→0

∫

DAi DAfΨ0(Ai)Ψ
∗

0(Af )Ψ0(ai)Ψ
∗

0(af ) (2.9)

– 5 –
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× exp

{
∫

dx
−
d
2
x⊥

(

A
µ
i

√

−(∂+)2 ai µ +A
µ
f

√

−(∂+)2 af µ

)

}

×

∫

A(x+

i
,x−,~x⊥)=Ai

A(x+

f
,x−,~x⊥)=Af

DAµ exp

{

i

∫ x
+

f

x
+

i

dx
+

∫

dx
−
d
2
x⊥

[

L0(A) + Lfix(A) + L0(a) + Lfix(a) + J
µ
Aµ + J

µ
aµ+

− (∂µAν) (∂
µ
a
ν)+(∂µAν) (∂

ν
a
µ)−

1

ξ1
Aµ η

µ
η
ν
aν−

1

ξ2

(

~∂⊥ · ~A⊥

) (

~∂⊥ ·~a⊥

)

δ(x−−σ)

]}

.

In arriving at eq. (2.9) we have done an integration by parts in (parts of) the vacuum wave

functions, discarding the two-dimensional boundary integral which is outside the precision

of the approximation that was used in deriving eq. (2.6). We now perform integration by

parts in the terms linear in aµ in the rest of the expression to arrive at

Z[J ] = lim
ξ1,ξ2→0

∫

DAi DAfΨ0(Ai)Ψ
∗

0(Af )Ψ0(ai)Ψ
∗

0(af ) (2.10)

× exp

{
∫

dx
−
d
2
x⊥

(

A
µ
i

√

−(∂+)2 ai µ +A
µ
f

√

−(∂+)2 af µ

)

}

×

∫

A(x+

i
,x−,~x⊥)=Ai

A(x+

f
,x−,~x⊥)=Af

DAµ exp

{

i

∫ x
+

f

x
+

i

dx
+

∫

dx
−
d
2
x⊥

[

L0(A) + Lfix(A) + L0(a) + Lfix(a) + J
µ
Aµ + J

µ
aµ+

+Aν

[

∂
2
g
µν−∂

µ
∂
ν
]

aµ−
1

ξ1
Aµ η

µ
η
ν
aν+

1

ξ2
A⊥µ(∂

µ
⊥
∂
ν
⊥a⊥ν) δ(x

−−σ)

]

−i

∫

dσµ

[

Aν(∂
µ
a
ν)−Aν(∂

ν
a
µ)
]

}

.

where dσµ = ±(d2x⊥ dx+ η̃µ + d2x⊥ dx− ηµ + dσµ
⊥) is the integration measure over the

3-dimensional surface of our four-dimensional space-time. Here dσµ
⊥ is the integration

measure over the surface at x⊥ → ∞. The choice of a plus or minus in each of the terms

depends on which boundary one is integrating over.

In order to “complete the square” we need to eliminate all the terms linear in Aµ in

eq. (2.10). Starting from the 4-dimensional volume integration terms we have to choose aµ

such that

Aν

[

∂2 gµν − ∂µ ∂ν
]

aµ − 1

ξ1
Aµ η

µ ην aν +
1

ξ2
A⊥µ(∂

µ
⊥∂

ν
⊥a⊥ν) δ(x

− − σ) + JµA
µ = 0 (2.11)

for any Aµ. Solving for aµ we get

aµ(x) = i

∫

d4y Dµν(x, y) Jν(y) (2.12)

where Dµν(x, y) is the Green function found from

[

∂2gµν − ∂µ∂ν − 1

ξ1
ηµην +

1

ξ2
∂µ
⊥∂

ν
⊥ δ(x− − σ)

]

Dνρ(x, y) = i δµρ δ(4)(x− y). (2.13)

The boundary conditions for eq. (2.13) are obtained by requiring that the 3-dimensional

surface integration terms linear in Aµ should also vanish in the exponent of eq. (2.10),

∫

dx− d2x⊥

(

Aµ
i

√

−(∂+)2 ai µ +Aµ
f

√

−(∂+)2 af µ

)

− i

∫

dσµ

[

Aν(∂
µaν)−Aν(∂

νaµ)
]

= 0.

(2.14)

– 6 –
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Note that the condition (2.14) eliminates all the boundary term dependent on aµ from

the exponent of eq. (2.10) (and not just the terms linear in Aµ). More precisely, for aµ

satisfying (2.14) one gets

Ψ0(ai)Ψ
∗
0(af ) exp

{
∫

dx−d2x
(

Aµ
i

√

−(∂+)2ai µ +Aµ
f

√

−(∂+)2af µ

)

}

(2.15)

× exp

{

− i

2

∫

dσµ

(

aν(∂
µaν)− aν(∂

νaµ)
)

− i

∫

dσµ

(

Aν(∂
µaν)−Aν(∂

νaµ)
)

}

= 1.

With this in mind one can readily show that after using aµ satisfying eqs. (2.12), (2.13)

and (2.14) in eq. (2.10) the generating functional becomes

Z[J ] = Z[0] exp

{

−1

2

∫

d4x d4y Jµ(x)D
µν(x, y) Jν(y)

}

. (2.16)

From (2.16) we see that Dµν(x, y) is indeed the gluon propagator, as defined in (2.2),

obtained in the light-cone gauge with the sub-gauge condition (2.1). Notice that, as can be

easily verified, Gauss’s law is automatically satisfied in gauge theories with the generating

functional (2.16), due to the self-consistency of the functional integral formalism.

We conclude that to find the gluon propagator we need to solve eq. (2.13) and verify

that the solution leads to aµ satisfying eq. (2.14).

For any x− 6= σ the general solution of eq. (2.13) is

Dµν(x, y)|x− 6=σ =

∫

d4k

(2π)4
e−ik·(x−y) −i

[k2]

[

gµν − kµην + kνηµ

[k+]

]

, (2.17)

where the regularization of the k2 = 0 and k+ = 0 poles is not specified on purpose, since

the remaining uncertainty in this solution is solely due to the freedom to regulate these

poles in various ways. For this reason we use the square brackets around the poles k2 = 0

and k+ = 0 (that is, [k2] and [k+]) to denote that the regularization prescription has yet

to be determined. Integrating eq. (2.13) over x− in an infinitesimal interval centered at σ

and assuming that Dµν is continuous we see that for x− = σ (and y− 6= σ) the solution

of (2.13) has to satisfy the following condition

∂⊥
µ ∂

⊥
ρ D

ρν(x, y)|x−=σ = 0 . (2.18)

(One also obtains continuity of ∂−D+ρ at x− = σ.) The continuity of Dµν implies that its

value at x− = σ is fixed by eq. (2.17), such that we can write

Dµν(x, y) =

∫

d4k

(2π)4
e−ik·(x−y) −i

[k2]

[

gµν − kµην + kνηµ

[k+]

]

(2.19)

for all x− with the only remaining freedom in this result being due to unspecified regular-

ization of the k2 = 0 and k+ = 0 poles. In fact one may still have different regularizations

(or linear combinations thereof) of the k2 = 0 and k+ = 0 poles for x− > σ and x− < σ in

eq. (2.19). (For instance one may obtain plane waves by replacing

1

k2
→ 1

2

[

1

k2 − iǫ
− 1

k2 + iǫ

]

= π i δ(k2) (2.20)

– 7 –
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in eq. (2.19).) With the help of a direct calculation one can see that no regularization of

the k2 = 0 and k+ = 0 poles in eq. (2.17) would lead to eq. (2.18) for an arbitrary finite

value of σ and for all x+, ~x⊥. This leaves σ = ±∞ as the only possibilities.

