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Abstract

Background: Genomic evaluations in Holstein dairy cattle have quickly become more reliable over the last two
years in many countries as more animals have been genotyped for 50,000 markers. Evaluations can also include
animals genotyped with more or fewer markers using new tools such as the 777,000 or 2,900 marker chips
recently introduced for cattle. Gains from more markers can be predicted using simulation, whereas strategies to
use fewer markers have been compared using subsets of actual genotypes. The overall cost of selection is reduced
by genotyping most animals at less than the highest density and imputing their missing genotypes using
haplotypes. Algorithms to combine different densities need to be efficient because numbers of genotyped animals
and markers may continue to grow quickly.

Methods: Genotypes for 500,000 markers were simulated for the 33,414 Holsteins that had 50,000 marker
genotypes in the North American database. Another 86,465 non-genotyped ancestors were included in the
pedigree file, and linkage disequilibrium was generated directly in the base population. Mixed density datasets
were created by keeping 50,000 (every tenth) of the markers for most animals. Missing genotypes were imputed
using a combination of population haplotyping and pedigree haplotyping. Reliabilities of genomic evaluations
using linear and nonlinear methods were compared.

Results: Differing marker sets for a large population were combined with just a few hours of computation. About
95% of paternal alleles were determined correctly, and > 95% of missing genotypes were called correctly. Reliability
of breeding values was already high (84.4%) with 50,000 simulated markers. The gain in reliability from increasing
the number of markers to 500,000 was only 1.6%, but more than half of that gain resulted from genotyping just
1,406 young bulls at higher density. Linear genomic evaluations had reliabilities 1.5% lower than the nonlinear
evaluations with 50,000 markers and 1.6% lower with 500,000 markers.

Conclusions: Methods to impute genotypes and compute genomic evaluations were affordable with many more
markers. Reliabilities for individual animals can be modified to reflect success of imputation. Breeders can improve
reliability at lower cost by combining marker densities to increase both the numbers of markers and animals
included in genomic evaluation. Larger gains are expected from increasing the number of animals than the
number of markers.

Background
Breeders now use thousands of genetic markers to select
and improve animals. Previously only phenotypes and
pedigrees were used in selection, but performance and
parentage information was collected, stored, and evalu-
ated affordably and routinely for many traits and many
millions of animals. Genetic markers had limited use
during the century after Mendel’s principles of genetic
inheritance were rediscovered because few major QTL

were identified and because marker genotypes were
expensive to obtain before 2008. Genomic evaluations
implemented in the last two years for dairy cattle have
greatly improved reliability of selection, especially for
younger animals, by using many markers to trace the
inheritance of many QTL with small effects.
More genetic markers can increase both reliability and

cost of genomic selection. Genotypes for 50,000 markers
now cost <US$200 per animal for cattle, pigs, chickens,
and sheep. Lower cost chips containing fewer (2,900)
markers and higher cost chips with more (777,000) mar-
kers are already available for cattle, and additional geno-
typing tools will become available for cattle and other
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species in the near future. All three billion DNA base
pairs of several Holstein bulls have been fully sequenced
and costs of sequence data are rapidly declining.
Reliabilities of genomic predictions were compared in

previous studies for up to 50,000 actual or 1 million
simulated markers. Reliabilities for young animals
increased gradually as marker numbers increased from a
few hundred up to 50,000 [1-3], and increased slightly
when markers with low minor allele frequency were
included [4]. For low- to medium-density panels (300 to
3,000 markers), selection of markers with large effects
preserves more reliability if only the selected markers
are used in the evaluation [5], but evenly spaced mar-
kers preserve more reliability for all traits if imputation
is used [6]. Reliabilities increased from 81 up to 83% as
numbers of simulated markers increased from 50,000 to
100,000 using 40,000 predictor bulls [7], however, base
population alleles in that study were in equilibrium
rather than disequilibrium.
Increasing marker numbers above 20,000 up to 1 mil-

lion linked markers resulted in almost no gains in relia-
bility in a simulation of 10 chromosomes and 1,500
QTL [8]. Larger gains resulted in a simulation of only
one chromosome containing three to 30 QTL that
accounted for all of the additive variance [9]. Many gen-
ome-wide association studies of human traits have com-
bined large numbers of markers from different chips
[10], but those studies almost always estimated effects of
individual loci rather than included all the loci to esti-
mate the total genetic effect.
Many genotypes will be missing in the future when

