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Abstract

Background: Identification of cis- and trans-acting factors regulating gene expression remains an important
problem in biology. Bioinformatics analyses of regulatory regions are hampered by several difficulties. One is that
binding sites for regulatory proteins are often not significantly over-represented in the set of DNA sequences of
interest, because of high levels of false positive predictions, and because of positional restrictions on functional
binding sites with regard to the transcription start site.

Results: We have developed a novel method for the detection of regulatory motifs based on their local over-
representation in sets of regulatory regions. The method makes use of a Parzen window-based approach for
scoring local enrichment, and during evaluation of significance it takes into account GC content of sequences. We
show that the accuracy of our method compares favourably to that of other methods, and that our method is
capable of detecting not only generally over-represented regulatory motifs, but also locally over-represented motifs
that are often missed by standard motif detection approaches. Using a number of examples we illustrate the
validity of our approach and suggest applications, such as the analysis of weaker binding sites.

Conclusions: Our approach can be used to suggest testable hypotheses for wet-lab experiments. It has potential
for future analyses, such as the prediction of weaker binding sites. An online application of our approach, called
LocaMo Finder (Local Motif Finder), is available at http://sysimm.ifrec.osaka-u.ac.jp/tfbs/locamo/.
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Background
Regulation of transcription in eukaryote cells is con-
trolled by the binding of transcription factors (TFs) to
specific binding sites in the regulatory regions of their
target genes. In this way, transcription factor binding
sites (TFBSs) play an important role in the regulation of
gene expression. Unfortunately, TFBSs are hard to iden-
tify; experimental approaches are laborious and costly,
and computational analyses are plagued by high false
positive rates. TFBSs are extremely short compared to
the regions in which they are present, and TFs typically
bind to a variety of motifs.
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One of the many difficulties faced by TFBS detection
approaches is that some TFBSs are restricted in their lo-
cation with regard to the transcription start site (TSS).
An extreme example of such a motif is the TATA-box,
which is positioned about 25 to 30 bases upstream of
the TSS. However, computational analyses usually use
sequences of a fixed length (for eukaryotes typically
1000 bps or longer). In such cases, the region in which
genuine regulatory motifs are positioned is small com-
pared to the input sequence length, which makes
position-restricted TFBSs hard to detect using standard
approaches.
A number of studies have investigated the pos-

itional tendencies of nucleotide motifs and TFBSs
in genome-wide or large sets (>1000 sequences) of
promoter sequences [1-5]. Approaches aiming at
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predicting locally enriched TFBSs in smaller sets of
sequences have also been reported. Many of these
approaches involve counting the number of TFBSs in
windows within the regulatory regions, either using a
sliding window approach [6,7] or by binning the
TFBSs according to their position [8,9]. One weak-
ness of these approaches is that they process the
TFBSs in a binary way; either a site is present within
the window, or it is not. Within the region defined
by the window or bin itself the distribution of sites
is ignored, and sites at the edge of the region con-
tribute as much to the score as do sites located at
the center. This causes such approaches to be highly
dependent on window sizes, and – especially for
smaller window sizes – susceptible to noise: moving
the region or changing its size even just a few bases
can drastically change the score. Alternative methods
for combining positional information and nucleotide
motifs, such as one based on positional word count-
ing [10,11], are not suitable for application on smal-
ler datasets where counts of TFBSs tend to be too
low to process in such a way.
Here we introduce a novel method for the predic-

tion of locally enriched TFBSs in sets of promoter
sequences of co-regulated genes. Our approach is
based on the Parzen window technique for density
estimation, and is capable of converting predicted
TFBSs in even small sets of promoters into continu-
ous functions that reflect local TFBS enrichment.
Usage of different window function widths allows for
the detection of both TFBS motifs with loosely
defined positional preferences as well as TFBSs that
require very precise positioning. Furthermore, a
random sampling technique is used to incorporate
genome-wide tendencies into the evaluation of sig-
nificance of local enrichment. Application on artifi-
cial and real datasets showed that our method
compares favourably to other methods and measures.
We also applied our method to a number of pro-
moter sequence sets regulating tissue- or condition-
specific expression profiles, and detected regions
with local enrichment of TFBSs that could not
be detected using a more standard TFBS over-
representation analysis. We illustrate the validity of
our findings and how our approach can be used for
further dissection of the architecture of regulatory
regions.

Methods
Our proposed method for detection of locally enriched
regulatory motifs is described below. A workflow of our ap-
proach as well as details not covered below can be found
in the Supplementary Methods section and Figure S1
(Additional file 1).
Parzen window-based scoring of local TFBS enrichment
We start with a set S of N promoter sequences,
indexed by s = 1, 2, . . ., N. For each sequence s its ms

associated TFBSs are represented by their location
relative to a landmark within each sequence, LS ¼
ls;1; ls;2; . . . ; ls;ms

� �
. In this study the landmark is the

TSS associated with each promoter sequence, and
our goal is to find a region relative to the TSS
within these promoter sequences that is significantly
enriched in TFBSs.
We start the description of our approach by temporar-

ily focusing on a window of size h, which is used to scan
the set of sequences. The probability P that a TFBS will
fall within a region R can be expressed as:

P ¼
Z
R

p xð Þdx ð1Þ

The density function p(x) can be estimated empirically
by

p xð Þ ¼ 1
n

XN
s¼1

Xms

i¼1

φ x; ls;i ; h
� � ð2Þ

where n is the total number of TFBSs in the set of N
sequences. Here φ is a kernel function referred to as the
Parzen window function. In a simple sliding window ap-
proach φ could be defined as follows:

φ x; l; hð Þ ¼
1
h

if x� lj j≤h=2
0 otherwise

ð3Þ
(

In this case p(x) simply reflects the count of sites in
the window around x.
In our approach, a first adjustment we made is to re-

place the simple Parzen window function of Eq. 3 with a
smoother window function:

φ x; l; hð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π h=2ð Þ2

q exp
� l � xð Þ2
2 h=2ð Þ2

 !
ð4Þ

That is, φ is a Gaussian function fit over each position
x in the set of promoters, with the distance to predicted
TFBSs determining their contributions to the score of x.
The h value here is essentially a measure of the width of
this Gaussian. Other window functions can easily be
introduced.
Secondly, we adjusted the Parzen window approach so

that p(x) is no longer an estimate of the density of
TFBSs, but of the local enrichment of TFBSs in the
region around position x in the promoter sequences.
We define ps(x) to be the contribution of the TFBSs of
sequence s to the local enrichment score at position x;
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ps xð Þ ¼
Xms

i¼1

’ x; ls;i; h
� � ð5Þ

and the total local enrichment score (Slocal) at position x
over the entire set of sequences S is

Slocal xð Þ ¼
XN
s¼1

1
Zs

ps xð Þ ð6Þ

Here, ZS is a normalization factor inspired by the Zero
or One Occurrence Per Sequence (ZOOPS) model that
is frequently used in motif detection programs [12]:

Zs ¼ max 1;
Xxstop

x¼xstart

ps xð Þ
 !

ð7Þ

where xstart and xstop indicate the start and stop coor-
dinates of the region of interest relative to the TSS,
respectively. In practice, if a sequence contains multiple
predicted TFBSs, Zs will be greater than 1, resulting in a
reduced contribution per site in this sequence to the
Slocal. This scaling factor was introduced to limit the ef-
fect of a single sequence containing high numbers of
predicted TFBSs, especially in simple repeat sequences
(see Additional file 1: Figure S2).
Note that the Slocal is not a probability function and

does not sum to unity. Using Equations 4 to 7, a local
enrichment score can be calculated for each TFBS motif
at each bp in the region from xstart to xstop. In practice
we focused on the region from -2 kb to 1 kb around the
TSS, but to avoid irregularities at the boundaries of this
region we based calculations on TFBSs predicted in the
region from -3 kb to +2 kb. Wider window functions
lead to broad, slowly changing Slocal values which are
useful for detecting over-representation of TFBSs with
relatively loosely defined regions of preference. Narrower
window functions on the other hand result in sharper
peaks in Slocal values, allowing for the detection of local
enrichment in narrow, precisely defined regions. In
order to detect both broad and narrow regions of en-
richment we used the values h/2 = 10, 20, 50, 100, and
200 bps.

Evaluation of significance of local enrichment
The significance of observed Slocal values was evaluated
using a random sampling approach, in which we sample
N sequences with their predicted binding sites from the
genomic set of promoters. Sampling was done such that
sampled sequences had a similar GC content composition
as the input sequences, in an effort to limit biases (see
below). Using Equations 4 to 7, for each position x, we cal-

culated Ssampled
local (x). We repeated this sampling a large

number of times and for each position x we calculated
two p-values: a position-dependent one, Pdep(x), and a
position-independent one, Pind(x). Pdep(x) is defined

as the proportion of sampled sets where Ssampled
local (x) ≥

Slocal(x), and Pind(x) is defined as the proportion of

sampled sets where max x'(S
sampled
local (x')) ≥ Slocal(x).

The use of the combination of both thresholds ensures
that enriched regions are enriched in S in comparison to
the same region in sampled sets (Pdep), but also that the
regions have a certain degree of enrichment irrespective
of their position to the TSS (Pind). In order to reduce
false positive predictions caused by multiple testing, we
defined the thresholds for Pdep(x) as a function of the
window function width, with values of 0.001, 5e-4, 2e-4,
1e-4, and 5e-5 for scores calculated with h/2 = 200, 100,
50, 20, and 10 bps respectively. Here, more stringent
thresholds for the smaller peak widths reflect the in-
creasing number of independent tests performed as peak
widths decrease. The Pind(x) threshold was set uniformly
to 0.01. For every region within the sequences with start
position x1 and end position x2 passing both P value
restrictions we defined the corresponding region of local
enrichment to be the region from x1 − h/2 to x2 + h/2.

Removal of redundant locally enriched regions
Pairs of overlapping enriched regions detected for the
same motif with the same window function width were
merged together to form one single region. Redundancy
between enriched regions detected using different win-
dow function width values was removed such that for
each set of overlapping regions only 1 representative re-
gion was retained. For each region, the number of TFBSs
contained was counted. Next, for each set of overlapping
regions we retained the largest region, unless there were
smaller regions containing more than 2/3 of the pre-
dicted TFBSs in the largest region. In the latter case we
retained the smallest region containing more than 2/3 of
the predicted TFBSs. This approach ensured that, where
possible, narrower enriched regions containing high
numbers of TFBSs were returned.