Let us first establish the Feynman prescription for the k2 = 0 pole in eq. (2.19). Picking

up the x+ = x+i and x+ = x+f surfaces in eq. (2.14) and using aµ from eq. (2.12) with the

Green function from eq. (2.19) (with k2 → k2 + iǫ) while keeping in mind that a+ = 0 in

eq. (2.12) and A+ = 0 due to ξ1 → 0 limit in eq. (2.10) yields
∫

dx
−
d
2
x⊥ A

µ
⊥
(x+

i )
(

√

−(∂+)2 + i∂
+
)

a
⊥

µ (x
+
i ) (2.21a)

=

∫

d
4
y dx

−
d
2
x⊥ A

µ
⊥
(x+

i )

∫

d4k

(2π)4
2k+θ(k+)

k2 + iǫ

(

g
µν
⊥

−
k
µ
⊥
ην

[k+]

)

e
−i k+(x−

−y−)−i k−(x+

i
−y+)+i~k⊥·(~x⊥−~y⊥) = 0

and
∫

dx
−
d
2
x⊥ A⊥(x

+
f )

µ
(

√

−(∂+)2 − i∂
+
)

a
⊥

µ (x
+
f ) (2.21b)

=−

∫

d
4
y dx

−
d
2
x⊥A

µ
⊥
(x+

f )

∫

d4k

(2π)4
2k+θ(−k+)

k2 + iǫ

(

g
µν
⊥

−
k
µ
⊥
ην

[k+]

)

e
−i k+(x−

−y−)−ik−(x+

f
−y+)+i~k⊥·(~x⊥−~y⊥)

=0.

To prove the validity of eqs. (2.21a) and (2.21b), it is enough to observe that the direction

of the k− -contour closure is determined by the fact that x+i − y+ < 0 and x+f − y+ > 0

for all y+, since x+i is the initial and therefore the smallest x+ value, while x+f the final

and therefore the largest x+ value in the 4-volume considered. Eqs. (2.21a) and (2.21b)

are zero independent of the regularization prescription for the k+ = 0 pole, and hence do

not allow us to fix this prescription. Note also that other regularizations of the k2 = 0 pole

would not satisfy both eqs. (2.21a) and (2.21b).

We now write

Dµν(x, y) =

∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iǫ

[

gµν − kµην + kνηµ

[k+]

]

(2.22)

and directly face the need to regulate the k+ = 0 pole as the only remaining ambiguity in

the expression. Substituting eq. (2.22) into eq. (2.18) yields

∂µ
⊥

∫

d4k

(2π)4
e−ik+(σ−y−)−ik−(x+−y+)+i~k⊥·(~x⊥−~y⊥)

k2 + iǫ

(

kν⊥ +
k2⊥η

ν

[k+]

)

= 0. (2.23)

Once again we see that for finite σ it is impossible to satisfy eq. (2.23) and hence eq. (2.18).

Since σ can not be finite, we consider σ = +∞ first. In such case we need to close the

k+-integration contour in the lower half-plane. Before doing the calculation, it is already

clear that our best chance of getting zero on the left-hand-side of eq. (2.23) is to put

[k+] = k+ − iǫ, such that the light-cone pole would not contribute to the integral.

Using the following Fourier transform

∫

d4k

(2π)4
e−ik·(x−y) 1

k2 + iǫ

(

kν⊥ +
k2⊥η

ν

k+ − iǫ

)

(2.24)

=
(x− y)ν⊥

2π2[(x− y)2 − iǫ]2
+ ην

[

(x− − y−)

π2[(x− y)2 − iǫ]2
− iδ(2)(~x⊥ − ~y⊥)δ(x

+ − y+)θ(y− − x−)

]
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we see that eq. (2.23) is satisfied if we use the prescription [k+] = k+ − iǫ for σ = +∞
since eq. (2.24) is zero for x− = +∞. With this result we rewrite eq. (2.22) as

Dµν(x, y) =

∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iǫ

[

gµν − kµην

k+ − iǫ
− kνηµ

[k+]

]

. (2.25)

It may seem that there is still an unregulated pole at k+ = 0 in the last term of the square

brackets in eq. (2.25). However, regularization of this last term can be fixed using the

symmetry of the gluon propagator, Dµν(x, y) = Dνµ(y, x). This yields

Dµν(x, y) =

∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iǫ

[

gµν − kµην

k+ − iǫ
− kνηµ

k+ + iǫ

]

. (2.26)

The derivation is similar for the case of σ = −∞. We employ
∫

d4k

(2π)4
1

k2 + iǫ

(

kν⊥ +
k2⊥η

ν

k+ + iǫ

)

e−ik·(x−y) (2.27)

=
(x− y)ν⊥

2π2[(x− y)2 − iǫ]2
+ ην

[

(x− − y−)

π2[(x− y)2 − iǫ]2
+ iδ(2)(~x⊥ − ~y⊥)δ(x

+ − y+)θ(x− − y−)

]

and observe that eq. (2.27) is zero for x− = −∞. Thus eq. (2.23) is satisfied for [k+] =

k+ + iǫ and σ = −∞.

To summarize, we obtain the following two sub-gauge conditions and the corresponding

gluon propagators for σ = ±∞ [3–5]:

• Light-cone gauge gluon propagator for the sub-gauge condition ~∂⊥ · ~A⊥(x
−=+∞)=0

Dµν
1 (x, y) ≡

∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iǫ

[

gµν − kµην

k+ − iǫ
− kνηµ

k+ + iǫ

]

; (2.28)

• Light-cone gauge gluon propagator for the sub-gauge condition ~∂⊥ · ~A⊥(x
−=−∞)=0

Dµν
2 (x, y) ≡

∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iǫ

[

gµν − kµην

k+ + iǫ
− kνηµ

k+ − iǫ

]

. (2.29)

As a consistency check, we now need to show that when using the propagators (2.28)

or (2.29), eq. (2.14) is satisfied along the x− = ±∞ surfaces, along with the x⊥ = ∞ bound-

ary. (We have checked the x+ = x+i and x+ = x+f surfaces when deriving Feynman regular-

ization in eqs. (2.21a) and (2.21b).) Eq. (2.14) is trivially satisfied at the x⊥ = ∞ boundary,

since we assumed initially that the system is localized in x⊥ and all fields vanish when x⊥ →
∞. We are left only with the x− = ±∞ surfaces to consider, for which eq. (2.14) reduces to

− i

∫

dx+ d2x⊥

[

Aν(∂
−aν)−Aν(∂

νa−)
]
∣

∣

∣

x−=+∞

x−=−∞
= 0. (2.30)

Let us demonstrate that eq. (2.30) is indeed valid for the case of ~∂⊥ · ~A⊥(x
− = +∞) = 0

sub-gauge. (The argument for the ~∂⊥ · ~A⊥(x
− = −∞) = 0 sub-gauge is constructed by

analogy.) The aµ-shift is (cf. eq. (2.12))

aµ1 (x) = i

∫

d4y Dµν
1 (x, y) Jν(y) . (2.31)
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We now plug eq. (2.31) into eq. (2.30) and use eq. (2.28) to integrate over k+. Note that,

just like in eqs. (2.24) and (2.27), picking up the k2 = 0 pole of the k+-integral would give

us a contribution which goes to zero as x− → ±∞. (Those contributions are given by the

first term on the right-hand side of (2.24) and (2.27) and by the first term in the square

brackets of the right-hand side of (2.24) and (2.27).) Only picking the k+ = 0 pole may

give a term (akin to the last terms in the square brackets on the right-hand side of (2.24)

and (2.27)) which may potentially violate eq. (2.30). Therefore, we substitute eq. (2.31)

into eq. (2.30) and use eq. (2.28) to integrate over k+ picking up the k+ = 0 poles only.

