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supertwist deformations of Poincaré and Euclidean superalgebras. We consider in detail

new family of four supertwists of N = 1 Poincaré superalgebra and provide as well their
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1 Introduction

Basic theories of fundamental interactions (string theory, M -theory) are supersymmetric

and the framework of quantum deformations for relativistic systems should be supersym-

metrically extended. In this paper we shall describe the deformations of D = 4 Poincare

and Euclidean supersymmetries and provide new models of deformed chiral superspace,

realized by twist quantization procedure.

There were considered two ways of embedding the noncommutative (super)space alge-

bras into the (super)symmetry framework, which were further used for the formulation of

deformed dynamical theories:

(a) One postulates as a basic notion the noncommutative structures of deformed (su-

per)space coordinates, and subsequently one defines corresponding star products rep-

resenting the multiplication of deformed (super)fields. In such a scheme one keeps

unchanged the standard (super)Poincaré symmetries, and noncommutativity is in-

terpreted as introducing the breaking of standard relativistic (super)symmetries (see

e.g. [1–3] for non-SUSY and [4–8] for SUSY case). In such a framework the simplest

N = 1
2 supersymmetric deformation was proposed by Seiberg [4].

(b) One introduces the star product describing the noncommutative structure of the (su-

per)space as derived from quantum-deformed Poincaré–Hopf (super)algebra. If the

quantum symmetry is generated by a twist factor, it provides explicit definition of the

star multiplication [9]–[14]. In such framework the primary notion defining the choice

of deformation is given by quantum Poincaré–Hopf (super)algebra. In particular in

the case of triangular deformation, only the coalgebra is modified by the twist factor
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F via a similarity transformation.1 In such formulation the algebraic relations de-

scribing noncommutativity structure of Minkowski (super)space are by construction

covariant under the transformations of quantum (super)Poincaré group. We stress

that if the deformation of standard relativistic (super)symmetry is obtained by (su-

per)twist factor then the whole deformation is located in the coalgebra sector and the

classical Lie (super) algebras describing spacetime (super)symmetry are not modified.

In this paper we shall employ the second approach with primary notion of quantum

Hopf-algebraic (super)symmetries. For chosen supertwists which should be generated from

classical supersymmetric r-matrices we derive star-multiplication rules as well the noncom-

mutativity relations for (super)space coordinates. Firstly we shall study the classification of

superextensions of the classical r-matrices respectively for the Poincaré Lie algebra and its

Euclidean counterpart. It appears that due to different reality conditions for Lorentz and

o(4) spinors the superextensions are consistent either for Minkowski or for Euclidean metric.

Let us recall firstly the twist deformation of relativistic symmetries. If we provide a

twist function F ∈ U(P(3, 1)) ⊗ U(P(3, 1)) (where P(3, 1) is Poincaré Lie algebra) both

the deformed Poincaré symmetries and quantum deformations of spacetime coordinates are

uniquely determined. The basic example of a twisted Poincaré deformation is provided by

the canonical (Moyal-Weyl) twist [9]–[12] which preserves the constant values of the com-

mutator of noncommutative Minkowski coordinates (for examples of other Poincaré twists

providing more general covariant noncommutative space-times see e.g. [17]). We add that

twisting of Poincaré symmetries was used for obtaining the quantum covariant formulation

of noncommutative field theories (see e.g. [9, 10, 18, 19]) as well as of noncommutative

gravity (see e.g. [20]).

Analogously, in supersymmetric relativistic theories the supertwist function F with

values in graded tensor product U(P(3, 1|1))⊗ U(P(3, 1|1)) (where P(3, 1|1) is the N = 1

Poincaré Lie superalgebra) defines the deformed Poincaré–Hopf supersymmetries as well

as covariant quantum deformation of superspace. The technique of twisted Poincaré super-

symmetry extending to SUSY theories the results of [11, 12] has been already studied for

Minkowski (see e.g. [21, 22]) as well as for Euclidean (see e.g. [23]–[26]) supersymmetry.2

Following the classification of D = 4 Poincaré deformations by the classical r-

matrices [33] we shall study their Euclidean counterpart and further the supersymmetric

extensions of Poincaré and Euclidean cases. The aim and novelty of our approach is:

1If we permit the twists satisfying the cocycle condition modified by nontrivial co-associator Φ, it was

argued by Drinfeld ([15]; see also [16]) that any quantum deformation of Poincaré (super)algebra can be

represented by (super)twist in the framework of quasi-Hopf algebras. Here we shall consider standard

framework of quantum groups with twists satisfying standard two-cocycle condition.
2We observe that in Minkowski case there were often used in field theoretic applications nonstandard

twists which are not spanned by the generators of Poincaré superalgebra (see e.g. [27]–[30]). In particular

there was employed a twist factor defined as function of the odd covariant derivatives in the superspace (see

e.g. [31, 32]) which do anticommute with supercharges and extend the basis of Poincaré superalgebra by

graded Abelian algebra. We shall restrict in this paper to standard supertwists of Drinfeld type, depending

only on the Poincaré superalgebra generators.
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(i) to show that in view of the known list for classical Poincaré r-matrices presented

in [33] one can find corresponding list of D = 4 Euclidean r-matrices,

(ii) to consider the consistency of superextensions of classical o(3, 1) and o(4) r-

matrices with reality conditions defining respectively the Poincaré and Euclidean

superalgebras,

(iii) to supersymmetrize twist deformations which provide the Lie-algebraic deformations

of the space-time coordinates,

(iv) to demonstrate that in the framework of twisted Euclidean superalgebras one can

obtain also N = 1
2 superspace deformation proposed by Seiberg [4] however with the

deformed superspace algebra covariant under quantum Euclidean supersymmetries.