data from denser or less dense chips are merged with
current genotypes from 50,000-marker chips or when
two different 50,000-marker sets are merged, as is being
done in the EuroGenomics project [11,12]. Missing gen-
otypes of descendants can be imputed accurately using
low-density marker sets if ancestor haplotypes are avail-
able [13-15]. At low marker densities, haplotypes pro-
vide higher accuracy than genotypes when included in
genomic evaluation [1,16]. Missing genotypes were not
an immediate problem with data from a 50,000-marker
set because >99% of genotypes were read correctly [17].
Fewer markers can be used to trace chromosome seg-

ments within a population once identified by high-den-
sity haplotyping. Without haplotyping, regressions could
simply be computed for available SNP and the rest dis-
regarded. With haplotyping, effects of both observed
and unobserved SNP can be included. Transition to
higher density chips will require including multiple mar-
ker sets in one analysis because breeders will not re-
genotype most animals.
Simulated genotypes and haplotypes can be more use-

ful than real data to test programs and hypotheses.
Examples are analyses of larger data sets than are

currently available or comparison of estimated haplo-
types with true haplotypes, which are not observable in
real data. Most simulations begin with all alleles in the
founding generation in Hardy-Weinberg equilibrium
and then introduce linkage disequilibrium (LD) using
many non-overlapping generations of hypothetical pedi-
grees [18] or fewer generations of actual pedigree [19].
Simulations can also include selection [20] or model
divergent populations such as breeds [21]. Many geno-
mic evaluation studies simulated shorter genomes and
fewer chromosomes than in actual populations, presum-
ably because computing times for obtaining complete
data were too long.
Goals of this study are to 1) impute genotypes using a

combination of population and pedigree haplotyping, 2)
compute genomic evaluations with up to 500,000 simu-
lated markers, and 3) evaluate potential gains in reliabil-
ity from increasing numbers of markers.

Methods
Haplotyping program
Unknown genotypes can be made known (imputed)
from observed genotypes at the same or nearby loci of
relatives using pedigree haplotyping or from matching
allele patterns (regardless of pedigree) using population
haplotyping. Haplotypes indicate which alleles are on
each chromosome and can distinguish the maternal
chromosome provided by the ovum from the paternal
chromosome provided by the sperm. Genotypes indicate
only how many copies of each allele an individual inher-
ited from its two parents.
Fortran program findhap.f90 was designed to combine

population and pedigree haplotyping. Genotypes were
coded numerically as 0 if homozygous for the first allele,
2 if homozygous for the second allele, and 1 if heterozy-
gous or not known; haplotypes were coded as 0 for the
first allele, 2 for the second allele, and 1 for unknown to
simplify matching. The algorithm began by creating a
list of haplotypes from the genotypes in the first pass,
and the process was iterated so genotypes earlier in the
file could be matched again using haplotype refinements
that occurred later.
Steps used in the population haplotyping algorithm

were: 1) each chromosome was divided into segments of
about 500 markers each when analyzing the 500,000
marker or mixed datasets and 100 markers each for
50,000 marker data; 2) the first genotype was entered
into the haplotype list as if it was a haplotype; 3) any
subsequent genotypes that shared a haplotype were then
used to split the previous genotypes into haplotypes; 4)
as each genotype was compared to the list, a match was
declared if no homozygous loci conflicted with the
stored haplotype; 5) any remaining unknown alleles in
that haplotype were imputed from homozygous alleles
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in the genotype; 6) the individual’s second haplotype
was obtained by subtracting its first haplotype from its
genotype, and the second haplotype was checked against
remaining haplotypes in the list; 7) if no match was
found, the new genotype (or haplotype) was added to
the end of the list. Unknown alleles in the genotype
were stored as unknown alleles in the haplotype; 8) the
list of currently known haplotypes was sorted from most
to least frequent as haplotypes were found for efficiency
and so that more probable haplotypes were preferred.
Steps 4) and 6) of the algorithm for population haplo-

typing are demonstrated in Figure 1 for a shortened seg-
ment of 57 markers. The example genotype conflicted
with the first four listed haplotypes but had no conflicts
with haplotype number 5. After removing haplotype 5
from the genotype to obtain the animal’s complemen-
tary haplotype, the algorithm searched for the comple-
mentary haplotype in the remainder of the list until it
was identified as haplotype 8. Instead of storing all 57
codes from the segments found, this animal’s haplotypes
were stored simply as 5 and 8. In practice, some alleles
in the least frequent haplotypes remain unknown
because few or no matches were found or because each
matching genotype happened to be heterozygous at that
locus.
Iteration proceeded as follows. The first two iterations