A random sampling approach that takes into account GC
content biases
At several points in this study we evaluate the significance
of findings using a random sampling strategy. Observa-
tions made for the set of sequences S were compared to
values obtained in a large number of sets of N sequences
randomly sampled from the genomic set of sequences in a
way that limits the difference in GC content between
sampled sequences and the sequences in S. The p-value of
observed values was estimated by the ratio of sampled sets
having a higher value than the observed one.
First, we clustered the genomic set of promoter se-

quences by their GC content. Each sequence was



Figure 1 The effect of the random sampling approach for
minimizing GC content influences. (A). The average GC content in
bins of 100 bps in the region -1 kb to +1 kb is shown for 159
promoters of genes with small and large intestine-specific
expression (black), and for the same number of sequences randomly
sampled from the genomic set of promoters with k = 1 (blue), k = 2
(red), and k = 3 (green). Values of sampled sets are mean values with
bars representing the standard deviation based on 500 sampled
sets. (B). For the same dataset, the average RMSD of GC content is
shown for k = 1 to 10. In this case k* is set to 2.
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represented by a vector of 20 values representing the
GC content in bins of 100 bps in the region from −1 kb
to +1 kb. Values for each bin were scaled to have mean
0 and standard deviation 1. Clustering was done using
k-means clustering using the Hartigan-Wong algorithm,
with k = 2 to 10. For each value of k, clustering was done
100 times using random initializations, each run had up
to 100 iterations, and the result with the smallest sum of
squares between samples and assigned centers was
retained. The clusters obtained with k = 2 corresponded
to sequences with high (especially proximal to the TSS)
and low GC content, respectively. Clusters obtained by
clustering with k > 2 corresponded to variations of both
classes (see Additional file 1: Figure S3).
In our sampling approach, given a set S of N input

sequences and a value of k*, we get the number of
sequences in S belonging to each cluster, c1; c2; . . . ; ck�f g,
with

Pk�
i¼1ci =N, and randomly sample ci sequences from

each cluster of the genomic set of sequences. Here, k*
represents the optimal k value, chosen for each set of in-
put sequences S in a way that limited the difference in
GC content profiles between S and sampled sequences.
For determining k*, for each k value (k = 2 to 10), we
randomly sampled ci sequences from each cluster of the
genomic set of sequences, and, for the thus obtained N
sampled sequences, calculated the average GC content
in each bin of 100 bps. The root-mean-square deviation
(RMSD) between these GC content values and the
average GC content values of the sequences in S is
calculated. This sampling was repeated 1000 times,
allowing us to calculate the average RMSD and its stand-
ard deviation (SD) (see Figure 1B for an illustration).
The estimate of k* was then:

k� ¼ argmink k RMSDk ≤RMSDkþ1 þ SDkþ1j gf ð8Þ
which is inspired by the Gap statistic proposed to
estimate the optimal k in k-means clustering [13].

Over-representation index
For the purpose of comparison, as an indication of
global enrichment (as opposed to local enrichment) of a
TFBS in S we employed the Over-Representation Index
(ORI) [14], based on TFBSs predicted in the 1000 bps
upstream of TSSs.

ORI ¼ DensityS
Densitygenomic

� ProportionS
Proportiongenomic

ð9Þ

where DensityS is the number of predicted TFBSs in S
divided by N, Densitygenomic the number of predicted
TFBSs in the genomic set of promoter sequences divided
by the total number of promoter sequences, and Propor-
tionS and Proportiongenomic the ratio of sequences that
have at least 1 predicted TFBS, in S and the genome-
wide set of promoters, respectively. The significance of
observed ORI values is evaluated using a sampling ap-
proach equivalent to the one used for local enrichment
scores, with PORI being the proportion of random sam-
ples with higher ORI scores than the value observed in
S. See (Additional file 1: Figure S4) for a flowchart of this
approach. After application on artificial datasets, and
based on our experience in previous analyses, we set the
threshold for PORI to 0.01.
Comparison to existing methods and measures
We compared the performance of our approach to that of
existing methods and measures for the prediction of local
and global enrichment, using artificial as well as real data.
A number of realistic, artificial sequence datasets were
prepared in which instances of known regulatory motifs
were inserted into specific regions with respect to the
TSSs. Real datasets consisted of 6 sets of genes with simi-
lar expression profiles in dendritic cells upon stimulation
with LPS, for which ChIP-seq time-course data is available
for 25 TFs [15]. Using the ChIP-seq data we inferred the
TFs controlling the expression of each set of genes. On
these datasets we applied the methods and evaluated their
performance in terms of precision, recall, and F-measure.
For a more detailed description of the construction of the
artificial and real datasets, the methods and measures we
included in the comparison, and the measures of perform-
ance we used, we refer to the Supplementary Methods
section (Additional file 1).
Summary of additional materials and methods
For a more detailed description we refer to the Supple-
mentary Methods section (see Additional file 1). In brief,
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sets of co-expressed genes were defined based on micro-
array gene expression data for 79 human and 61 mouse
tissues and cell types from the GNF GeneAtlas dataset
[16], and for mouse dendritic cells (DCs) stimulated with
a number of immune stimuli [17]. For all genes of the
human (hg19) and mouse (mm9) genome, we scanned
regions from -3 kb to +2 kb around the TSS for sites for
a set of non-redundant, vertebrate position weight
matrices (PWMs) constructed from TRANSFAC [18]
and JASPAR [19] PWMs. Analysis of local enrichment
of TFBSs was based on these predicted sites.
Evolutionary conservation of TFBSs within enriched

regions was evaluated using PhastCons scores as avail-
able on the UCSC Genome Browser [20]. Z scores for
PhastCons scores corresponding to bases included in
TFBSs were calculated based on the average and stand-
ard deviation of PhastCons scores of an equal number of
bases located at equal distances to randomly selected
TSSs.
Enrichment of weak TFBSs in locally enriched regions

was evaluated by comparing the count of weak sites
within predicted regions in S with the count in randomly
sampled sets of sequences.