The plan of the paper is the following. In section 2 we shall consider N = 1 Poincaré

and Euclidean superalgebras and describe Minkowski and Euclidean reality structures

based respectively on conjugation and pseudoconjugation in a fermionic sector. In section

3 we firstly introduce Euclidean counterpart of D = 4 Poincaré classical r-matrices and

then we classify their corresponding supersymmetric Poincaré and Euclidean classical

r-matrices. Further, in section 4 we recall the standard Moyal-Weyl twist deformation of

a space-time and present new four Euclidean supertwists which provide in bosonic sector

the Lie-algebraic deformations of the spacetime. In section 5 we shall present in Euclidean

case the corresponding N = 1
2 SUSY deformation of Euclidean chiral superspace. We

get the first examples of deformations of Euclidean superspace coordinates containing the

Lie-algebraic deformation in its even space-time sector. In our case due to twist deforma-

tion only the half of odd coalgebra relations are deformed and in alternative deformation

scheme of Seiberg [4] only the algebraic sector is changed, with modified anticommutativity

of antichiral supercharges. In section 6 we shall present conclusion and outlook.

2 D = 4 Poincaré and Euclidean superalgebras

Real Poincaré (Euclidean) Lie algebra P(3, 1) = o(3, 1)⋉P (E(4) = o(4)⋉P) is generated

by the Poincaré (Euclidean) fourmomenta3 Pµ ∈ P (µ = 0, 1, 2, 3), and the six Lorentz

(Euclidean) rotations Lµν ∈ o(3, 1) (Lµν ∈ o(4)) (µ, ν = 0, 1, 2, 3) satisfying the standard

relations:

[Lµν , Lλρ] = i
(

gνλ Lµρ − gνρ Lµλ + gµρ Lνλ − gµλ Lνρ

)

, Lµν = −Lνµ ,

[Lµν , Pρ] = i
(

gνρ Pµ − gµρ Pν

)

, [Pµ, Pν ] = 0 ,

(2.1)

where the metric gµν is given by (gµν) = (gPµν) = diag (1,−1,−1,−1) for the Poincaré case

((gµν) = (gEµν) = diag (−1,−1,−1,−1) for the Euclidean case) and the reality conditions

imposed:

L∗
µν = Lµν , P ∗

µ = Pµ . (2.2)

3In order to shorten our presentation we denote in the same way the tensorial indexes of Poincaré and

Euclidean generators. In conventional notation our Euclidean tensorial index “0” is denoted as the index “4”.
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Here the ∗-antiinvolution is represented by Hermitian conjugation.4

N = 1 Poincaré (Euclidean) superalgebra P(3, 1|1) (E(4|1)) is generated by the

Poincaré (Euclidean) algebra P(3, 1) (E(4)) and the four complex spinor generators Qα

and Q̄α̇ (α = 1, 2; α̇ = 1̇, 2̇) satisfying the following relations:5

{Qα, Qβ} = {Q̄α̇, Q̄β̇
} = 0, {Qα, Q̄β̇

} = 2(σµ)
αβ̇

Pµ ,

[Lµν , Qα] = −(σµν)
β
α Qβ , [Lµν , Q̄α̇] = Q̄

β̇
(σ̄µν)

β̇
α̇ ,

[Pµ, Qα] = 0 , [Pµ, Q̄α̇] = 0 ,

(2.3)

where by using the ordinary Pauli matrices σi (i = 1, 2, 3) one sets: σµ = (I2, σ
i) and

σ̄µ = (I2,−σi) for the Poincaré case and σµ = (iI2, σ
i) and σ̄µ = (iI2, −σi) for the

Euclidean case. Following typical spinorial notation one reads (σµ)
αβ̇

and (σ̄µ)α̇β; the

matrices σµν = i
4(σµσ̄ν − σν σ̄µ) and σ̄µν = i

4(σ̄µσν − σ̄νσµ) are the generators of D = 4

Lorentz and Euclidean algebras given in two fundamental two-dimensional spinorial

representations. Moreover the antiinvolutions (∗) in (2.2) are lifted from Poincaré and

Euclidean Lie algebras to their superextensions as follows:

Q∗
α = Q̄α̇, Q̄∗

α̇ = Qα for P(3, 1|1) , (2.4)

Q∗
α = εαβQβ , Q̄∗

α̇ = ε
α̇β̇

Q̄
β̇

for E(4|1) , (2.5)

where εαα = εα̇α̇ = 0, ε12 = −ε21 = −ε1̇2̇ = ε2̇1̇ = 1. It should be noted that antiinvolution

(∗) in (2.4) is the antilinear antiautomorphism of second order (conjugation) (x∗)∗ = x for

∀x ∈ P(3, 1|1) and it reduces by half the number of independent Poincaré supercharges.

The constraints (2.4) together with (2.2) define the reality condition for N = 1 Poincaré

superalgebra. The star operation (∗) in the fermionic sector of the supercharges (2.3) for

the Euclidean superalgebra, due to the relation (εαβ)
2 = (ε

α̇β̇
)2 = −I2, is the antilinear

antiautomorphism of fourth order called pseudoconjugation (for fermionic generators

(Q∗)∗ = −Q) and two pairs of Euclidean supercharges Qα and Q̄α̇ should be treated

as independent. In particular, the pseudoconjugation (2.5) can not be implemented by

Hermitian conjugation in Hilbert space.

We will also use below so(3) physical basis in the Lie algebras o(3, 1) and o(4).