used only population haplotyping and not the pedigree.
The first used only the highest density genotypes, and
later iterations used all genotypes. The third and fourth
iterations used both pedigree and population methods
to locate matching haplotypes. Known haplotypes of

genotyped parents (or grandparents if parents were not
genotyped) were checked first, and if either of the indi-
vidual’s haplotypes were not found with this quick
check then checking restarted from the top of the sorted
list. For example, the algorithm in Figure 1 could check
haplotypes 5 and 8 first if parent genotypes are known
to contain these haplotypes. The last two iterations did
not search sequentially through the haplotype list and
instead used only pedigrees to impute haplotypes of
non-genotyped ancestors from their genotyped descen-
dants, locate crossovers that created new haplotypes,
and resolve conflicts between parent and progeny haplo-
types. If parent and progeny haplotypes differed at just
one marker, the difference was assumed to be genotyp-
ing error, and the more frequent haplotype was substi-
tuted for the less frequent.
Imputation success was measured in several ways.

Percentages of alleles missing before and after imputa-
tion indicated the amount of fill needed and remain-
ing. Percentages of incorrect genotypes were calculated
across all loci including the genotypes observed, the
haplotypes imputed, and the remaining haplotypes not
imputed but simply assigned alleles using allele fre-
quency. An alternative error rate counted differences
between heterozygous and homozygous genotypes as
only half errors and differences between opposite
homozygotes as full errors across the imputed and
assigned loci but not including the observed loci [11].
The percentage of true linkages between consecutive
heterozygous markers that differed from estimated lin-
kages was determined, as well as the percentage of

5.16% 022222222020020022002020200020000200202000022022222202220
4.37% 022020220202200020022022200002200200200000200222200002202
4.36%  022020022202200200022020220000220202200002200222200202220
3.67%  022020222020222002022022202020000202220000200002020002002
3.66% 022222222020222022020200220000020222202000002020220002022

Get 2nd haplotype by removing 1st from genotype:
022002222002220022022020220020200202202000202020020002020

Search for 1st haplotype that matches genotype:
022112222011221022021110220010110212202000102020120002021

3.65%  022020022202200200022020220000220202200002200222200202222
3.51% 022002222020222022022020220200222002200000002022220002220
3.42% 022002222002220022022020220020200202202000202020020002020
3.24%  022222222020200000022020220020200202202000202020020002020
3.22%  022002222002220022002020002220000202200000202022020202220

Figure 1 Demonstration of algorithm to find first and second haplotypes.
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heterozygous loci at which the allele estimated to be
paternal was actually maternally inherited.

Simulating linkage disequilibrium
Methods to simulate LD were derived and the simula-
tion program of [19] was modified to generate LD
directly in the earliest known ancestors in the pedigree
(the founding population). Previously, marker alleles
were simulated in equilibrium and uncorrelated across
loci in the founding population, but genotypes at adja-
cent markers become more correlated as marker densi-
ties increase. Most other studies [18] used thousands of
generations of random mating to establish a balance
between recombination, drift, and mutation in small
populations with actual size set equal to effective size.
Fewer rare and more common haplotypes would occur
than in actual populations with unbalanced contribu-
tions to the next generation. Neither the standard nor
the new approach may provide exactly the same LD pat-
tern as in actual genotypes.
Initial LD was generated by establishing marker prop-

erties for the population, simulating underlying, unob-
servable, linked bi-allelic markers that each have an
allele frequency of 0.5, and setting minor allele frequen-
cies for observed markers to <0.5 by randomly replacing
a corresponding fraction of the underlying alleles by the
major allele.
Direction of linkage phase for each marker with the

previous marker was set to positive (coupling) or nega-
tive (repulsion) with 0.5 probability, and this process
was repeated across each chromosome. Marker alleles
were coded as 1 or 2 and their frequencies were distrib-
uted uniformly between 0 and 1. After establishing these
initial marker properties, each founding haplotype from
an unknown founder parent was generated as follows: 1)
for the first locus on each chromosome, an underlying
allele was chosen randomly with 0.5 frequency; 2) subse-
quent loci on the same chromosome were set to the
same allele or opposite allele based on direction of
initial linkage phase until a break point occurred; 3) if a
uniform variate exceeded the LD decay parameter
defined as 1 - the fraction of recombinations that had
occurred between adjacent loci, then that haplotype
block ended and the next allele was chosen randomly
with 0.5 frequency; and 4) observed alleles were
obtained from the underlying alleles using the allele fre-
quencies. A uniform number was generated at the
beginning of each block, and underlying alleles within
the block were replaced by the major allele if the minor
allele frequency was greater than twice the minor allele
frequency at that locus.
The benefit of the underlying markers is that a single