Keeping in mind the A+ = 0 gauge condition we write

− i

∫

dx
+
d
2
x⊥

[

Aν(∂
−
a
ν
1)−Aν(∂

ν
a
−

1 )
]∣

∣

∣

x−=+∞

x−=−∞

(2.32)

=

∫

d
4
y dx

+
d
2
x⊥ Jµ(y)

∫

d4k

(2π)4
e
−ik·(x−y) −1

k2 + iǫ

[

k
−
A

µ(x) + k ·A(x)
1

k+ + iǫ

(

k
−
η
µ + k

µ
⊥

)

]

∣

∣

∣

∣

∣

x−=+∞

x−=−∞

=

∫

d
4
y dx

+
d
2
x⊥ Jµ(y)

×

∫

d2k⊥ dk−

(2π)3
e
−ik−(x+

−y+)+i~k⊥·(~x⊥−~y⊥) i

k2
⊥

~k⊥ · ~A⊥(x)
(

k
−
η
µ + k

µ
⊥

)

θ(x− − y
−)
∣

∣

∣

x−=+∞

x−=−∞

=

∫

d
4
y dx

+
d
2
x⊥ Jµ(y)

∫

d2k⊥ dk−

(2π)3
e
−ik−(x+

−y+)+i~k⊥·(~x⊥−~y⊥) i

k2
⊥

~k⊥ · ~A⊥(x
− = +∞)

(

k
−
η
µ + k

µ
⊥

)

=

∫

d
4
y dx

+
d
2
x⊥ Jµ(y)

∫

d2k⊥ dk−

(2π)3
e
−ik−(x+

−y+)+i~k⊥·(~x⊥−~y⊥) −1

k2
⊥

~∂⊥ · ~A⊥(x
−=+∞)

(

k
−
η
µ + k

µ
⊥

)

=0,

where in the final steps we replaced ~k⊥ → −i~∂⊥, integrated by parts, and employed the
~∂⊥ · ~A⊥(x

− = +∞) = 0 sub-gauge condition. The details of the calculation in eq. (2.32)

justifying neglecting the k2 = 0 pole in eq. (2.32) along with the underlying assumptions

are given in appendix B. Note that the contribution of the k2 = 0 pole is independent of

the regularization prescription for the k+ = 0 pole: hence the conclusion of appendix B is

valid for all k+ = 0 pole prescriptions.

Note that a 4-divergence sub-gauge condition, ∂µA
µ(x− = +∞) = 0, would not have

led to zero in eq. (2.32), and therefore does not correspond to propagator (2.28). For further

reasons detailing why this is not a valid sub-gauge condition of the light-cone gauge see

appendix A.

We have thus verified that aµ from eq. (2.12) with either one of the propagators (2.28)

and (2.29) satisfies eq. (2.14), while the propagatorsDµν
1 (x, y) andDµν

2 (x, y) solve eq. (2.13)

with σ = ±∞ respectively. Therefore, eq. (2.16) is also verified, with Dµν
1 (x, y) and

Dµν
2 (x, y) being valid light-cone gauge propagators satisfying corresponding sub-gauge con-

ditions.

It is also easy to explicitly check that propagators Dµν
1 and Dµν

2 themselves respect

the sub-gauge conditions

∂⊥
µ D

µν
1 (x, y)

∣

∣

∣

x−=+∞
= 0 ,

∂⊥
µ D

µν
2 (x, y)

∣

∣

∣

x−=−∞
= 0 . (2.33)

Propagators (2.28) and (2.29) were already obtained by different procedures in [3–5].

We observe that in ref. [5] the propagators (2.28) and (2.29) were obtained by imposing

– 10 –



J
H
E
P
1
2
(
2
0
1
5
)
1
3
8

an additional sub-gauge condition, A−(x− = ±∞) = 0, while in the above procedure we

showed that it is sufficient to assume that lim
x−→∞

[A−(x−)/x−] = 0 (see appendix B).

3 PV sub-gauge

In this section we will determine the sub-gauge condition that reproduces Principal Value

(PV) prescription (1.9) for the k+ pole in light-cone propagator. To this end, we will adopt

the same procedure we used to arrive at propagators (2.28) and (2.29) with sub-gauge con-

ditions ~∂⊥· ~A⊥(x
− = +∞) = 0 and ~∂⊥· ~A⊥(x

− = −∞) = 0 respectively, but in reverse order.

In the previous section we have assumed a sub-gauge condition (2.1), performed a

shift of the field Aµ → Aµ + aµ in the generating functional, and made sure that the aµ-

dependent surface terms vanish (that is, eq. (2.14) is satisfied) for the generating functional

to reduce to the form given in (2.16).

As we do not know a priori the sub-gauge condition that reproduces the light-cone

propagator with k+ = 0 pole regulated by PV prescription, we consider from the start the

propagator with the PV prescription and deduce the needed sub-gauge condition in order

to put the generating functional in the form (2.16). In practical terms, we have to show

that eq. (15) is satisfied if we regulate the k+ = 0 pole of the light-cone propagator with

the PV prescription.

The gauge field propagator in the A+ = 0 light-cone gauge with the PV-prescription is

Dµν
PV (x, y) ≡

∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iǫ

[

gµν −
(

kµην + kνηµ
)

PV

{

1

k+

}]

(3.1)

where

PV

{

1

k+

}

≡ 1

2

(

1

k+ − iǫ
+

1

k+ + iǫ

)

. (3.2)

Knowing the propagator means we know the shift field aµ (cf. eq. (2.12)),

aµPV = i

∫

d4y Dµν
PV (x, y) Jν(y). (3.3)

Let us plug the shift field (3.3) into eq. (2.14) obtaining
∫

dx− d2x⊥

(

Aµ
i

√

−(∂+)2 aPV
i µ +Aµ

f

√

−(∂+)2 aPV
f µ

)

− i

∫

dσµ

[

Aν(∂
µaνPV )−Aν(∂

νaµPV )
]

= 0

(3.4)

and require that the latter is satisfied everywhere along the boundary of the four-

dimensional space-time volume. Eq. (3.4) is satisfied at the x+ = x+i and x+ = x+f
boundaries irrespective of the regularization of the k+ = 0 pole, as follows from

eqs. (2.21a) and (2.21b). The boundary at x⊥ → ∞ is also automatically satisfied, since

we assumed from the start that all fields vanish as x⊥ → ∞. We are only left with the

boundary at x− = ±∞. By analogy to eq. (2.32) we evaluate the contributions of the

x− = ±∞ boundaries by neglecting the residues of k2 = 0 pole in the propagator which

vanish at those boundaries (see appendix B and eqs. (2.24) and (2.27)):

0 = −i

∫

dx
+
d
2
x⊥

[

Aν(∂
−
a
ν
PV )−Aν(∂

ν
a
−

PV )
]∣

∣

∣

x−=+∞

x−=−∞
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=

∫

d
4
y dx

+
d
2
x⊥ Jµ(y)

∫

d4k

(2π)4
e
−ik·(x−y) −1

k2+iǫ

[

k
−
A

µ(x)+k ·A(x) PV

{

1

k+

}

(

k
−
η
µ + k

µ
⊥

)

]

∣

∣

∣

∣

∣

x−=+∞

x−=−∞

=

∫

d
4
y dx

+
d
2
x⊥ Jµ(y)

×

∫

d2k⊥ dk−

(2π)3
e
−ik−(x+

−y+)+i~k⊥·(~x⊥−~y⊥) i

k2
⊥

~k⊥ · ~A⊥(x)
(

k
−
η
µ + k

µ
⊥

) 1

2
Sign(x− − y

−)
∣

∣

∣

x−=+∞

x−=−∞

=

∫

d
4
y dx

+
d
2
x⊥ Jµ(y)