Namely, we put

Mi := ǫijkLjk , Ni := L0i (i, j = 1, 2, 3). (2.6)

4Physical Poincaré P(3, 1) and Euclidean E(4) Lie algebras can be defined as two real forms of complex

inhomogeneous algebra IO(4;C) = O(4;C)⋉PC where PC denotes complex four-translations.
5Again in order to have a compact presentation we did adjust the notation in Euclidean superalgebra case

to the standard formulation of N = 1 Poincaré superalgebra. In Euclidean case due to the spinorial covering

O(4) = SUL(2)⊗SUR(2) the supercharges Qα and Q̄α̇ are two independent SUL(2) and SUL(2) spinors. In

a transparent notation the Euclidean supercharges (Qα, Q̄α̇) can be denoted as in [34] by (Qα;, Q̄;α̇ = Q;α).
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In the terms of these elements the defining relations (2.1), (2.3) for P(3, 1|1) and E(4|1)

take the form for the bosonic sector

[Mi, Mj ] = iεijkMk , [Mi, Nj ] = iεijkNk , [Ni, Nj ] = ξiεijkMk,

[Mi, Pj ] = iεijkPk , [Mi, P0] = 0 , [Ni, Pj ] = −iδij P0 ,

[Ni, P0] = ξiPi , [Pµ, Pν ] = 0 ,

(2.7)

where now parameter ξ distinguishes the Euclidean (Poincaré) cases ξ = 1 (ξ = −1) and

for fermionic sector

{Qα, Qβ} = {Q̄α̇, Q̄β̇
} = 0, {Qα, Q̄β̇

} = 2(σµ)
αβ̇

Pµ ,

[Mi, Qα] = −
1

2
(σi) β

α Qβ , [Ni, Qα] = χ
1

2
(σi) β

α Qβ ,

[Mi, Q̄α̇] =
1

2
Q̄

β̇
(σi)βα , [Ni, Q̄α̇] = χ

1

2
Q̄

β̇
(σi)βα ,

[Pµ, Qα] = [Pµ, Q̄α̇] = 0 ,

(2.8)

where χ = 1 for the super-Euclidean case and χ = −i for the super-Poincaré case. It is

well-known that we can pass in the relations (2.7), (2.8) from the super-Poincaré to the

super-Euclidean case by the replacement

Pi → Pi , P0 → iP0 , Mi → Mi , Ni → iNi . (2.9)

The replacement (2.9) can be justified by the change x0 → ix0 of physical real time

(Poincare case) into the purely imaginary Euclidean time.

3 Classical r-matrices of N = 1 Poincaré and Euclidean superalgebras

In this paper we will use for construction of covariant deformations of the super-Minkowski

and super-Euclidean space-time the quantum deformations obtained by twist factors of the

corresponding superalgebras. Such quantum deformations are classified by the classical

supersymmetric r-matrices. Since the considered superalgebras contain the Poincaré and

Euclidean Lie algebras as subalgebras we shall firstly consider the classical r-matrices for

these Lie algebras.

(1) Non-supersymmetric case. For the Poincaré algebra the classical r-matrices were

almost completely classified already some time ago by S. Zakrzewski in [35] for the Lorentz

algebra and in [33] for the Poincaré algebra. We shall briefly remind these results.

It was shown in [33] that each classical r-matrix, r ∈ P(3, 1) ∧ P(3, 1), has a

decomposition

r = a+ b+ c , (3.1)
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c b a # N

γh′ ∧ h 0 αP+ ∧ P− + α̃P1 ∧ P2 2 1

γe′+ ∧ e+ β1bP+
+ β2P+ ∧ h′ 0 1 2

β1bP+
αP+ ∧ P1 1 3

γβ1(P1 ∧ e+ + P2 ∧ e′+) P+ ∧ (α1P1+ α2P2)− γβ2
1P1 ∧ P2 2 4

γ(h ∧ e+

−h′ ∧ e′+) 0 0 1 5

+γ1e
′

+ ∧ e+

γh ∧ e+ β1bP2
+ β2P2 ∧ e+ 0 1 6

0 β1bP+
+ β2P+ ∧ h′ 0 1 7

β1bP+
+ β2P+ ∧ e+ 0 1 8

P1 ∧ (β1e+ + β2e
′

+)+ αP+ ∧ P2 2 9

β1P+ ∧ (h+ σe+), σ = 0,±1

β1(P1 ∧ e′+ + P+ ∧ e+) α1P− ∧ P1 + α2P+ ∧ P2 2 10

β1P2 ∧ e+ α1P+ ∧ P1 + α2P− ∧ P2 1 11

β1P+ ∧ e+ P−∧ (αP++α1P1+α2P2)+ α̃P+∧ P2 3 12

β1P0 ∧ h′ α1P0 ∧ P3 + α2P1 ∧ P2 2 13

β1P3 ∧ h′ α1P0 ∧ P3 + α2P1 ∧ P2 2 14

β1P+ ∧ h′ α1P0 ∧ P3 + α2P1 ∧ P2 1 15

β1P1 ∧ h α1P0 ∧ P3 + α2P1 ∧ P2 2 16

β1P+ ∧ h αP1 ∧ P2 + α1P+ ∧ P1 1 17

P+ ∧ (β1h+ β2h
′) α1P1 ∧ P2 1 18

0 α1P1 ∧ P+ 0 19

α1P1 ∧ P2 0 20

α1P0 ∧ P3 + α2P1 ∧ P2 1 21

Table 1. Classification of classical r-matrices for D = 4 Poincaré algebra (see [33]).

where a ∈ P ∧ P, b ∈ P ∧ o(3, 1), c ∈ o(3, 1) ∧ o(3, 1). The terms a, b, c of r satisfy the

following relations:

[[c, c]] = 0 ,

[[b, c]] = 0 ,

2[[a, c]] + [[b, b]] = tΩ (t ∈ R, Ω 6= 0) ,

[[a, b]] = 0 ,

(3.2)

where [[·, ·]] means the Schouten bracket, and Ω is g-invariant element, Ω ∈ (
3
∧ g)g

(g = P(3, 1)). A complete list of the classical r-matrices was found for the case c 6= 0 and

as well for the case c = 0, t = 0; classification of the r-matrices for the case c = 0, t 6= 0

– 6 –
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is still not complete. The results of [33] are presented in table 1, where P± = P0 ± P3 and

bP+
, bP2

are given by the expressions:

bP+
= P1 ∧ e+ − P2 ∧ e′+ + P+ ∧ h ,

bP2
= 2P1 ∧ h′ + P− ∧ e′+ − P+ ∧ e′− .