Results and discussion
Parzen window-based detection of local enrichment of
TFBSs
The starting point for many TFBS analyses is a set of
predicted TFBS in a set of regulatory sequences believed
to be under the control of the same regulatory mechan-
ism. Finding local over-representation of TFBSs in a set
of sequences can be thought of as finding a region at a
certain distance from a landmark, such as the TSS, in
which there is a significant enrichment or increase in
density of TFBSs compared to a reference set of
sequences.
Various general approaches for the estimation of

densities have been described, such as frequency histo-
grams and kn-nearest-neighbor estimates [21]. Here, we
focused our attention on the Parzen window approach, a
non-parametric technique where the density estimate is
obtained by summing over all samples weighted by a
function of choice, the so-called window function [22].
Parzen widow approaches have been used in bioinfor-
matics for ChIP-seq peak calling [23], but to our best
knowledge it has never been used for the analysis of
regulatory motifs. In our analysis, samples consist of pre-
dicted TFBSs in promoter sequences of co-expressed
genes, and as a window function we use a Gaussian
function of the distance to each TFBS. We choose a
Gaussian function because it results in a smooth enrich-
ment score, and because it has only one additional par-
ameter to specify: the width of the Gaussian. We made a
number of adjustments to the original Parzen window
approach (see Methods section), which allow us to esti-
mate local enrichment scores (Slocal) for each TFBS. A
sampling approach is then used to estimate the signifi-
cance of observed scores in a way that takes into ac-
count GC content profiles of sequences.
To illustrate our approach we first focus our attention

on the predicted sites for a selection of 5 PWMs in the
promoters of 159 mouse genes with tissue-specific ex-
pression in small and large intestine. A first important
point is that for each of these 5 motifs, a region of local
enrichment was found (Figure 2D), while only one of
them (HNF4) was found to be significantly over-
represented by a standard over-representation approach.
Secondly, between the 5 motifs there is a diversity in the
width of the region of enrichment (Figure 2A): the
TATA box and RXR/RAR/VDR motifs show very narrow
Slocal peaks, while the curves of the HNF4 and especially
the bHLH motifs (DEC1,2) show very broad peaks. For
comparison, the curves for expected Slocal values based
on the genome-wide set of promoter sequences are
shown in Figure 2B. The peak for the TATA box corre-
sponds to its known location around positions −30 to −25.
Other motifs show a smaller degree of variation in func-
tion of the position relative to the TSS, and some have a
more or less uniform distribution of sites. In order to take
into account such genome-wide tendencies, we employ a
sampling approach for the evaluation of significant local
enrichment (see Methods section). Figure 2C shows the
position dependent p-values (Pdep) estimated by this sam-
pling approach. Importantly, the fact that the TATA box is
found to be significantly enriched in the promoters of
intestine-specific genes implies that this motif is signifi-
cantly enriched in the region just upstream of the TSS,
even taking into account its strong genome-wide prefe-
rence for this region (Figure 2B), suggesting that the
TATA box plays a role in the regulation of these genes. In
this way, our approach is able to find regulatory motifs
that are missed by standard approaches, it can detect both
broad and narrow regions of local enrichment of motifs,
and it takes into account genome-wide tendencies during
the evaluation of significance of enrichment.
Several studies have indicated differences in GC con-

tent and CpG scores between housekeeping genes and
tissue- or condition-specific genes [24,25], and a recent
study has suggested that analysis of regulatory regions
can lead to better results when treating CpG island-
associated sequences and non-CpG island-associated
sequences separately [26]. Since PWMs with high (low)
GC content naturally tend to have more hits in
sequences with high (low) GC content, local regions of
higher (lower) GC content in an input set of sequences
can easily result in apparent local enrichment of GC-
rich (GC-poor) TFBSs. To avoid such biases we designed
a way to evaluate the significance of peaks using a