×

∫

d2k⊥ dk−

2(2π)3
e
−ik−(x+

−y+)+i~k⊥·(~x⊥−~y⊥) i

k2
⊥

[

~k⊥ · ~A⊥(x
− = +∞) + ~k⊥ · ~A⊥(x

− = −∞)
]

×
(

k
−
η
µ + k

µ
⊥

)

=

∫

d
4
y dx

+
d
2
x⊥ Jµ(y)

∫

d2k⊥ dk−

2(2π)3
e
−ik−(x+

−y+)+i~k⊥·(~x⊥−~y⊥) −1

k2
⊥

(

k
−
η
µ + k

µ
⊥

)

×
[

~∂⊥ · ~A⊥(x
− = +∞) + ~∂⊥ · ~A⊥(x

− = −∞)
]

. (3.5)

We see that for the boundary condition in eq. (3.5) to be satisfied, i.e. for the boundary

term to vanish, one has to have the following sub-gauge condition:

~∂⊥ · ~A⊥(x
− = +∞) + ~∂⊥ · ~A⊥(x

− = −∞) = 0. (3.6)

We have thus arrived at the sub-gauge condition which leads to the k+ pole in the gluon

propagator regulated with the PV prescription. We can check the validity of the PV-sub-

gauge condition (3.6) explicitly by using the PV-propagator:

∂⊥
µ D

µν
PV (x, y)

∣

∣

∣

x−=+∞
+ ∂⊥

µ D
µν
PV (x, y)

∣

∣

∣

x−=−∞
= 0. (3.7)

In section 5 we will show that the PV sub-gauge condition (3.6) is consistent with

reproducing the classical gluon field generated by two ultrarelativistic quarks propagating

along two parallel light-cones, whereas a stronger condition

~A⊥(x
− = +∞) + ~A⊥(x

− = −∞) = 0, (3.8)

while still satisfying eq. (3.5) does not allow one to construct the classical field of the color

charges at the non-Abelian level. Therefore, it is eq. (3.6) which appears to be the correct

sub-gauge condition in the PV case.

4 Mandelstam-Leibbrandt prescription

In this section we will try to obtain the sub-gauge condition that is consistent with the

light-cone gauge propagator (1.10) with k+ = 0 pole regulated by Mandelstam-Leibbrandt

(ML) prescription [12, 13]. To this end, we will adopt the same procedure we used for

the PV sub-gauge in the previous section, i.e, we will use the ML propagator (1.10) to

construct the shift field aµ from (2.12), and use the latter in eq. (2.14) to try to deduce

the sub-gauge condition that has to be satisfied.

The light-cone propagator with Mandelstam-Leibbrandt prescription [12, 13] is

Dµν
ML(x, y) =

∫

d4k

(2π)4
e−ik·(x−y) −i

k2 + iǫ

[

gµν − kµην + kνηµ

k+ + iǫk−

]

. (4.1)
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The corresponding shift field is

aµML = i

∫

d4y Dµν
ML(x, y) Jν(y). (4.2)

Substituting aµML into eq. (2.14) yields the following boundary condition for aµML to satisfy:

∫

dx− d2x⊥

(

Aµ
i

√

−(∂+)2 aML
iµ +Aµ

f

√

−(∂+)2 aML
f µ

)

− i

∫

dσµ

[

Aν(∂
µaνML)−Aν(∂

νaµML)
]

= 0.

(4.3)

Again only the x− = ±∞ boundaries need to be considered, since the other boundary con-

ditions are automatically satisfied by the field from eq. (4.2). Discarding the contributions

of the k2 = 0 pole we get

0 = −i

∫

dx
+
d
2
x⊥

[

Aν(∂
−
a
ν
ML)−Aν(∂

ν
a
−

ML)
]∣

∣

∣

x−=+∞

x−=−∞

=

∫

d
4
y dx

+
d
2
x⊥ Jµ(y)

∫

d4k

(2π)4
e
−ik·(x−y) −1

k2+iǫ

[

k
−
A

µ(x)+k ·A(x)
1

k++iǫk−

(

k
−
η
µ+k

µ
⊥

)

]

∣

∣

∣

∣

∣

x−=+∞

x−=−∞

=

∫

d
4
y dx

+
d
2
x⊥ Jµ(y)

∫

d2k⊥ dk−

(2π)3
e
−ik−(x+

−y+)+i~k⊥·(~x⊥−~y⊥) i

k2
⊥

~k⊥ · ~A⊥(x)
(

k
−
η
µ + k

µ
⊥

)

×
1

2

[

θ(x− − y
−) θ(k−)− θ(y− − x

−) θ(−k
−)
]

∣

∣

∣

x−=+∞

x−=−∞

=

∫

d
4
y dx

+
d
2
x⊥ Jµ(y)

∫

d2k⊥ dk−

2(2π)3
e
−ik−(x+

−y+)+i~k⊥·(~x⊥−~y⊥) i

k2
⊥

(

k
−
η
µ + k

µ
⊥

)

×
[

θ(k−)~k⊥ · ~A⊥(x
− = +∞) + θ(−k

−)~k⊥ · ~A⊥(x
− = −∞)

]

=

∫

d
4
y dx

+
d
2
x⊥ Jµ(y)

∫

d2k⊥ dk−

2(2π)3
e
−ik−(x+

−y+)+i~k⊥·(~x⊥−~y⊥) −1

k2
⊥

(

k
−
η
µ + k

µ
⊥

)

×
[

θ(k−) ~∂⊥ · ~A⊥(x
− = +∞) + θ(−k

−) ~∂⊥ · ~A⊥(x
− = −∞)

]

. (4.4)

It appears that to satisfy the boundary condition we need to require that the expression in

the last square brackets in eq. (4.4) is zero. However, the expression in the square brackets

depends on k−: equating it to zero would result in a sub-gauge condition which would

depend on the arbitrary momentum k−, mixing up coordinate and momentum spaces.

Such condition can only be satisfied if each term in the last square brackets of eq. (4.4) is

zero separately.

The situation does not change if we integrate over k− in eq. (4.4) obtaining

0=

∫

d
4
y dx

+
d
2
x⊥ Jµ(y)

∫

d2k⊥ dk−

2(2π)3
e
i~k⊥·(~x⊥−~y⊥) −1

k2
⊥

[

−

(

ηµ

(x+−y+−iǫ)2
+

ik
µ
⊥

x+−y+−iǫ

)

~∂⊥ · ~A⊥(x
−=+∞)

+

(

ηµ

(x+ − y+ + iǫ)2
+

ik
µ
⊥

x+ − y+ + iǫ

)

~∂⊥ · ~A⊥(x
− = −∞)

]

. (4.5)

The two terms in the square brackets of eq. (4.5) are multiplied by two different functions

of an arbitrary variable y+. Again the only way for these square brackets to be equal to

zero is to require that

~∂⊥ · ~A⊥(x
− = +∞) = 0 and

~∂⊥ · ~A⊥(x
− = −∞) = 0 (4.6)
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at the same time. However, the sub-gauge conditions (4.6) are not satisfied by the ML-

propagator (4.1). Indeed, we have

∂⊥
µ D

µν
ML(x, y)|x−=+∞ = − 1

2π
ην δ(2) (~x⊥ − ~y⊥)

1

x+ − y+ − iǫ
6= 0 (4.7a)

∂⊥
µ D

µν
ML(x, y)|x−=−∞ = − 1

2π
ην δ(2) (~x⊥ − ~y⊥)

1

x+ − y+ + iǫ
6= 0 . (4.7b)

In addition, the conditions (4.6) can not even be satisfied by the classical gluon field of a

single relativistic charge, as will become apparent in section 5.