parameter can model the gradual decay of linkage dise-
quilibrium as marker distances increase, similar to an

autoregressive correlation structure. The idea is similar
to using underlying normal variables for categorical
traits because the math is simpler on the underlying
scale. Each allele in the founding haplotypes required
generating only two uniform random numbers: one to
determine underlying LD blocks and a second to
increase frequency of the major allele. The LD blocks
mimic segments preserved from unknown generations
prior to the pedigree. The simulation process resulted in
different lengths, locations of breakpoints, and patterns
of rare alleles for each founding haplotype segment.

Simulated data
The population simulated included 8,974 progeny-tested
bulls, 14,061 young bulls, 4,348 cows with records and
6,031 heifers, as well as 86,465 non-genotyped ancestors
in the pedigrees. The founding animals were mostly
born before 1960, about 10 generations ancestral to the
current population. This population structure was iden-
tical to the 33,414 Holstein animals with BovineSNP50
genotypes in the North American database as of January
2010. Many of these animals share long haplotypes
because, for example, three bulls each had >1,000 geno-
typed progeny in the dataset.
Genotypes for 500,000 markers were simulated, and

the 50,000 marker subset was constructed using every
10th marker. The simulated percentages of missing gen-
otypes and incorrect reads were 1.00 and 0.02%, respec-
tively, based on rates observed for the BovineSNP50
chip. The LD decay parameter for adjacent underlying
alleles was set to 0.998, with an average of 16,667 mar-
kers per chromosome, spaced randomly. Linkage dise-
quilibria derived from the simulated and from real
genotypes were compared by squared correlations of
marker genotypes plotted against physical distance
between markers. The haplotyping algorithm was tested
using a single simulated chromosome with a length of 1
Morgan, which is the average length for cattle chromo-
somes. Gains in reliability from genomic evaluation
were tested using sums of estimated allele effects across
all 30 simulated chromosomes.
True haplotypes from the simulation allow propor-

tions of correctly called linkage phases and paternal
allele origins to be checked. Correct calls were summar-
ized for each animal to determine how successful the
algorithm was for different members of the pedigree.
These estimates of genotype or haplotype accuracy from
simulation are needed because true values are not avail-
able for comparison with real data. Genotypes, linkage
phases and haplotypes were estimated for all animals
and compared with their true genotypes and haplotypes
from simulation. For each heterozygous marker, pater-
nity was considered to be correctly called if the allele
presumed to be from the sire was actually from the sire.

VanRaden et al. Genetics Selection Evolution 2011, 43:10
http://www.gsejournal.org/content/43/1/10

Page 4 of 11



Linkage phase was considered to be correctly called if
estimated phase matched true phase for each adjacent
pair of heterozygous markers.
Effects of quantitative trait loci (QTL) were simulated

with a heavy-tailed distribution. Standard, normal effects
(s) were converted to have heavy tails using the function
2abs(s - 2). The locus with the largest effect contributed 2
to 4% of the additive genetic variance across five repli-
cates, and the number of QTL was 10,000, which is
greater than the 100 QTL used previously [19]. Small
advantages of nonlinear over linear models for dairy cat-
tle traits indicate many more QTL than previously
assumed in most simulations. Similarly, human stature
is very heritable (i.e. 0.8) but the 50 largest SNP effects
account for only 5% of the variance [22]. If a few large
QTL do exist, these causative mutations could be
selected for directly instead of increasing density of mar-
kers everywhere.
Five replicates of the simulated data were analyzed as

five traits, and QTL effects for each trait were indepen-
dent. Just one set of genotypes contained the five QTL
replicates for efficiency as in [19]. All QTL were located
between the markers; none of the markers had a direct
effect on the traits. Error variance for each genotyped
animal was calculated from the reliability of its tradi-
tional milk yield evaluation, which for cows might
include only one or a few records with a 30% heritability
but for bulls could include hundreds or thousands of
daughter records. Daughter equivalents from parents
were removed from total daughter equivalents to obtain
reliability from own records and progeny (RELprog), and
error variance for each animal equalled additive genetic
variance times the reciprocal of reliability minus one, i.e.
sa

2 (1/RELprog -1).
Two mixed density data sets were simulated, which

included genotypes from both 500,000- and 50,000-
marker chips, to determine if a few thousand higher
density genotypes would be sufficient to impute, using
program findhap.f90, the missing genotypes for the
other animals genotyped with 50,000 markers. The first
analysis included 1,406 randomly chosen young bulls
with 500,000 markers and the other 32,008 animals with
50,000 markers. The second analysis had 3,726 bulls
with 500,000 markers, including 2,140 older bulls that
had 99% reliability plus the same 1,406 young bulls, and
the other 29,788 animals had 50,000 markers.