Figure 2 Illustration of our approach for prediction of local
TFBS enrichment. (A). For 159 mouse genes with high expression
in small and large intestine we show the local enrichment scores in
the region −500 to +500 around the TSS for 5 TFBS motifs. The h/2
values were 10 bps for TATA and RXR/RAR/VDR; 20 bps for HNF1;
50 bps for HNF4; and 200 bps for bHLH. (B) The expected local
enrichment scores for the same motifs based on the genome-wide
set of promoter sequences. h/2 values are as in (A). (C) log10(Pdep)
values for the local enrichment scores for the same 5 motifs in the
same set of promoters. (D). Visual representation of the locally
enriched regions for the 5 motifs. Boxes represent bases with
significant scores and lines at both sides represent the h/2 values
used. Enriched regions correspond to the regions covered by the
boxes and lines.
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sampling approach in which sampled sequences have a
GC content profile similar to that of the input sequences
(see Methods section). Figure 1 illustrates the import-
ance of this approach using the set of mouse promoters
with high activity in small and large intestine as an
example. Figure 1A shows the GC content profile in the
intestine-specific promoters, as well as in sequences ran-
domly sampled using k = 1, 2, 3 cluster(s). If we were to
ignore GC content profiles of sequences, sampling from
the genomic set of sequences (equivalent to k = 1) would
result in sampled sets having a significantly higher GC
content than the input sequences, especially around the
TSS. This in turn would lead to high numbers of false
positive enriched regions for AT-rich TFBSs. However,
when clustering genomic sequences into 2 clusters
according to their GC content profile (k = 2), and sam-
pling according to the number of input sequences in
each cluster, the difference in average GC content be-
tween sampled and input sequences is strongly reduced.
Doing the same using 3 clusters (k = 3) does not further
decrease the difference in this particular case. Figure 1B
shows the discrepancy between GC content of the same
set of intestine-specific promoters and sampled sets of
promoters as a function of the number of clusters k used
to sample. Although the RMSD has a tendency to de-
crease as k increases, higher k values also result in smal-
ler sets of promoter sequences to sample from. As a
compromise, we therefore used the clusters obtained
using k*, the smallest k value where the RMSD is smaller
than the RMSD + SD of k + 1 clusters. In the case of pro-
moters with high expression in small and large intestine,
the random sampling for the evaluation of significance
of local enrichment of TFBSs was thus done according
to k* = 2. Since the existence of high-CG genes and low-
CG genes is well established, k* = 1 was not considered.
The k* values were 2 in 36 out of 44 sets of co-
expressed genes in mouse, and in 17 out of 32 sets in
human, indicating that in many cases a simple distinc-
tion between GC-rich and GC-poor sequences is suffi-
cient. For a number of sets, however, high k* values were
found (Additional file 1: Table S1, Additional file 1:
Table S2 and Additional file 1: Table S3).

Comparison to existing methods and measures
We compared the accuracy of our method to that of
other methods and measures for the prediction of local
and global motif enrichment, using artificial sequence
datasets and real datasets based on RNA-seq and ChIP-
seq data [15]. Both artificial and real datasets were con-
structed in a way that reflects a typical application of
our method, e.g. promoters of sets of genes thought to
be under the control of similar regulatory mechanisms
(see Methods, and the Supplementary Methods section
and Additional file 1: Tables S4). An overview of the pre-
cision, recall, and F-measure of each method and meas-
ure is shown in Table 1. The comparison shows that our
method compares favourably to other methods. Recall is
relatively high (0.755 and 0.371), while precision is the
highest of the investigated methods for both artificial
and real datasets (0.609 and 0.757 respectively). Interest-
ingly, our method also had relatively high performance
when using a simple uniform window function, though
both recall and precision were lower than when using
Gaussian-based window function. Although a number of
approaches had higher recall values than our method,
these methods tend to also have considerably lower pre-
cision. When methods for the prediction of global



Table 1 Overview of performance of several methods and measures for prediction of motif enrichment on artificial and
real datasets

Method or measure Type Artificial data Real data Reference

Recall Precision F-measure Recall Precision F-measure

LocaMo Finder (Gaussian) local 0.755 0.609 0.674 0.371 0.757 0.498 this study

LocaMo Finder (uniform) local 0.727 0.519 0.606 0.343 0.723 0.465 this study

RSAT (Binomial distribution) ($) global 0.714 0.285 0.408 0.429 0.440 0.434 RSAT [40]

ORI (**) global 0.677 0.386 0.492 0.343 0.563 0.426 this study

Hypergeometric distribution (*) global 0.745 0.272 0.399 0.400 0.450 0.424 AlignACE [41]

Fisher’s exact test (*) global 0.747 0.276 0.403 0.400 0.443 0.420 oPOSSUM [42]

ORI (*) global 0.768 0.258 0.387 0.429 0.407 0.417 this study

RSAT (Binomial distribution) ($$) global 0.591 0.498 0.541 0.271 0.607 0.375 RSAT [40]

Hypergeometric distribution (***) global 0.605 0.522 0.560 0.243 0.706 0.361 AlignACE [41]

Fisher’s exact test (***) global 0.605 0.530 0.565 0.243 0.667 0.356 oPOSSUM [42]

Casimiro et al. local 0.727 0.053 0.099 0.629 0.132 0.218 [9]

Berendzen et al. local 0.859 0.044 0.083 0.786 0.093 0.167 [1]

Vardhanabhuti et al. local 0.409 0.079 0.133 0.314 0.090 0.139 [3]

FIRE (Information content) global 0.586 0.342 0.432 0.100 0.200 0.133 FIRE [43]

TFM-Explorer local 0.432 0.145 0.217 0.186 0.076 0.108 [6]

FREE local 0.155 0.182 0.167 0.029 0.013 0.018 [5]

A-GLAM local 0.032 0.259 0.057 0.000 0.000 NA [4,27]