For x+ 6= y+ eq. (4.5) can be satisfied by requiring that

~∂⊥ · ~A⊥(x
− = +∞) = ~∂⊥ · ~A⊥(x

− = −∞). (4.8)

However, there is no reason here to require x+ 6= y+, since both variables are integrated over

in (4.5). In addition, eq. (4.8) is not satisfied even by the field of a single ultrarelativistic

charge in electrodynamics. Finally, even the ML propagators do not satisfy (4.8), as can

be seen from (4.7).

We conclude that the procedure with which we successfully determined the sub-gauge

condition for PV-prescription is either not the right procedure to obtain the sub-gauge

condition for the light-cone gluon propagator with ML-prescription or that the ML light-

cone propagator is not compatible with the functional integral formalism.

It is interesting to observe that, in [3] the ML-light-cone propagator was obtained

within the functional integral formalism using complex valued fields (for a real-field gauge

theory).

5 Classical Yang-Mills field

In this section we illustrate the PV sub-gauge condition (3.6) and the corresponding propa-

gator (3.1) by an example of a classical gluon field of two color charges on parallel light cones

calculated in the A+ = 0 light-cone gauge. This types of problems arise in the McLerran-

Venugopalan (MV) model [4, 7–10, 16] of a large nucleus, where the classical gluon field

dominates over quantum corrections due to small coupling and large atomic number of the

nucleus (see [22] for a detailed introduction to the subject). Classical gluon field of a single

ultrarelativistic nucleus in the θ-function sub-gauges of the A+ = 0 light-cone gauge was

constructed in the MV model framework by solving Yang-Mills (YM) equations in [10, 16]

and by summation of the corresponding tree-level diagrams in [4]. Below we will repeat

both types of calculations for the PV sub-gauge of the A+ = 0 light-cone gauge for a sys-

tem of two color charges, which could be two valence quarks from two nucleons in a large

nucleus.1 The calculations in this section closely follows what was done in [4, 10], but in a

different sub-gauge of the light-cone gauge.

1Note that since above we have failed to find the sub-gauge condition corresponding to the ML pre-

scription, we can not solve classical YM equations in the ML case, since we do not know which condition

to impose on the field. A diagrammatic calculation with the ML gluon propagator should lead to the field

equivalent to one of the θ-function sub-gauges since k− < 0 for all virtual gluon lines in this case.
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Consider two ultrarelativistic quarks on two parallel light-cones. In covariant (Feyn-

man) ∂µA
µ = 0 gauge their classical gluon field is known exactly [10, 16] and is

Aa+
cov(x

−, ~x⊥) =
g

2π
(ta)1 δ(x

− − b−1 ) ln
(

|~x⊥ −~b1⊥|Λ
)

+
g

2π
(ta)2 δ(x

− − b−2 ) ln
(

|~x⊥ −~b2⊥|Λ
)

,

(5.1)

where (b−1 ,
~b1⊥) and (b−2 ,

~b2⊥) determine the quarks’ light-cone trajectories, g is the coupling

constant, and (ta)i are fundamental SU(Nc) generators in the color space of quark i.

We need to find the gauge transformation from Feynman to the light-cone gauge. It

is given by

ALC
µ = S Acov

µ S−1 − i

g
(∂µS)S

−1. (5.2)

Requiring that the new gauge is the light-cone gauge, A+
LC = 0, yields the following differ-

ential equation:

∂+S = −i g S A+
cov. (5.3)

As discussed in the Introduction, eq. (5.3) does not specify S, and hence the gauge, uniquely.

In the PV sub-gauge it needs to be augmented by the boundary condition (3.6).

While eq. (5.1) is the exact solution of the Yang-Mills equations for two ultrarelativistic

charges, we will try to construct S by solving eq. (5.3) order-by-order in g2, making sure

the condition (3.6) is satisfied by the light-cone gauge gluon field at each order.

5.1 Abelian case

S is a unitary matrix. At the lowest non-trivial order we write

S = 1 + i α(x−, ~x⊥) + . . . , (5.4)

where α(x) is an order-g2 correction and ellipsis represent higher-order corrections in g.

Since S is unitary, α(x) is a hermitean matrix. Plugging eq. (5.4) into eq. (5.3) we get

∂+α = −g A+
cov. (5.5)

Solving this equation with A+
cov given by eq. (5.1) we obtain

α(x−
, ~x⊥)=−

g2

2π
t
a(ta)1

1

2
Sign(x−−b

−

1 ) ln
(

|~x⊥−~b1⊥|Λ
)

−
g2

2π
t
a(ta)2

1

2
Sign(x−−b

−

2 ) ln
(

|~x⊥−~b2⊥|Λ
)

+ C1(~x⊥, b1, b2), (5.6)

where C1 is the integration constant (which may be a function of all the other variables in

the problem). To find C1 we need to satisfy the boundary condition (3.6). The transverse

components of the gluon field in the LC gauge are given by (note that ∂i
⊥ = −∇i

⊥)

~ALC
⊥ (x−, ~x⊥) =

i

g
(~∇⊥S)S

−1 = −1

g
~∇⊥α(x

−, ~x⊥) + . . . . (5.7)

Using eq. (5.6) in eq. (5.7) yields

~A
LC
⊥ (x−

, ~x⊥) =
g

2π
t
a(ta)1

1

2
Sign(x− − b

−

1 )
~x⊥ −~b1⊥

|~x⊥ −~b1⊥|2
+

g

2π
t
a(ta)2

1

2
Sign(x− − b

−

2 )
~x⊥ −~b2⊥

|~x⊥ −~b2⊥|2

−
1

g
~∇⊥C1(~x⊥, b1, b2) + . . . . (5.8)
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Clearly the gluon field from eq. (5.7) satisfies the condition (3.6) iff

~∇⊥C1(~x⊥, b1, b2) = 0, (5.9)

which means that C1 = C1(b1, b2),

~A
LC
⊥ (x−

, ~x⊥) =
g

2π
t
a(ta)1

1

2
Sign(x− − b

−

1 )
~x⊥ −~b1⊥

|~x⊥ −~b1⊥|2
+

g

2π
t
a(ta)2

1

2
Sign(x− − b

−

2 )
~x⊥ −~b2⊥

|~x⊥ −~b2⊥|2
+O(g3)

(5.10)

and

α(x−
, ~x⊥)=−

g2

2π
t
a(ta)1

1

2
Sign(x−−b

−

1 ) ln
(

|~x⊥−~b1⊥|Λ
)

−
g2

2π
t
a(ta)2

1

2
Sign(x−−b

−

2 ) ln
(

|~x⊥−~b2⊥|Λ
)

+ C1(b1, b2). (5.11)

Furthermore, since the field is Abelian at this order, the function C1 is additive, C1(b1, b2) =

C̃(b1) + C̃(b2). Applying translational invariance gives C̃(b)=const, while this constant we

will put to zero. (The appearance of the function C1 is related to the fact that even our sub-

gauge conditions do not fix the field uniquely: an Abelian gauge transformation (1.5) with

∇2
⊥Λ(x

+, ~x⊥) = 0 preserves both the light-cone gauge and the sub-gauge condition (3.6).)

Without C1 we write

α(x−
, ~x⊥) = −

g2

2π
t
a(ta)1

1

2
Sign(x−−b

−

1 ) ln
(

|~x⊥ −~b1⊥|Λ
)

−
g2

2π
t
a(ta)2

1

2
Sign(x−−b

−

2 ) ln
(

|~x⊥ −~b2⊥|Λ
)

.