Genomic evaluation
The vector of observed, deregressed observations (y) was
modelled with an overall mean (Xb), genotypes minus
twice the base allele frequency (Z) multiplied by allele
effects (u), a vector of polygenic effects for genotyped
animals (p), and a vector of errors (e) with differing var-
iance depending on RELprog:

y u p e= + + +Xb Z

To solve for polygenic effects, equations for all ances-
tors of the genotyped animals are included along with p,
so that the simple inverse for pedigree relationships
could be constructed [23]. Reliabilities of solutions for
Zu + p were obtained from squared correlations of esti-
mated and true breeding values and averaged across five
replicates for 14,061 young bull predictions.
Dense markers account for most but not all of the

additive genetic variation, and the remaining fraction of
variance is the polygenic contribution (poly) assumed to
be 10 and 0% of genetic variance with 50,000 and
500,000 markers, respectively. Values of poly have been
assumed to equal from 0 to 20% of additive genetic var-
iance in most national evaluations of actual 50,000-mar-
ker data; poly should increase with fewer or decrease
with more available markers. An initial test with 500,000
markers indicated a 0.1% decrease in reliability and
slower convergence with 5% poly as compared to 0%
poly in the model.
Linear and nonlinear models were both applied to the

simulated data using the same methods as [24]. The
nonlinear model was analogous to Bayes A [9], and a
range of values was tested for the parameter controlling
the shape of the distribution for both marker densities.

Reliability approximation
Approximate reliability formulas are needed because
correlations of true breeding value (BV) with genomic
estimated breeding value (GEBV) are not available in
actual data. The maximum genomic reliability that can
be obtained in practice (RELmax) is limited by the maxi-
mum marker density and by the size of the reference
population. As the reference population becomes infi-
nitely large, reliability should approach 1 minus poly
because poly is the residual QTL variance not traceable
by the markers on the chip.
Total daughter equivalents (DEmax) from the reference

population can be obtained by summing traditional reli-
abilities (RELtrad) minus the reliabilities of parent aver-
age (RELpa), multiplying by the ratio of error to sire
variance (k), and dividing by the equivalent reference
size (n) needed to achieve 50% genomic REL [25]:

DE REL RELtrad pamax / .= −( )∑ k n

Genomic reliabilities for individual animals can
account for their traditional reliabilities, numbers of
markers genotyped, quality of imputation, and relation-
ship to the reference population. Animals that are less
or more related to the reference population may have
lower or higher DEmax. Accounting for individual
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relationships is automatic with inversion [19] or can be
approximated without inversion using elements of the
genomic relationship matrix [4,26].
Conversion of DEmax to genomic REL should account

for the fact that genotyped SNP do not perfectly track
all QTL in the genome if full sequences are not avail-
able. Multiplication by 1 - poly prevents reliability to
reach 100%. If all reference animals are genotyped at the
highest chip density, the expected genomic REL for
young animals without pedigree information can be cal-
culated as:

REL 1 DE DEmax max max= −( ) +( )poly k/ .

Each animal’s traditional REL is converted to daughter
equivalents (DEtrad), and these are added to DEmax

adjusted for any additional error introduced by genotyp-
ing at lower SNP density. The reduced daughter equiva-
lents from genomics (DEgen) can be calculated from the
squared correlation between estimated and true geno-
types averaged across loci (RELsnp) for each animal as:

DE REL REL 1 REL RELgen max snp max snp= −( )k /

The animal’s total reliability RELtot is computed from
the sum of the daughter equivalents as:

REL DE DE DE DEtot trad gen trad gen= +( ) + +( )/ k

Results
Genotype simulation
Examples of actual and simulated LD patterns are in
Figures 2 and 3, respectively. Squared correlations from

actual or simulated genotypes were about equal on aver-
age for markers separated by 10 to 3000 kb, but actual
genotypes had a wider range of values with more very
high or low squared correlations that continued across
more distant markers. Further testing or a modified
algorithm may be needed to obtain a closer match. If
true LD is higher than simulated, the reliability of geno-
mic predictions should also be higher, but the advan-
tages of higher density would be less if the lower density
markers already have strong LD with the QTL.