(3.3)

The generators e±, h, e
′
±, h

′ in table 1 describe the canonical (mathematical) basis of the

Lorentz Lie algebra o(3, 1) which is obtained by realification of sl(2,C) (see [33, 36]) and

satisfy the following non-vanishing commutation relations:

[h, e±] = ±e± , [e+, e−] = 2h ,

[h, e′±] = ±e′± , [h′, e±] = ±e′± , [e±, e
′
∓] = ±2h′ ,

[h′, e′±] = ∓e± , [e′+, e
′
−] = −2h .

(3.4)

Table 1 lists 21 cases labeled by the number N in the last column. The forth column

(labeled by #) indicates a maximal number of independent parameters defining defor-

mations. This number is in all cases smaller than the number of parameters actually

used in the table 1. Following [37], we introduced an additional parameter γ in the

component c (in the cases N = 2, . . . , 6), a parameter β1 in the component b (in the cases

N = 7, . . . , 18) and a parameter α1 in the component a (in the cases N = 19, 20, 21).6 The

maximal numbers of independent parameters can be calculated using of automorphisms

of the Poincaré algebra P(3, 1) (for details see [33]).

Important point in our consideration is the property that the relations (3.4) can de-

scribe Lorentz o(3, 1) as well as the Euclidean o(4) algebra.

The canonical generators h, h′, e±, e
′
± are related with the physical genera-

tors (2.6), (2.7) of the Lorentz and Euclidean algebra by the relations:

h = χN3 , e± = (χN1 ± iM2) ,

h′ = iM3 , e′± = (iM1 ∓ χN2) .
(3.5)

where as before χ = −i for Lorentz algebra o(3, 1), and χ = 1 for Euclidean o(4). It follows

from (3.5) that in Poincaré case the canonical basis is anti-Hermitian, i.e.

x∗ = −x (∀x ∈ {e±, h, e
′
±, h

′}) , (3.6)

but the generators (3.5) for the Euclidean case have different reality properties with respect

to the conjugation (2.2) in o(4), namely

e∗± = e∓ , h∗ = h , e′±
∗ = −e′∓ h′∗ = −h′ , . (3.7)

If we introduce in the Poincaré case all the four-momenta generators P1, P2, P± anti-

Hermitian (purely imaginary), we see that all the classical r-matrices with real deformation

6In the original paper by S. Zakrzewski [33] all these additional parameters are equal to 1, therefore we

should assume in table 1 that they are not equal to zero.

– 7 –



J
H
E
P
0
6
(
2
0
1
2
)
1
5
4

parameters in table 1 for the Poincaré Lie algebra are Hermitian (r∗ = r).

It should be noted that for all (but N = 6, 12) classical r-matrices7 of table 1 corresponding

quantum deformations of P(3, 1), described by twists, were constructed in [37].

It appears however that table 1 can be used as well for Euclidean Lie algebra because all

r-matrices of table 1 are the classical r-matrices for complexified E(4). Indeed, if we replace

in the formulas (3.5) generatorsMi and Ni of o(3, 1) by the generators of o(4) and put χ = 1

then the new generators will satisfy the same relations (3.4). Moreover the commutation re-

lations of the rotation generators with the four momenta Pµ also remain unchanged if we re-

place P± = P0±P3 for Lorentzian metric by P± = iP0±P3 for (compare for (2.9)) Euclidean

one. Therefore all the r-matrices of table 1 will satisfy the classical Yang-Baxter equation

in Euclidean case however due to complex values of P± and the reality constraints (3.7)

(complex e± and e′±) we observe that only six classical r-matrices from table 1 with N =

1, 13, 14, 16, 20, 21 describe in Euclidean case the Hermitian classical r-matrices. Additional

two Euclidean real classical r-matrices can be described by the formulae from table 1 with

N = 15 and N = 19 provided we keep the formula P± = P0±P3 as well in Euclidean case.

(2) Supersymmetric case. Firstly we observe that all classical o(3, 1) (o(4)) r-matrices

satisfying homogeneous YBE are as well the r-matrices for the Poincaré (Euclidean)

super-algebra and the corresponding twists of the bosonic subalgebra can be used for the

deformation of full superalgebra. Further we shall be interested in the supersymmetric

extension of classical r-matrices of the super-Poincaré algebra P(3, 1|1), which contain

the supercharges Qα (α = 1, 2) and Q̄α̇ (α̇ = 1̇, 2̇) and will consider also their Euclidean

counterparts. It should be noted that there is not known any classification of such

r-matrices in spirit of the classification done by S. Zakrzewski. It turns out however

that by explicit calculations it is possible to extend the Zakrzewski’s classification to the

Poincaré and Euclidean superalgebras by an addition of terms depending on supercharges.

The superextensions of Zakrzewski’s r-matrices before taking into account the real

structures (2.4), (2.5) are presented in table 2.

These supersymmetric r-matrices can be presented as a sum of subordinated

r-matrices which are of super-Abelian and super-Jordanian types. The subordination

enables us to construct a correct sequence of quantizations and to obtain the corresponding

twists describing the quantum deformations. These twists are in general case complex

super-extensions of the twists obtained in [37].

Let us now select out of the supersymmetric r-matrices rsusy from table 2

rsusy = r + s = a+ b+ c+ s

the ones that are self-conjugate respectively under the Poincaré conjugation (see (2.2)

and (2.4)) and Euclidean pseudo-conjugation (see (2.2) and (2.5)).