(5.12)

5.2 Non-Abelian corrections

Let us find the next correction to S. Remembering that S is unitary we write

S = 1 + i α− α2

2
+ i α′ + . . . , (5.13)

where α′(x) is the order-g4 correction, which again is a hermitean matrix. Plugging (5.13)

into eq. (5.3) and employing eq. (5.5) yields

∂+α′ =
i

2

[

α, ∂+α
]

. (5.14)

Using eq. (5.12) in (5.14) we write

∂+α′ =
i

2

(

g2

2π

)2

[ta(ta)1, t
b(tb)2] ln

(

|~x⊥ −~b1⊥|Λ
)

ln
(

|~x⊥ −~b2⊥|Λ
)

(5.15)

× 1

2
Sign(b−2 − b−1 )

[

δ(x− − b−2 ) + δ(x− − b−1 )
]

.

The solution of eq. (5.15) is

α
′=

i

8

(

g2

2π

)2

[ta(ta)1, t
b(tb)2] ln

(

|~x⊥−~b1⊥|Λ
)

ln
(

|~x⊥−~b2⊥|Λ
)

Sign(b−2 −b
−

1 )
[

Sign(x−−b
−

2 )+Sign(x−−b
−

1 )
]

+ C2(~x⊥, b1, b2) (5.16)

with C2 the integration constant.
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To impose the sub-gauge condition (3.6) we need to find the transverse components of

the gluon field in the light-cone gauge. We write

~ALC
⊥ (x−, ~x⊥) =

i

g
(~∇⊥S)S

−1 = −1

g
~∇⊥α− 1

g
~∇⊥α

′ − i

2g
[α, ~∇⊥α] + . . . . (5.17)

Substituting eqs. (5.12) and (5.16) into eq. (5.17) gives

~ALC
⊥

(x−, ~x⊥) =
g

4π
ta(ta)1 Sign(x

− − b−1 )
~x⊥ −~b1⊥

|~x⊥ −~b1⊥|2
+

g

4π
ta(ta)2 Sign(x

− − b−2 )
~x⊥ −~b2⊥

|~x⊥ −~b2⊥|2

− i

8

g3

(2π)2
[ta(ta)1, t

b(tb)2] Sign(b
−

2 − b−1 )
[

Sign(x− − b−2 ) + Sign(x− − b−1 )
]

×
[

~x⊥ −~b1⊥

|~x⊥ −~b1⊥|2
ln
(

|~x⊥ −~b2⊥|Λ
)

+
~x⊥ −~b2⊥

|~x⊥ −~b2⊥|2
ln
(

|~x⊥ −~b1⊥|Λ
)

]

− 1

g
~∇⊥C2(~x⊥, b1, b2)−

i

8

g3

(2π)2
[ta(ta)1, t

b(tb)2] Sign(x
− − b−1 ) Sign(x

− − b−2 )

×
[

~x⊥−~b2⊥
|~x⊥−~b2⊥|2

ln
(

|~x⊥−~b1⊥|Λ
)

− ~x⊥−~b1⊥
|~x⊥−~b1⊥|2

ln
(

|~x⊥−~b2⊥|Λ
)

]

+O(g5). (5.18)

The condition (3.6) is satisfied by the field in eq. (5.18) only if

∇2
⊥
C2(~x⊥, b1, b2) = − i

8

g4

2π
[ta(ta)1, t

b(tb)2]
[

δ2
(

~x⊥ −~b2⊥

)

− δ2
(

~x⊥ −~b1⊥

)]

ln
(

|~b1⊥ −~b2⊥|Λ
)

.

(5.19)

The solution of eq. (5.19) is

C2(~x⊥, b1, b2) = − i g4

8 (2π)2
[ta(ta)1, t

b(tb)2] ln

(

|~x⊥ −~b2⊥|
|~x⊥ −~b1⊥|

)

ln
(

|~b1⊥ −~b2⊥|Λ
)

, (5.20)

where we put integration constants to zero and required that C2 is at most finite as x⊥ → ∞
such that ~ALC

⊥ → 0 when x⊥ → ∞, which was our assumption throughout the paper.

Substituting eq. (5.20) into eq. (5.18) we obtain our final result for the gluon field in

light-cone gauge,

~ALC
⊥

(x−, ~x⊥) =
g

4π
ta(ta)1 Sign(x

− − b−1 )
~x⊥ −~b1⊥

|~x⊥ −~b1⊥|2
+

g

4π
ta(ta)2 Sign(x

− − b−2 )
~x⊥ −~b2⊥

|~x⊥ −~b2⊥|2

− i

8

g3

(2π)2
[ta(ta)1, t

b(tb)2] Sign(b
−

2 − b−1 )
[

Sign(x− − b−2 ) + Sign(x− − b−1 )
]

×
[

~x⊥ −~b1⊥

|~x⊥ −~b1⊥|2
ln
(

|~x⊥ −~b2⊥|Λ
)

+
~x⊥ −~b2⊥

|~x⊥ −~b2⊥|2
ln
(

|~x⊥ −~b1⊥|Λ
)

]

+
i

8

g3

(2π)2
[ta(ta)1, t

b(tb)2]

[

~x⊥ −~b2⊥

|~x⊥ −~b2⊥|2
− ~x⊥ −~b1⊥

|~x⊥ −~b1⊥|2

]

ln
(

|~b1⊥ −~b2⊥|Λ
)

− i

8

g3

(2π)2
[ta(ta)1, t

b(tb)2] Sign(x
− − b−1 ) Sign(x

− − b−2 )

×
[

~x⊥−~b2⊥
|~x⊥−~b2⊥|2

ln
(

|~x⊥−~b1⊥|Λ
)

− ~x⊥−~b1⊥
|~x⊥−~b1⊥|2

ln
(

|~x⊥−~b2⊥|Λ
)

]

+O(g5). (5.21)
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Figure 1. Diagrammatic representation of the gluon field of two quarks at the order g.

It is important to stress that imposing a stronger sub-gauge condition (3.8) onto the

field of eq. (5.18) would lead to

~∇⊥C2(~x⊥, b1, b2)=−
i

8

g4

(2π)2
[ta(ta)1, t

b(tb)2]

[

~x⊥−~b2⊥

|~x⊥−~b2⊥|2
ln
(

|~x⊥−~b1⊥|Λ
)

−
~x⊥−~b1⊥

|~x⊥−~b1⊥|2
ln
(

|~x⊥−~b2⊥|Λ
)

]

.

(5.22)

However, eq. (5.22) for C2 has no solution. The easiest way to see it is to act on both sides

with ~∇⊥×,

0 = ~∇⊥ × ~∇⊥C2(~x⊥, b1, b2) 6= − i

4

g4

(2π)2
[ta(ta)1, t

b(tb)2]
~x⊥ −~b1⊥

|~x⊥ −~b1⊥|2
× ~x⊥ −~b2⊥

|~x⊥ −~b2⊥|2
, (5.23)

obtaining a contradiction. (Here ~∇⊥ × ~a⊥ ≡ ∂x ay − ∂y ax.)

We conclude that one can not always satisfy the condition (3.8) in a Yang-Mills theory:

we have just constructed a counter-example. Therefore eq. (3.8) is not a proper sub-gauge

condition of the light-cone gauge, which did not follow from our discussion in section 3. At

the same time the condition (3.6) appears to have passed this non-Abelian classical field

test leading to the gluon field (5.21).2

5.3 Diagrammatic calculation

To better understand what using the PV prescription for the propagators (3.1) entails in

the actual diagrammatic calculations, let us now try to construct the gluon field of two

ultrarelativistic color charges using Feynman diagrams.