Haplotype imputation
Measures of imputation success from 50,000 markers,
500,000 markers, and the two mixed density datasets are
in Table 1. Statistics are provided separately for animals
with phenotypes in the reference population, labelled
old, and animals without phenotypes, labelled young. In
the single-density data sets, percentage of missing geno-
types was 1.0% originally but after haplotyping only
0.07% were incorrect, i.e. 0.93% of the missing genotypes
were imputed correctly. In the two mixed density data
sets, 80 to 86% of the markers were missing originally
and 93 to 96% of these missing markers were imputed.
The remaining 6.4% and 3.3% of alleles in the two data-
sets that were not observed and not imputed were set to
population allele frequency. If only one allele was
imputed, allele frequency was substituted for only the
other, unknown allele, and these loci counted as half
imputed.
Many non-genotyped ancestors with 100% of markers

missing originally had sufficiently accurate imputed data
to meet the 90% call rate required for genotyped ani-
mals. Thus, 1,117 ancestors could have their imputed
genotypes included in the genomic evaluation. Nearly all
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Figure 2 Linkage pattern among markers on a simulated chromosome.
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of those animals were dams because most sires were
already genotyped. Imputation of the remaining non-
genotyped sires was difficult because they had few pro-
geny and because most dams of their progeny were not
genotyped.
Paternal alleles were determined incorrectly for about

2% of the heterozygous markers for young animals and for
about 4% for old animals in the single-density data. Rates
of incorrect paternal allele calls were low because nearly

all sires were genotyped, but increased to about 5% for
young and 7% for old animals in the mixed-density data.
The most popular sires and dams had 100% correctly
called linkage phases and paternal alleles, whereas animals
with fewer close relatives had somewhat fewer correct
calls. Linkage phase was determined incorrectly for less
than 2% of the adjacent pairs of heterozygous markers,
except for old animals in the mixed-density data when
only young animals had been genotyped at higher density.
Five percent or fewer of the missing high-density marker
genotypes were imputed incorrectly.
The most frequent individual haplotype within a seg-

ment was observed on average 5,883 times and
accounted for 8.8% of all haplotypes in the population.
The most frequent estimated haplotypes were also the
most frequent true haplotypes, and their frequencies
were similar, averaging 9.2% true vs. 8.8% estimated fre-
quency of the most common haplotype. High frequen-
cies for fairly long haplotypes are not surprising given
the pedigree structure and large contributions from pop-
ular sires in the recent past.
Numbers of estimated haplotypes averaged 6,627 per

500-marker segment and were very consistent across
segments with a SD of only 229. Numbers of true haplo-
types averaged 2,735 and were smaller than estimated,
possibly because genotyping errors inflated the esti-
mated counts. Numbers of estimated haplotypes
decreased to an average of 5,092 per 100-marker seg-
ment used with the 50 K single-density data, but the SD
increased to 318. The number of potential haplotypes
was 66,828 with two haplotypes per animal and 33,414
animals, as compared to only 6,627 observed. Thus,
each estimated haplotype was observed about 10 times
on average.
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Figure 3 Linkage pattern from actual Holstein genotypes on chromosome 1.

Table 1 Measures of imputation success for single- and
mixed-density data by age group

Markers used 50
K

Mixed Mixed 500 K

Number of 500 K genotypes 0 1,406 3,798 33,414

Age1:

Missing before imputation (%) all 1 86 80 1

Missing after imputation (%) all 0.04 6.4 3.3 0.05

Genotype error rate (%) young 0.03 1.3 0.9 0.03

old 0.04 3.4 1.7 0.04

Incorrect genotypes (%) young 0.06 2.6 1.7 0.06

old 0.08 7.3 3.4 0.08

Incorrect linkage phase (%) young 0.3 1.9 1.4 0.1

old 0.4 5.4 2.5 0.2

Incorrect paternity (%) young 2.0 4.9 5.0 2.5

old 4.3 7.6 6.2 4.2

Correlation2 (estimated, true
genotypes)

all 0.99 0.84 0.93 0.99

Reliability of linear breeding
values (%)

young 82.6 83.4 83.7 84.1

Reliability of nonlinear breeding
values (%)

young 84.4 85.3 85.6 86.0

Reliability gain (nonlinear), 500 K
- 50 K (%)

young 0.0 0.9 1.2 1.6

1old are animals with phenotypes or progeny; young are animals without.
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With real genotypes, large numbers of haplotypes in a
particular segment can indicate regions that are more
heterozygous, regions with higher recombination rate
such as the pseudo-autosomal region of the X chromo-
some [27], misplaced markers on the chromosome map,
or genotyping errors. Any markers placed by mistake on
the wrong chromosome would generate high crossover
rates with “adjacent” markers and seriously reduce the
efficiency of haplotyping.