For each method or measure the type of measure (“local”: local enrichment of positioning; “global”: global enrichment), the recall, precision, and F-measure is
given for the artificial and real datasets, as well as a reference. Methods are sorted by decreasing F-measure obtained on the real datasets. (*) P value threshold
0.01; (**) P value threshold 0.001; (***) P value threshold 1e-4; ($) sig threshold 0; ($$) sig threshold 2.
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enrichment are run with more stringent thresholds in
order to improve precision, recall drops and especially
artificial TFBSs inserted with lower insertion rates (10%
and 20%) tend to be missed (data not shown). Other
methods for the prediction of positional preferences or
local enrichment of TFBSs suffer in general from low
precision, although we have to point out that several
methods and measures were originally designed for
slightly different purposes than the one investigated
here. The prediction of de novo motifs is in general
regarded as a much harder problem than the detection
of enrichment of known motifs. This is reflected in the
low recall and low precision of A-GLAM and FREE
[5,27], two methods which do not use an input set of
PWMs, but are based on the analysis of k-mers.
In addition, we observed how our method significantly

increases the accuracy of PWM-based TFBS predictions.
When we assume that only predicted TFBS present in-
side bound regions of the TF in question (as defined by
ChIP-seq data) are truly functional, and regard any other
predicted TFBSs as false positives, PWM-based TFBS
predictions resulted in a recall of 33.1%, with a low
precision of 5.0%. However, when we filtered the PWM-
based predicted TFBSs using the predicted regions of
enrichment for the regulatory motif in question,
while recall dropped 3.7-fold to 8.9%, there was a
more than 7-fold increase in precision to 37.4%,
resulting from a strongly reduced number of false
positive predictions.

Application on a large number of gene sets
Next, we applied our approach on a large number of sets
of genes with tissue- and cell type-specific expression, in
human and mouse [16]. Genes were clustered into 44 and
32 clusters of co-expressed genes for the mouse and
human case, respectively. Promoter regions for all genes
were scanned using a set of 198 non-redundant vertebrate
PWMs, and we predicted local TFBS motif enrichment in
each of the clusters using our approach, as well as TFBS
enrichment using a standard motif over-representation
approach.
In total our approach predicted 269 and 190 regions

with local enrichment of a regulatory motif in the mouse
and human GNF GeneAtlas datasets, respectively (see
Additional file 2: Tables S5 and Additional file 2: Table S6).
The fact that our approach could find locally enriched
motifs that could also be detected using standard ap-
proaches demonstrates the robustness of our approach
(see Additional file 1: Table S7). For example, sites for two
ETS family TFs, including PU.1, and for NF-κB, and IRFs
were found in various immune-related cell types [28-30],
and sites for HNF1 and HNF4 in liver-specific and liver/
kidney-specific genes [31,32]. Moreover, Table 2 shows a
small selection of locally enriched motifs that could not be
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detected by the standard motif over-representation ap-
proach for the mouse clusters (see Additional file 1: Tables
S8 and Additional file 1: Table S9 for more results). For
example, we found enrichment of binding sites of ETS
family TFs in promoters driving high expression in mouse
B cells and T cells, and a peak for a CREB binding motif
in a set of promoters associated with genes with preferen-
tial expression in mouse testis. Note that in many cases,
motifs with local enrichment also show a certain degree of
general enrichment (PORI values roughly in the range 0.01
to 0.20), but on a level that cannot be regarded as signifi-
cant (PORI threshold = 0.01). These results clearly indicate
that our approach is able to detect regulatory features that
are missed by a standard motif over-representation ana-
lysis, and that in many cases the detected regulatory
motifs are known to play a role in the dataset in which
they were detected.

General tendencies of local TFBS enrichment
In general, locally enriched regions were found to be
present proximal to the TSS, roughly in the region −300 to
+300 with a peak around position −100 (Figure 3A). Inter-
estingly, in the human case we observed a region that is
relatively poor in enriched regions, roughly between posi-
tions −700 to −500, suggesting an upper limit for distances
over which positioning of TFBS relative to the TSS is of
biological importance. In mouse too, the number of times a
nucleotide was included in an enriched region dropped to a
low basal level for positions upstream of position −500. A
similar limit was observed for the region downstream of
the TSS, although both in human and in mouse the slope
of the curve is not as steep. While the peak in the region
just upstream of the TSS seems highly significant and sug-
gests a recommended region for regulatory motif analysis
Table 2 A selection of regions of local enrichment that could
analysis

Tissues or cell types
(cluster index)

Transcription factor

B cells, T cells (2) ETS domain TFs, including SPI1 or PU

B cells, T cells (2) HIF1

testis (10) RFX1

testis (10) CREB-binding TFs, including ATF fami

liver (16) Cux1 (CR3 + HD)

small and large intestine (19) HNF1

small and large intestine (19) RXR, RAR, and VDR

testis (22) MYB family TFs

testis (22) heat shock factors

skeletal muscle (42) THR alpha and beta

A selection of regulatory motifs is shown for which regions of local enrichment wer
tissue, the start and stop position of the region, the h/2 used, the ORI p-value, and
are shown.
roughly between positions −500 and +500, it is possible that
it is partly caused by a bias of past studies to focus mainly
on this region for the identification of TFBSs. This might in
turn bias the PWM data we used for detection of local en-
richment of TFBSs. On the other hand, given the flexibility
of the DNA double helix it is unlikely that very precise
positioning of TFBSs is necessary at larger distances from
the TSS.
Regulatory motifs show a preference for similar regions
across different sets of promoters
An additional indication of the biological validity of our
findings is the fact that for many motifs we found local
enrichment in similar regions in different clusters of
genes. One example is the TATA box, which is known to
be present at a specific distance from the TSS and which
we found to be significantly enriched in the region
around positions −30 to −25 in two sets of promoters.
We also observed similar tendencies for motifs that are
not generally known to be under strong positional
restrictions. Some examples are ETS family TFBSs,
which we detected concentrated around the region im-
mediately upstream of the TSS in 6 human and 9 mouse
clusters (Table 3, and Additional file 1: Table S10), and
NRF-1 binding sites, which we found in 4 human and 5
mouse clusters, here too in all cases in the region imme-
diately upstream of the TSS. Importantly, not all motifs
were enriched in the upstream regions: Zfx motifs, for
example, were found to be enriched in regions roughly
between 50 to 400 bases downstream of the TSS in 4
clusters. Standard motif over-representation analyses are
likely to miss such regulatory patterns, as this region is
usually not included in the input.
not be found using standard TFBS over-representation