We start with the order-g gluon field of two quarks in the light-cone gauge depicted in

figure 1. A straightforward calculation (using PV regularization of the light-cone singular-

ities) yields

~ALC
⊥

(x−, ~x⊥) = ta
∫

d2k⊥ dk+

(2π)3
e−ik+(x−

−b−
1
)+i~k⊥·(~x⊥−~b1⊥) g(ta)1

kµ
⊥

k2
⊥

PV

{

1

k+

}

+ (1 → 2) (5.24)

=
g

4π
ta (ta)1 Sign(x

− − b−1 )
~x⊥ −~b1⊥

|~x⊥ −~b1⊥|2
+

g

4π
ta (ta)2 Sign(x

− − b−2 )
~x⊥ −~b2⊥

|~x⊥ −~b2⊥|2
2One may argue that the condition (3.8) is actually two conditions, due to its (two-)vector nature, and

it may over-constrain the system, whereas the condition (3.6) is only one condition, being a scalar under

rotations in the transverse plane. However, presently we can not construct a proof of this conjecture in the

general case.
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Figure 2. Diagrammatic representation of the classical gluon field of two quarks at the order g3.

in agreement with eq. (5.10).

Now let us explore the next-to-lowest order. Diagrams contributing to the order-g3

classical field are shown in figure 2 (cf. [4]). A straightforward but a little more tedious

calculation yields (in k+, ~k⊥ momentum space)

A = i g3 fabc (tb)2 (t
c)1

1

k2
⊥
l2
⊥
(~k⊥ −~l⊥)2

[

−k2
⊥
lµ
⊥
+ ~k⊥ ·~l⊥ kµ

⊥

l+ (k+ − l+)
+

~l⊥ · (~k⊥ −~l⊥) k
µ
⊥
(k+ − 2l+)

k+ l+ (k+ − l+)

]

,

(5.25a)

B + C = i g3 fabc (tb)2 (t
c)1

kµ
⊥

k2
⊥
l2
⊥

1

k+ l+
, (5.25b)

D + E = −i g3 fabc (tb)2 (t
c)1

kµ
⊥

k2
⊥
(~k⊥ −~l⊥)2

1

k+ (k+ − l+)
. (5.25c)

The light-cone gauge gluon field due to the sum of the diagrams A through E is

~A
LC
⊥ (x−

, ~x⊥) = t
a

∫

d2k⊥ dk+

(2π)3
d2l⊥ dl+

(2π)3
(5.26)

× e
−ik+(x−

−b
−

2
)−il+(b−

2
−b

−

1
)+i~k⊥·(~x⊥−~b2⊥)+i~l⊥·(~b2⊥−~b1⊥)

i g
3
f
abc (tb)2 (t

c)1

×
1

k2
⊥
l2
⊥
(~k⊥−~l⊥)2

[

−k2
⊥ l

µ
⊥
+~k⊥ ·~l⊥ k

µ
⊥

l+ (k+ − l+)
+
~l⊥ · (~k⊥−~l⊥) k

µ
⊥
(k+−2l+)

k+ l+ (k+ − l+)
+
(~k⊥−~l⊥)

2 k
µ
⊥

k+ l+
−

l2⊥ k
µ
⊥

k+ (k+−l+)

]

.

The regularization of all light-cone singularities in eq. (5.26) is (implicitly) PV. All Fourier

transforms in eq. (5.26) are well-defined, except for the second term in the square brack-

ets. There, the integral over k+ and l+ contains pinched poles. If we were regulating

all the light-cone singularities by using the PV prescription ad hoc, with different iǫ’s for
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different poles, this integral would have been ill-defined, being strongly dependent on the

order in which different ǫ’s are sent to zero. However, since all our light-cone propaga-

tors (3.1) follow from the same generating functional (2.16), they all come with the same

iǫ’s. Hence, as a result of our calculation in section 3 we have a specific prescription for

the pinched-pole integral in question: use the same iǫ’s for all the light-cone poles in all

the gluon propagators involved. Note that this prescription was used before in the dia-

grammatic calculation of next-to-leading order Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) [23–25] anomalous dimensions in [11]: here we hope to have provided a justifi-

cation for this prescription.

To illustrate our prescription explicitly, let us first perform all the Fourier transforms

in eq. (5.26) except for the pinched-pole integral. We get

~A
LC
⊥ (x−

, ~x⊥)=−
g3

4(2π)2
t
a
f
abc (tb)2 (t

c)1

{

1

2
Sign(x−−b

−

1 ) Sign(x
−−b

−

2 )

[

~x⊥−~b2⊥

|~x⊥−~b2⊥|2
ln

(

|~x⊥−~b1⊥|

|~b1⊥−~b2⊥|

)

−
~x⊥ −~b1⊥

|~x⊥ −~b1⊥|2
ln

(

|~x⊥ −~b2⊥|

|~b1⊥ −~b2⊥|

)]

+ Sign(b−2 − b
−

1 ) Sign(x
− − b

−

2 )
~x⊥ −~b2⊥

|~x⊥ −~b2⊥|2
ln
(

|~b1⊥ −~b2⊥|Λ
)

+ Sign(b−2 − b
−

1 ) Sign(x
− − b

−

1 )
~x⊥ −~b1⊥

|~x⊥ −~b1⊥|2
ln
(

|~b1⊥ −~b2⊥|Λ
)

− 4

∫

dk+ dl+

(2π)2
e
−ik+(x−

−b
−

2
)−il+(b−

2
−b

−

1
) k+ − 2l+

k+ l+ (k+ − l+)

1

2

[

~x⊥ −~b2⊥

|~x⊥ −~b2⊥|2
ln

(

|~x⊥ −~b1⊥|

|~b1⊥ −~b2⊥|

)

+
~x⊥ −~b1⊥

|~x⊥ −~b1⊥|2
ln

(

|~x⊥ −~b2⊥|

|~b1⊥ −~b2⊥|

)]}

. (5.27)

Using the same iǫ’s to regulate all the poles in the pinched integral (similar to [11]) while

using the PV prescription we get

−4

∫

dk+ dl+

(2π)2
e
−ik+(x−

−b
−

2
)−il+(b−

2
−b

−

1
) k+ − 2l+

k+ l+ (k+−l+)
=−4

∫

dk+ dl+

(2π)2
e
−ik+(x−

−b
−

2
)−il+(b−

2
−b

−

1
) (k+−l+)−l+

k+ l+ (k+−l+)

= Sign(b−2 − b
−

1 )
[

Sign(x− − b
−

1 ) + Sign(x− − b
−

2 )
]

.

(5.28)

As one can show, using eq. (5.28) in eq. (5.27) gives eq. (5.21). (An identity

1 = Sign(x−− b−1 ) Sign(x
−− b−2 )+Sign(b−2 − b−1 )

[

Sign(x− − b−1 )− Sign(x− − b−2 )
]

(5.29)

comes in handy.) Hence the same-iǫ’s prescription is a diagrammatic equivalent of using

the sub-gauge condition (3.6) in the classical field calculations.

6 Summary

In this paper we have studied the question of whether the ambiguity associated with the

regularization of the poles of the light-cone gauge gluon propagator can be eliminated by

fixing the residual gauge freedom using a sub-gauge condition. We saw that this is indeed

the case for the θ-function sub-gauges and for the PV sub-gauge. In the process we have

elucidated the proper sub-gauge condition for the PV sub-gauge. Our main results for the
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propagators and for the sub-gauge conditions are given in (and above) eqs. (2.28) and (2.29)

for the θ-function sub-gauges and by eqs. (3.1) and (3.6) for the PV sub-gauge.