Computation required
Time and memory requirements using one processor
were reasonable for all steps with 500,000 markers and
are summarized in Table 2. Computations were per-
formed on an Intel Nehalem-EX 2.27 Ghz processor.
Simulation of the genotypes required 1.8 hours and 39
gigabytes memory. Storage of the resulting genotypes
required 13 gigabytes for 500,000 markers; however, sto-
rage of haplotypes required only 2.5 gigabytes. The
shared haplotypes were stored just once, and only index
numbers were stored for individuals instead of full hap-
lotypes. For the mixed density datasets, only the
observed genotypes and the imputed haplotype index
numbers were stored, rather than the imputed geno-
types, which greatly decreased storage requirements.
Haplotyping required two hours and 0.6 gigabytes of

memory with 50,000 markers and 100 markers per seg-
ment for 33,414 animals. Time increased only to 2.5
hours and 3 gigabytes memory with 500,000 simulated
markers and 500 markers per segment for this same
population. Computing time increased much less than
linearly with number of markers because most haplo-
types were excluded as not matching after checking just
the first few markers in the segment. Time was about
equally divided between population and pedigree haplo-
typing steps, and memory required was about the same
for each.
Genomic evaluation required 8 gigabytes of memory

and 30 hours to complete 150 iterations for five repli-
cates with 500,000 markers. Convergence was poor for
the highly correlated marker effects but was acceptable
for the breeding value estimates. Squared correlations of
true and estimated breeding values increased by < 0.1%

after 150 iterations on average across replicates. Var-
iance of the change in GEBV from consecutive iterations
was about .00004 of the variance of GEBV at 150
iterations.

Genomic reliability
Reliability of GEBV from the nonlinear model averaged
86.0% for young bulls when all animals were genotyped
with 500,000 markers as compared with 84.4% using a
50,000-marker subset. This 1.6% reliability increase is
similar to that obtained by doubling the number of mar-
kers from 20,000 to 40,000 with real data [3] and indi-
cates diminishing returns from greater marker density.
The computed reliability from 8,974 bulls plus 4,348
cows and 50,000 simulated markers is 18.1% higher than
the 66.3% obtained from 2,175 bulls in an earlier simu-
lation using similar methods [19], and is consistent with
continued strong gains from more actual reference ani-
mals in both North America and Europe [12].
Table 1 shows results from the analysis of the two

mixed densities as well as those from 50,000 or 500,000
single density datasets using the same five data repli-
cates. Genotyping 1,406 bulls at higher density gave
about half of the increase in reliability as genotyping all
of the 33,414 animals at higher density. Initially, 86% of
genotypes were missing, but only 6% of genotypes were
missing after haplotyping. With 3,726 bulls, reliability
increased to 85.6% and the gain was 75% of that from
genotyping all animals at high density.
Reliabilities from a linear model with normal prior

were about 1.5% lower than those from the nonlinear
model with a heavy-tailed prior for both the 50 K and
500 K simulated data. Optimum parameter values for
the prior distribution were about 2 with 50 K data and
4 with 500 K data, much higher than the 1.12 reported
by Cole et al. [28] from actual 50 K data. In linear mod-
els, the parameter equals 1.0. Advantages from nonlinear
models averaged slightly more than those reported by
Cole et al. [28] and did not increase with 500 K data,
perhaps because adjacent markers are highly correlated
within breeds and large numbers of QTL with small
effects on traits make isolation of individual marker
effects difficult. Harris and Johnson [8] reported no
advantage from nonlinear models for higher-density,
within-breed simulated data. Larger advantages would
be expected if only a few large QTL were simulated, as
in Meuwissen and Goddard [9]. If causative mutations
become known, chips could be redesigned to genotype
these directly instead of increasing density for all regions
equally. Until now, patents have excluded known QTL
from chip designs.
Reliabilities expected with larger reference populations

and larger marker densities are in Figure 4. Expectations
in the graph are for yield traits using a single density,