(i) Real classical super-Poincaré r-matrices. Following [33], all classical Poincaré

r-matrices from table 1 are real (Hermitian). It appears however that only seven out of 21

7It should be noted that in the paper [33] there is a misprint for the case N = 12 which is corrected here.
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c b a s N

γh′ ∧ h 0 αP+ ∧ P−+ α̃P1 ∧ P2 ηQ2 ∧Q1 1

γe′+ ∧ e+ β1bP+
+ β2P+ ∧ h′ 0 β1Q̄1̇ ∧Q1 2

β1bP+
αP+ ∧ P1 β1Q̄1̇∧Q1+ηQ1∧Q1 3

γβ1(P1 ∧ e+ + P2 ∧ e′+) P+ ∧ (α1P1+ α2P2) ηQ1 ∧Q1 4

−γβ2
1P1 ∧ P2

γ(h ∧ e+

−h′ ∧ e′+) 0 0 0 5

+γ1e
′
+ ∧ e+

γh ∧ e+ β1bP2
+ β2P2 ∧ e+ 0 iβ1(Q1 + Q̄1̇) ∧ (Q2 − Q̄2̇) 6

0 β1bP+
+ β2P+ ∧ h′ 0 β1Q̄1̇ ∧Q1 7

β1bP+
+ β2P+ ∧ e+ 0 β1Q̄1̇∧Q1+ηQ1∧Q1 8

P1 ∧ (β1e+ + β2e
′
+)+ αP+ ∧ P2 β1Q̄1̇∧Q1+ηQ1∧Q1 9

β1P+∧(h+χe+), χ = 0,±1

β1(P1 ∧ e′+ + P+ ∧ e+) α1P− ∧ P1 + α2P+ ∧ P2 ηQ1 ∧Q1 10

β1P2 ∧ e+ α1P+ ∧ P1 + α2P− ∧ P2 ηQ1 ∧Q1 11

β1P+ ∧ e+ P−∧ (αP++α1P1)+ ηQ1 ∧Q1 12

α̃P+∧ P2

β1P0 ∧ h′ α1P0 ∧ P3 + α2P1 ∧ P2 ηQ2 ∧Q1 13

β1P3 ∧ h′ α1P0 ∧ P3 + α2P1 ∧ P2 ηQ2 ∧Q1 14

β1P+ ∧ h′ α1P0 ∧ P3 + α2P1 ∧ P2 ηQ2 ∧Q1 15

β1P1 ∧ h α1P0 ∧ P3 + α2P1 ∧ P2 ηQ2∧Q1 16

β1P+ ∧ h α2P1 ∧ P2 + α1P+ ∧ P1 β1Q̄1̇∧Q1+ηQ1∧Q1 17

P+ ∧ (β1h+ β2h
′) α2P1 ∧ P2 ηQ2 ∧Q1 18

0 α1P1 ∧ P+ ηαβQα ∧Qβ 19

α2P1 ∧ P2 ηαβQα ∧Qβ 20

α1P0 ∧ P3 + α2P1 ∧ P2 ηαβQα ∧Qβ 21

Table 2. Supersymmetric extension of the classical r-matrices from table 1.

cases are real after supersymmetrization, namely

1). N = 2 , 2). N = 3 for η = 0 , 3). N = 6 ,

4). N = 7 , 5). N = 8, 9 for η = 0 , 6). N = 17 for η = 0 .
(3.8)

(ii) Real (self-conjugate) classical super-Euclidean r-matrices. Let us observe

firstly that only 8 out of 21 cases (N = 1, 13−16, 19−21) listed in the table 1 describe real

classical Euclidean r-matrices. Out of them the following ones provide self-pseudoconjugate

super-Euclidean r-matrices:

1). N = 1 , 2). N = 13− 16 (with P+ = P0 + P3 for N = 15) ,

3). N = 19− 21 (with P+ = P0 + P3 for N = 19) .
(3.9)

The cases N = 13−16 will be considered separately more in details below. The cases N =

19 − 21 describe three basic superextension of the canonical (Moyal-Weyl) deformations

which were considered by several authors [21]–[23].

Finally we would like to mention that our classification technique of Euclidean r-

matrices and corresponding supersymmetric r-matrices has one limitation: it is obtained by
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the ”Euclideization” of the Zakrzewski table 1 for Poincaré r-matrices. It is however quite

possible that there are Euclidean r-matrices with self-pseudoconjugate supersymmetric

extension which are not corresponding to the r-matrices presented in table 1.

4 Twist deformations of (super)space-time

(1) Twisted deformations of Poincaré and Euclidean algebras and deformed

Minkowski and Euclidean space-times. Let us consider firstly non-supersymmetric

cases. At the beginning of this section the Poincaré and Euclidean cases will be simulta-

neously analyzed and therefore we introduce the following unified denotations: deformed

Poincaré algebra and Minkowski space-time are denoted by Uκ(A1) := Uκ(P(3, 1)) and

Uκ(V1) := Uκ(M(3, 1)); analogously deformed Euclidean algebra and Euclidean space-

time are denoted by Uκ(A2) := Uκ(E(4)) and Uκ(V2) := Uκ(E(4)), where κ describes the

mass-like deformation parameter.

Most of the deformed space-times considered in the literature can be described by

constant and linear values of the commutator of quantum space-time variables x̂µ ∈ Vi

(µ = 0, 1, 2, 3; i = 1, 2):

[x̂µ, x̂ν ] =
i

κ2
Θµν(κx̂) =

i

κ2

(

ϑµν + κϑµν
λ x̂λ + . . .