Region of enrichment: PORI References

x1 to x2 (h/2)

.1 −10 to 0 (10) 0.15 [44,45]

55 to 200 (200) 0.11 [46]

−91 to 129 (200) 0.012 [47,48]

ly −148 to 31 (100) 0.035 [49,50]

−103 to −90 (10) 0.037 [51]

−93 to −37 (20) 0.012 [52]

−52 to −43 (10) 0.065 [53,54]

−72 to 95 (100) 0.025 [55,56]

−58 to 217 (200) 0.032 [57]

−30 to −15 (50) 0.025 [58,59]

e detected in mouse tissues and cell types of the GNF GeneAtlas dataset. The
references supporting the role of the regulatory motif in the tissue in question



Figure 3 General trends of significantly locally enriched regions detected in the GNF GeneAtlas gene sets. (A) For each base in the
region from -2 kb to +1 kb, the number of times it was found to be included in regions of local enrichment is shown, for 32 human and 44
mouse gene sets. The grey region indicates the region from position −300 to +300 where local enrichment was often found. (B) Human
enriched regions sorted by Z score of PhastCons scores of the TFBSs within each region. (C) Human enriched regions sorted by p-value of
enrichment of weak TFBSs within each region.
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TFBSs in locally enriched regions tend to have high
evolutionary conservation
Another illustration of the validity of our findings is the
relatively high evolutionary conservation of TFBSs
present within enriched regions, compared to nucleo-
tides within predicted TFBSs at the same position rela-
tive to TSSs of randomly sampled genes (Figure 3B; see
also Supplementary Methods section in Additional file 1).
Among the 154 enriched regions containing ≥ 10
TFBSs that were detected in the human GNF GeneAtlas
sets, 74 (48.0%; expected: 24.5; p-value: 1.1e-20) contain
TFBSs that are on average more conserved (Z score ≥ 1)
than randomly picked positions, while only 22 (14.3%)
contain sites that are on average less conserved
(Z score ≤ −1). Similarly, for mouse datasets, we found
92 out of 205 (44.9%; expected: 32.6; p-value: 1.2e-22)
regions with highly conserved sites, and only 23 (11.2%)
with low conservation (Additional file 1: Figure S5A). In
both human and mouse, the vast majority of the peaks
with high conservation were located proximal to the
TSS (data not shown). Among the relatively more
conserved sites are the predicted sites for YY1 in genes
specifically expressed in mouse thymus. The bases
corresponding to the 80 YY1 sites predicted in the
region −161 to +222 have an average PhastCons score
of 0.69 (expected: 0.38, SD: 0.04, Z-score: 8.1). Evolu-
tionary conservation was not only found on the level of
predicted TFBSs, but also on the level of predicted
regions of local enrichment, as illustrated in Figure 4 for
promoters of testis-specific genes. For the sites of PWMs
representing RFX1, RFX TFs in general, a CREB motif,
and Myb family TFs, similar regions of enrichment were
predicted in human and mouse sequences.

Locally enriched regions tend to be enriched for weak
TFBSs
Recently a number of studies, including computational
studies using thermodynamic models, have illustrated
the importance of weak TFBSs in the regulation of tran-
scription [33-35]. Although PWM scores are believed to
be correlated with the TF-DNA binding energy [36], the
sheer number of sites having only moderately high
PWM scores prohibits most computational methods
from analyzing them in more detail. One advantage our
approach offers is that we can restrict the region of
interest to the region preferred by the stronger TFBSs,
and evaluate if weaker binding sites show a similar local
enrichment (see Supplementary Methods section in
Additional file 1). Our analysis of weak TFBSs in the
enriched regions found in the human clusters shows that
42 out of 190 regions (22.1%) show a significant enrich-
ment (defined as p-value < 0.01) of weaker TFBSs
(Figure 3C). Similarly, in mouse datasets, 49 out of 269
regions (18.2%) were enriched for weak TFBSs (Additional
file 1: Figure S5). This result does not include the presence
of stronger TFBSs, nor weaker sites overlapping with them.



Table 3 Regions with local enrichment of TFBSs of ETS domain TFs

Species Tissues or cell types (cluster index) Region of enrichment:

x1 to x2 (h/2)

human T cells, NK cells (5) −141 to 51 (100)

human 721 B-lymphoblasts, BM CD34+ cells (11) −174 to 42 (100)

human 721 B-lymphoblasts, BM CD34+ cells (12) −151 to 37 (100)

human B cells, Burkitt's lymphoma (13) −148 to 23 (100)

human BM CD34+ cells, 721 B-lymphoblasts (14) −81 to 10 (50)

human NK cells, T cells (15) −97 to 34 (50)

mouse B cells, T cells (2) −106 to 17 (50)

mouse skeletal muscle, heart (4) −161 to 26 (100)

mouse thymus, ovary (6) −137 to 18 (100)

mouse testis (10) −133 to −58 (100)

mouse T cells, B cells (12) −133 to −98 (100)

mouse oocyte, fertilized egg (25) −139 to 42 (100)

mouse oocyte, fertilized egg (34) −240 to 34 (200)

mouse testis (35) −178 to 71 (200)

mouse oocyte, fertilized egg (37) −77 to −11 (50)