We have also shown that one can construct the classical gluon field of a single ultra-

relativistic nucleus in the PV sub-gauge: our perturbative calculation for the two ultra-

relativistic color charges resulted in eq. (5.21) for the gluon field. Moreover, it appears

that we have constructed a justification for the same-iǫ’s prescription for dealing with the

light-cone gauge gluon propagator poles in the PV sub-gauge.
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A On the Lorenz-type sub-gauge condition

In section 2 we have imposed (2.1) as the sub-gauge condition requiring the transverse

divergence of the gauge field to be zero at a generic point x− = σ. An alternative sub-

gauge condition is for the four-divergence to be zero at a generic point x− = σ:

∂µA
µ(x− = σ) = 0 . (A.1)

Here we will show that the sub-gauge choice (A.1) is not suitable for specifying the pre-

scription of the k+ = 0 pole of the light-cone gauge gluon propagator.

The propagator with sub-gauge condition (A.1) should satisfy the following differential

equation (cf. eq. (2.13))

[

∂2gµρ − ∂µ∂ρ −
1

ξ1
ηµηρ +

1

ξ2
∂µδ(x

− − σ)∂ρ

]

Dρν(x, y) = i δνµ δ
(4)(x− y) . (A.2)

Note that ∂µ to the left of the delta-function in eq. (A.2) acts on everything to its right.

Projecting eq. (A.2) onto ηµ η̃ν we get (cf. eq. (75) in [14])

∂+

[(

1− 1

ξ2
δ(x− − σ)

)

∂ρD
ρ−(x, y)

]

+ ∂2D+−(x, y) = −2i δ(4)(x− y). (A.3)

This equation has no solution for finite σ. To see this one can integrate both sides over x−

in an infinitesimal interval near x− = σ: the contribution of the δ-function term on the left-

hand side of eq. (A.3) to such an integral is ill-defined, as it contains δ(x−−σ)
∣

∣

∣

x−=σ+ǫ

x−=σ−ǫ
. (If

we assume that δ(x−−σ)
∣

∣

∣

x−=σ+ǫ

x−=σ−ǫ
= 0 we can simply drop the second term in eq. (A.3): how-

ever, we are not going to get a regularization of the k+ = 0 poles this way.) The only way to

avoid this ambiguity is to require that ∂ρD
ρ−(x− = σ, y) = 0, which may only be true for

σ = ±∞ (see a similar discussion near eq. (2.18) in the main text). This would result in the
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propagators (2.28) or (2.29) corresponding to σ = ±∞. However, for σ = ±∞ we saw in

eq. (2.32) that the sub-gauge condition (A.1) does not give zero, and hence does not work.

To summarize, we see that for finite σ no solution of eq. (A.2) exists, while for σ = ±∞
the solution does not satisfy the boundary condition in eq. (2.32). From this we conclude

that ∂µA
µ(x− = σ) = 0 is not a suitable sub-gauge condition for the light-cone gauge in

the functional integral formalism.

For pedagogical reasons let us arrive at the same conclusion using a slightly different

technique. It is convenient to introduce the following two linearly independent tensors

structures orthogonal to ηµ,

aµν ≡ gµν − ∂µην + ∂νηµ

η · ∂ +
∂2ηµην

(η · ∂)2 − ξ1∂
2∂µ∂ν

(η · ∂)2 , (A.4a)

bµν ≡ − ∂2

(η · ∂)2 η
µην , (A.4b)

so that we can decompose Dµν(x, y) (with the A+ = 0 gauge condition imposed) as

Dµν(x, y) = aµν a(x, y) + bµν b(x, y) (A.5)

with functions a(x, y) and b(x, y) to be determined.

Using (A.5) in (A.2) we have

[

δνµ − ∂µη
ν

∂+
+ ∂2 ηµη

ν

∂+2
− ξ1

ξ2
∂µδ(x

− − σ)∂ν ∂2

∂+2

]

∂2a(x, y)

+

[

−∂2ηµη
ν

∂+2
+

∂µη
ν

∂+
− 1

ξ2
∂µδ(x

− − σ)
ην

∂+

]

∂2b(x, y) = i δ(4)(x− y) δνµ . (A.6)

Projecting eq. (A.6) onto ηµ η̃ν again we get (cf. eq. (A.3))

[

1− 1

ξ2
∂+δ(x− − σ)

1

∂+

]

∂2b(x, y) = i δ(4)(x− y). (A.7)

(Note that we have set ξ1 to zero because at this point the light-cone gauge has already

been employed.)

Just like eq. (A.3), equation (A.7) does not provide any prescription for the k+ = 0

pole for any finite σ. For σ = ±∞ we have already seen that sub-gauge condition (A.1)

is not compatible with the path integral formalism. From this analysis we again conclude

that the sub-gauge ∂µA
µ(x− = σ) = 0 is not a suitable sub-gauge of the light-cone gauge

in the functional integral formalism.

B Contribution of the Feynman pole at x
− boundary

In this appendix we provide details of the calculation carried out in eq. (2.32) (as well as

those in eqs. (3.5)) and (4.4)). More specifically, in the transition from the second to the

third line of eq. (2.32) we neglected the contributions of the k2 = 0 Feynman pole. To

justify this let us consider the Fourier transform of the terms in the square brackets of the
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second line of eq. (2.32). The first term is not affected by the k+ prescription and it is zero

at x− = ±∞:

∫

d4k

(2π)4
e−ik·(x−y) k−

k2 + iǫ
Aµ(x)

∣

∣

∣

∣

∣

x−=+∞

x−=−∞

=
1

2π2

x− − y−

[(x− y)2 − iǫ]2
Aµ(x)

∣

∣

∣

x−=+∞

x−=−∞
= 0. (B.1)

In arriving at zero on the right-hand side of (B.1) we assume that Aµ(x)/x− → 0 as

x− → ∞, that is that Aµ(x) grows slower than |x−| as x− → ∞. Note that the expression

in eq. (B.1) is zero at each limiting point, x− = +∞ and x− = −∞, separately.

To understand the x−-dependence of the second terms in the square brackets of the

second line of eq. (2.32), note that k ·A(x) = k+A−(x)− ~k⊥ · ~A⊥(x) in A+ = 0 light-cone

gauge. (Once again we assume that the ξ1 → 0 limit is taken in eq. (2.10) enforcing the

gauge condition.) The k+A−(x) term vanishes due to eq. (B.1) along with

∫

d4k

(2π)4
kµ⊥

k2 + iǫ
e−ik·(x−y) =

(x− y)µ⊥
2π2[(x− y)2 − iǫ]2

. (B.2)

To find the contribution of the ~k⊥ · ~A⊥(x) we use the following integral

∫

d4k

(2π)4
ki⊥ e−ik·(x−y)

(k2 + iǫ)(k+ + iǫ)
= − (x− y)i⊥

2π(x− y)2⊥
θ(x− − y−) δ(x+ − y+)

+
i (x− y)i⊥

2π2(x− y)2⊥
(x− − y−)

[

1

(x− y)2 − iǫ
− 1

2(x+ − y+)(x− − y−)− iǫ

]

. (B.3)

Note that the k2 = 0 pole gives the second term on the right-hand side, which vanishes as

x− → ∞. Rewriting k−ηµ + kµ⊥ → i∂−ηµ + i∂µ
⊥ (all derivatives are with respect to x) and

noticing that applying derivatives to the second term on the right-hand side of eq. (B.3)

would still leave it vanishing at x− → ∞, we complete the justification of neglecting the

contributions of the k2 = 0 pole in going from the second to the third line of eq. (2.32).

(Once again we have to assume that Aµ(x)/x− → 0 as x− → ∞.) The first term in

eq. (B.3) does not vanish for x− → +∞: this term is due to picking up the k+ = 0 pole

and is the one giving us the third line of eq. (2.32).

The conclusion reached here about the k2 = 0 pole contribution vanishing at x− → ∞
is independent of the regularization of the k+ = 0 pole and thus applies to PV and ML

sub-gauges as well.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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