)

(4.1)

where the tensor Θµν(κx̂)} is determined by the dimensionless set of constant parameter

{ϑµν}, {ϑµν
λ }, etc. A large class of deformations (4.1) can be interpreted as covariant under

twisted Ai symmetries. If Θµν(κx̂) = Θµν(0) ≡ ϑµν (a case of the simplest canonical or

Moyal-Weyl deformation) the corresponding Abelian twist is the following [9]–[12]

F0 = exp

(

i

2κ2
ϑµν Pµ ∧ Pν

)

. (4.2)

The quantum-deformed Hopf algebra Ûκ(Ai) acts on the enveloping algebra Uκ(Vi) of the

corresponding quantum-deformed spacetime (see (4.1)) as its representation (Hopf-algebra

module). If ĝ ∈ Uκ(Ai) and x̂, ŷ ∈ Uκ(Vi)) the Hopf algebraic action has the property

ĝ ⊲ (x̂ŷ) = (ĝ(1) ⊲ x̂)(ĝ(2) ⊲ ŷ) , (4.3)

where we use the standard Sweedler’s notation ∆(ĝ) = ĝ(1) ⊗ ĝ(2). The deformation of

classical Hopf algebra Û(Ai) by twist F does not modify the algebraic sector described

by (2.1) but it changes the primitive coproduct ∆0(ĝ) = ĝ ⊗ 1 + 1 ⊗ ĝ (ĝ ∈ Ai) and

antipode S0(ĝ) = −ĝ as follows [15]:

∆(F )(ĝ) = F∆0(ĝ)F
−1, SF (ĝ) = uS0(ĝ)u

−1, (4.4)

where u = F(1)S0(F(2)) for F = F(1) ⊗ F(2).

If the algebra (4.1) is associated with twisted Ai-symmetries defined by a twist F

the multiplication of noncommutative coordinates x̂µ can be isomorphically represented by

suitable star multiplication of the commuting classical coordinates

f(x̂)ϕ(x̂)
W
−→ f(x) ⋆ ϕ(x) ⇒ x̂µx̂ν

W
−→ xµ ⋆ xν , (4.5)
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where W denotes the Weyl map, defined for the twist factor F by the formula (see [9]–[13])

f(x) ⋆ ϕ(x) = f(x) ⋆F ϕ(x) := m
(

F−1 ⊲
(

f(x)⊗ ϕ(x)
)

)

⇒

xµ ⋆ xν = xµ ⋆F xν = m
(

F−1 ⊲ (xµ ⊗ xν)
)

,
(4.6)

If we insert F = F0 (see (4.2)) one obtains the relation (4.1) with Θµν(κx̂) = ϑµν

[xµ, xν ]⋆
F0

≡ xµ ⋆F0
xν − xν ⋆F0

xµ =
ı

κ2
ϑµν . (4.7)

The last relation is quantum-covariant, i.e. one can show using (4.3) and (4.4) that

ĝ ⊲
(

[xµ, xν ]⋆
F
0

−
i

κ2
ϑµν

)

= 0 (4.8)

where ĝ ∈ Uκ(Ai) and the action of symmetry generators is obtained in the ⋆-product

realization.

In this paper we shall consider other family of Abelian Poincaré (Euclidean) twists

which are described by the following general formula

F = F1F0 = exp

(

i

2κ
ϑµνλ Lµν ∧ Pλ

)

exp

(

i

2κ2
ϑµν Pµ ∧ Pν

)

. (4.9)

It follows from the paper [37] (see table 1 N = 13 − 16) there are four inequivalent (i.e.

modulo a Poincaré transformations) Abelian Poincaré twists of this type which in terms

of the generators (2.6) are defined as follows:

Fa = F1a F0 = exp (iβM3 ∧ P0)F0 ,

Fb = F1b F0 = exp (iβM3 ∧ P3)F0 ,

Fc = F1c F0 = exp (iβM3 ∧ P+)F0 ,

Fd = F1d F0 = exp (iβN3 ∧ P1)F0 ,

(4.10)

where P+ := P0 + P3 and the fourmomentum-dependent factor F0 (the same for all four

formulas) is given by8

F0 = exp
(

iα1P3 ∧ P0 + iα2P2 ∧ P1

)

. (4.11)

(2) The examples of twisted deformations of Euclidean superspaces. It follows

from section 3 that four classical r-matrices (see table 2, N = 13 − 16) as well as the

corresponding twists (4.10) are valid for both cases of Poincaré and Euclidean symmetries

(with the formula P+ = P0 + P3 valid also in Euclidean case). In this paper we shall

describe more in detail the supersymmetric extension of four twists (4.10) (other examples

of super-Poincaré were considered in [36]). We shall provide the algebraic structure of the

corresponding deformed chiral superspaces.

8It corresponds to particular choice of the parameter ϑµν in (4.2).
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The r-matrices generating of the twists (4.10) are given by the following formulas:

rw = r1w + r0 (w = a, b, c, d) , (4.12)

where the indices w = (a, b, c, d) label four twists Fω,

r1a = β P0 ∧M3 , r1b = β P3 ∧M3 ,

r1c = β P+ ∧M3 , r1d = β P1 ∧N3 ,

r0 = α1P0 ∧ P3 + α2P1 ∧ P2 .

(4.13)

From table 2 we get the following formulae for the supersymmetric extension rws of the

classical r-matrices rw and the corresponding supertwists Fws:
9

rws = rw + rs = r1w + r0 + rs (w = a, b, c, d) , (4.14)

Fws = F1w F0 Fs = exp

(

i

κ
r̃1w

)

exp

(

i

κ2
r̃0

)

exp

(

i

κ
r̃s

)

, (4.15)

where r̃w = −rw and the term r̃s = rs describing supersymmetric extension is given as

follows

rs = η Q2 ∧Q1 = η(Q2 ⊗Q1 +Q1 ⊗Q2) (4.16)

and η is a deformation parameter.