Region with local enrichment of ETS domain TF binding motifs were found in different sets of sequences. The species, and the tissues and cell types associated
with the promoters in which the motif was found are listed, as well as the regions of local enrichment.
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For example, promoters of genes expressed in human liver
are enriched for HNF1 TFBSs in the region −225 to +49.
Our analysis indicates that in addition to the 56 strong
HNF1 sites, there are 49 weak TFBSs predicted in the
region of local enrichment in the promoters in this set of
genes, (expected: 19.8 sites, p-value < 1e-4).

Application on sets of genes with differential expression
upon TLR stimulation
The regulatory pathways controlling Toll-like receptor
(TLR) signalling have been relatively well studied, and
main regulators such as NF-κB and IRFs have been iden-
tified. However, it is likely that promoters of genes that
are induced or repressed after TLR stimulation contain
additional regulatory motifs that are still to be identified.
From gene expression data taken from mouse DCs
stimulated with 5 TLR ligands [17], we prepared 18 clus-
ters of co-expressed genes. Applying our method to
these clusters, we could detect locally enriched regions
for the sites of CREB-binding TFs, NF-κB, and IRFs in
Figure 4 Similar regions of local enrichment were detected in
human and mouse promoters. For 4 regulatory motifs, enriched
regions predicted in mouse and in human genes with testis-specific
expression are shown.
clusters of transiently induced genes with peak expres-
sion around 2, 4, and 6 hrs after stimulation, respectively
(See Additional file 2: Table S11). These motifs could
also be found by standard motif over-representation
analysis. However, our approach also detected a local en-
richment for STAT binding sites in a cluster with
induced expression peaking around 6 hours after stimu-
lation [37], which could not be detected by the standard
approach. In addition, we could make a number of find-
ings that might offer hypotheses for further wet-lab
experiments. One is the enrichment of TATA box motifs
only in the set of promoters corresponding to genes with
the fastest transient activation (peak induction at 2 hrs),
which suggests that the TATA box plays a role in the
rapid induction of these genes. Finally, a number of
enriched regions downstream of the TSS were predicted.
These include regions enriched in sites for Hmx3 (tran-
siently induced, 2 hrs), RFX1 sites (transiently induced,
8 hrs), Mtf1 (late induction, 24 hrs), Zfp161 and E-box
motifs (transiently repressed, 6–8 hrs).
Conclusions
Although various studies have illustrated that in
eukaryotic genomes cis-regulatory motifs can be posi-
tioned several kilobases or even megabases away from
their target genes, it has also been reported that in a
number of cases TFBSs show a tendency to be present
at a more or less fixed distance with regard to the TSS.
Nevertheless, in general, no clear positional preferences
have been described for most regulatory motifs, even
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though such information could be extremely useful for
their prediction.
Here, we present a novel method for detecting locally

enriched TFBSs in the regulatory regions of sets of co-
regulated genes. Our approach is based on a non-
parametric approach for sample density estimation, with
adjustments which allow it to detect sequence regions
that have a significant local enrichment in TFBSs, on a
1 bp resolution. An online tool of our approach, which
we call LocaMo Finder (Local Motif Finder), is available
at http://sysimm.ifrec.osaka-u.ac.jp/tfbs/locamo/. Our ap-
proach evaluates both positioning and enrichment of
TFBSs simultaneously, using a set of control sequences
as a reference. We implemented our method for the esti-
mation of significance of enrichment in a way that takes
into account GC content profiles of the input set of pro-
moter sequences. Evaluation of significance is done
against randomly selected promoters that have GC con-
tent profiles similar to the input sequences. We showed
how our approach has a high accuracy compared to
other methods and measures for local and global motif
enrichment.
We applied our method on a large number of sets of

genes with tissue- or cell type-specific expression, as well
as on a number of sets of genes with similar expression
profiles after TLR ligand stimulation in mouse DCs.
Detected regions of local enrichment of TFBSs are sup-
ported by known regulatory interactions reported in
literature, as well as by the observation that several regu-
latory motifs are found to be locally enriched in similar
regions in different sets of promoters. In addition,
detected regions tend to contain TFBSs with higher evo-
lutionary conservation than expected, and they also tend
to be enriched for weak TFBSs. Together, these results
illustrated the usefulness and validity of our approach.
Approaches for finding local enrichment of TFBSs

heavily rely on TSS annotations. Recent studies have
shown that a large fraction of genes have several TSSs,
and that different TSSs might allow different amounts of
variation in the bases from which transcription is
initiated [38,39]. Future approaches that incorporate
such features are likely to present more biological
insights into the relationship between TFBS positioning
and transcription initiation and TSS variability.

Additional files

Additional file 1: Supplementary text and figures. A file containing
supplementary material, including detailed description of methods and
results, as well as supplementary figures and tables.

Additional file 2: Supplementary Tables S5, S6, and S11. A
spreadsheet file containing predicted regions of local enrichment and
globally enriched TFBS motifs for human and mouse GNF GeneAtlas
datasets, and for the sets of promoters obtained from TLR-stimulated
mouse DC cells.
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