The super-term Fs in (4.15) for any value of η is not invariant under the involu-

tion (2.4) characterizing the Poincaré superalgebra, and leads to the co-product, which

does not satisfy the condition

(∆(F )(g))∗ = ∆(F )(g∗) . (4.17)

Consequently the deformed chiral (Qα) and antichiral (Q̄α̇) supercharges will not be

complex conjugate to each other. Fortunately, if we consider the Euclidean case and

corresponding pseudoconjugation (2.5) then for real η we obtain the following invariance

relation for r-matrices rs (as well as rws)

r∗s = η Q∗
2 ∧Q∗

1 = rs (4.18)

expressing its the pseudoreality property. Furthermore the super-twist Fws will be

(pseudo)unitary

(Fws)
∗ = F−1

ws , (4.19)

where the pseudoconjugation (2.5) is used. It can be shown that the new deformed

co-product ∆(F) := Fws∆0F
−1
ws satisfies the relation (4.17). We see therefore that if we

discard the possibility of doubling of the number of supercharges in the deformation

procedure the twist deformations generated by the super-twists (4.15) should be only

applied in the Euclidean case (not for Poincaré superalgebra).

9It should be stressed that the order of factors in the formula (4.15) is important, because the Abelian r-

matrices r1w and r1w+rs are subordinate. One say that r2 is subordinated to r1, r1 ≻ r2, if [x⊗1+1⊗x, r1] =

0 (∀x ∈ Sup(r2)), where Sup(r2) is a support of r2 (see [37] for details).
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5 Twist-deformed Euclidean chiral superspace

In order to obtain the ⋆-products (and also ⋆-commutators) of the superspace coordinates

with help of the formula (4.6) (where the twist F is replaced by supertwists (4.15)) we

need a realization of the N = 1 super-Euclidean algebra, o(4|1), in terms of linear differ-

ential operators on superspace. In accordance with [38] there are in Minkowski as well

as in Euclidean superspace three differential superspace realizations: non-chiral, chiral

and antichiral. The chiral supersymmetric covariant derivatives, anticommuting with the

supercharges ({Qα, Dβ} = {Qα, Dβ̇
} = {Q̄α̇, Dβ} = {Q̄α̇, Dβ̇

} = 0) are defined as follows

Dα = ∂α − 2(σµθ̄)α∂µ , D̄α̇ = i∂α̇ . (5.1)

If we impose the chirality condition

D̄α̇Φ(x, θ, θ̄) = 0 (5.2)

one gets the realization on Grassmann-holomorphic variables θα (α = 1, 2) which enters

into Euclidean N = 1 holomorphic chiral superfields (see e.g. [34]). We obtain the following

chiral differential realization of Euclidean superalgebra generators by adjusting to Euclidean

case so-called Mandelstam realization [39, 40]

Pµ = −i∂µ , Mµν = i(xµ∂ν − xν∂µ) +
1

2
(θσµν)

α∂α ,

Qα = i∂α , Q̄α̇ = 2(θσµ)α̇∂µ .

(5.3)

Inserting the realization (5.3) into the formulae (4.15), and using the formula (4.6) extended

to supertwist deformations of chiral superfields

Φ(x, θ) ⋆F Ψ(x, θ) := m
(

F−1 ⊲
(

Φ(x, θ)⊗Ψ(x, θ)
)

)

, (5.4)

(the action ⊲ is described by the realization (5.3)) we obtain the following set of deformed

superspace relations:

(1). Deformation of Euclidean space-time. We use the notation

[xµ, xν ]⋆Fws
:= xµ ⋆Fws x

ν − xν ⋆Fws x
µ . (5.5)

One can show that the general structure of this deformed commutator has the form

[xµ, xν ]⋆Fws
= [xµ, xν ]⋆F1w

+ [xµ, xν ]⋆F0
+ [xµ, xν ]⋆Fs

(5.6)

for w = a, b, c, d. This property follows from the relations PµPν ⊲ xλ = 0, (Qα)2 = 0. The

explicit calculations yield to following results:

[xµ, xν ]⋆Fs
= 0 , (5.7)

[xµ, xν ]⋆F0
=

2i

κ2
(

α1δ
[µ
3 δ

ν]
0 + α2δ

[µ
2 δ

ν]
1

)

, (5.8)
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[xµ, xν ]⋆F1a
=

2iβ

κ

(

δ
[µ
2 δ

ν]
0 x1 + δ

[µ
0 δ

ν]
1 x2

)

, (5.9)

[xµ, xν ]⋆F1b
=

2iβ

κ

(

δ
[µ
2 δ

ν]
3 x1 + δ

[µ
3 δ

ν]
1 x2

)

, (5.10)

[xµ, xν ]⋆F1c
= [xµ, xν ]⋆F1a

+ [xµ, xν ]⋆F1b
, (5.11)

[xµ, xν ]⋆F1d
=

2iβ

κ

(

δ
[µ
1 δ

ν]
3 x0 + δ

[µ
1 δ

ν]
0 x3

)

. (5.12)

It should be pointed out that only if we use in (5.4) the Mandelstam chiral realization (5.3)

the commutators of spacetime coordinates do not depend on the parameter η and second

Grassmann spinor θ̄α̇. If we consider the usual chiral realization which is obtained by

introducing the standard chiral fields as follows: Φ̃(x, θ, θ̄) = Φ(x− ıθ̄σθ, θ), the space-time

commutators will depend also on bilinear product θ̄σθ of Grassmann variables θα, θ̄α̇.

Further we observe that

(i) (5.7) describes a particular choice of the canonical deformation;

(ii) the relations (5.9)–(5.12) provide particular examples of the Lie-algebraic deforma-

tions of spacetime coordinates;

(iii) from the relation (5.10) follows that after deformation the time coordinate remains

commutative but other relations (5.9) and (5.12) describe the examples with quantum

noncommutative time coordinate.

(2). Deformation of Grassmann sector. The ⋆-product of the chiral Grassmann

variables is the same for all four deformations described by the twists Fws (w = a, b, c, d),

and we obtain the following result ({θα, θβ}⋆Fws
= θα ⋆Fws θ

β + θβ ⋆Fws θ
α):

{θα, θβ}⋆Fws
= {θα, θβ}⋆Fs

= −
2η

κ
δ
(α
1 δ

β)
2 . (5.13)

The relation (5.13) leads in the sector of Grassmann variables to the choice of ⋆-product

postulated by Seiberg [4] which was introduced however as an assumption without any link

with the notation of quantum-deformed space-time symmetries.

(3). Deformation of mixed spacetime-Grassmann sector. The ⋆-product of

Grassmann and spacetime coordinates depends on choice of the twist Fws (w = a, b, c, d)

in the following way:

[xµ, θα]⋆Fws
= [xµ, θα]⋆F1w

(w = a, b, c, d) , (5.14)

where

[xµ, θα]⋆F1a
=

β

κ
δµ0 (θσ12)

α, [xµ, θα]⋆F1b
=

β

κ
δµ3 (θσ12)

α,

[xµ, θα]⋆F1c
=

β

κ

(

δµ0 + δµ3
)

(θσ12)
α, [xµ, θα]⋆F1d

=
β

κ
δµ1 (θσ03)

α,

(5.15)
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We see from the relations (5.13)–(5.15) that only the chiral superspace coordinates θα are

deformed, and the antichiral described by θ̄α̇-sector remains unchanged i.e. one obtained

N = 1
2 SUSY deformation see [4, 5, 7, 8]. Such form of deformation is consistent only in

Euclidean framework, where the left-chiral and right-chiral coordinates can be deformed

independently.

We recall that first N = 1
2 deformation of Euclidean supersymmetries was described by

Seiberg in [4] without any use of quantum supersymmetries. The primary deformation in [4]

(and followed by other authors [5, 7, 8]) is introduced by ansatz modifying anticommutator

of half of Grassmann variables

{θ̄α̇, θ̄β̇} = 0 =⇒ {θ̄α̇, θ̄β̇} = ηC
α̇β̇

with other anti-commutators ({θα, θβ} = {θ̄α̇, θβ} = 0) left unchanged. Inserting such

deformed Grassmann variables into the superspace realizations (5.3) we obtain the following

deformed anticommutators of antichiral supercharges

{Q̄α̇, Q̄β̇
} = ηδ

α̇β̇
� ≡ ηδ

α̇β̇
δµν∂µ∂ν

with unchanged anticommutators {Qα, Qβ} and {Q̄α̇, Qβ}. In such a framework we obtain

the N = 1
2 deformation of superspace superalgebra which breaks the standard D = 4

Euclidean supersymmetry.

For getting the modified Grassmann variables as in formula (5.13) it is sufficient to

consider the simplest canonical supertwist, described by the supersymmetric r-matrices

N = 19 − 21 in table 2. Indeed such twist were considered for such purpose in [24, 25]

and [44] and they lead to the noncommutativity of spacetime described by a constant

matrix ϑµν . The novelty of our results here is the use of supersymmetric r-matrices

with N = 13 − 16, which leads to Lie-algebraic deformations of the spacetime sector, i.e.

non-vanishing parameters ϑµν
ρ in formula (4.1).

6 Conclusions

In this presentation we employed the formulae for the D = 4 Poincaré classical r-matrices,

obtained by Zakrzewski [33], and considered the corresponding D = 4 Euclidean classical

r-matrices. It appears that in Euclidean case due to the reality condition (3.6) only some

of the r-matrices from table 1 can be used as the real Euclidean classical r-matrices.

Subsequently we did show also how to supersymmetrize the D = 4 Poincaré and Euclidean

r-matrices (see table 2) and considered the restrictions imposed by the Poincaré and

Euclidian reality conditions. Further for four chosen supersymmetric r-matrices we

constructed corresponding supertwists and described respective quantum deformations of

Euclidean superspace.

We made an important step in the task of providing the complete classification of

Hopf-algebraic quantum deformations of D = 4 relativistic supersymmetries and their

Euclidean counterparts. We recall however that some of the considered supertwists violate

the reality condition in Minkowski superspace, but they are consistent with the reality

structure of Euclidean superalgebra, which is described by the covariance under the pseu-

doconjugation. We recall also that the known example of D = 4 quantum deformations of
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supersymmetries with Lie-algebraic deformed spacetime, the κ-deformation [41–43] does

not belong to the considered class of triangular quantum superalgebras, because they can

not be generated by Drinfeld twist.10 It should be added that besides the structure of

twisted Poincaré and Euclidean superalgebras one can also consider deformations of a

dual Poincaré [42, 43] as well as D = 4 Euclidean [44] supergroups.

In this presentation we considered explicitly new examples of Hopf-algebraic frame-

work of twist-deformed D = 4 supersymmetries and described corresponding new

quantum deformations of superspace. We stress that the considered class of deformed

superspaces is new with the Minkowski quantum algebra satisfying Lie-algebraic relations

(see (5.8)–(5.12)). The next step in our studies will be the introduction of superfields on

twist-deformed superspaces and the construction of new deformed field-theoretical SUSY

models with new quantum supersymmetries.
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[32] M. Dimitrijević and V. Radovanović, D-deformed Wess-Zumino model and its

renormalizability properties, JHEP 04 (2009) 108 [arXiv:0902.1864] [INSPIRE].

[33] S. Zakrzewski, Poisson structures on the Poincaré group,
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