Table 2 Storage, memory, and time required for each
step using one processor

Processing step Gbytes CPU hours

Simulation of genotypes 39 1.8

Population haplotyping 2 1.2

Pedigree haplotyping 3 1.8

Iteration for allele effects 8 30

Storage of genotypes 13 -

Storage of haplotypes 3 -
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but combined densities instead allow genotypes to be
imputed, bringing reliabilities much closer to those pos-
sible when all animals are genotyped at highest density.
The graph reflects the 1.6% increase in reliability
observed in this simulation. A larger reliability increase
was expected from the 10% polygenic variance assumed
in U.S. 50,000 marker evaluations. Reliability from 3,000
markers is based on previous studies of actual genotypes
[29,30].
Calculations to obtain the REL in Figure 4 were as fol-

lows. For the 13,322 reference animals (proven bulls and
cows), RELtrad averaged 87%, RELpa averaged 35%, the
sum of RELtrad minus RELpa was 13322(.87 - .35) =
6927, and the variance ratio assumed was 15. For the
GEBV of young animals, the observed RELtot was 84.0%
with 500,000 markers. Removal of the contribution from
PA reduced this slightly to 82.5%. The remaining poly-
genic variation not captured by the 500,000 markers was
not estimated but assumed to be only 1%. Thus, DEmax

equalled 15(.825/.99)/(1 - .825/.99) = 74.8 and from this
the value of n was 1389.
The RELtot expected from different reference popula-

tions and marker numbers were calculated as follows.
With 50,000 instead of 500,000 markers, DEmax is the
same but RELmax from the observed reference popula-
tion after removing the contribution from RELpa was
80.5% instead of 82.5%. This difference in RELmax gave
a solution for poly of 1 - .99(.805/.825) = 3.4% with
50,000 markers instead of 1% assumed with 500,000
markers. Similar math applied to RELmax from 3,000
vs. 43,000 markers with real data in another study [29]

gave a solution for poly of 30%. Those values of poly
produced the differing RELtot expected with 3,000,
50,000, or 500,000 markers, for example 72.8%, 94.3%,
96.5%, respectively, with 100,000 animals in the refer-
ence population. Methods to estimate proportions of
correctly called genotypes or squared correlations of
estimated and true genotypes are needed for individual
animals so that RELsnp can be included in the pub-
lished REL.

Discussion
Genomic reliability
Observed reliabilities from actual genotypes may be
lower than those from simulation [3] and are affected by
the distribution of QTL effects, LD among markers, and
selection within the population. Current results differ
slightly from those reported earlier by VanRaden [31]
because of improvements to the haplotyping algorithm,
changes to the initial LD and crossover rate simulated,
and optimization of the prior parameter for the non-
linear model. With linear mixed models, computation
could be greatly reduced using eigenvectors and eigen-
values [32] so that marker equations within chromo-
somes are diagonal [33]. Reliability gains from
increasing marker density in the single breed simulated
were small but could be larger if marker effects were
estimated from multiple-breed data. The LD of QTL
with adjacent markers is not well preserved across
breeds with 50,000 markers but should be with 500,000
markers [34]. Thus, higher density genotypes may be
more valuable for across than within-breed selection

Figure 4 Expected reliabilities by number of bulls in reference population using 3,000, 50,000, or 500,000 SNP.
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[21]. Pedigrees are not recorded for many animals in
actual populations, and much of this information can be
recovered even using low density genotyping.

Computation
Algorithms for imputation are rapidly evolving to meet the
demands of growing genomic datasets. Several programs
such as those tested by Weigel et al. [6] are available and
may provide similar or better results with fewer markers
or animals, but most were not designed for very large
populations or very dense markers. Fortran program find-
hap.f90 requires little time and memory and is available at
http://aipl.arsusda.gov/software/index.cfm for download.
Official genomic evaluations of USDA have used findhap.
f90 to impute and include genotypes of dams since April
2010 and 3,000-marker genotypes since December 2010.
Further improvements to imputation algorithms will

increase accuracy and allow smaller fractions of animals
to be genotyped at highest density. New methods are
needed for combining multiple densities, for example
3,000, 50,000, and 500,000 markers, in the same dataset.
During the 5 months of review for this manuscript, ver-
sion 2 of findhap.f90 was released with better properties
than those documented here for version 1. Use of pedi-
gree haplotyping followed by population haplotyping
can further improve call rates and reduce error rates
with similar computation required (Mehdi Sargolzaei, U.
Guelph, personal communication, 2010).
The expense of genotyping 1,000-2,000 animals at

higher density can be justified for a large population
such as Holstein, but larger benefits may be needed if
similar numbers are required within each breed. Experi-
mental design is becoming a more important part of
animal breeding to balance the speed, reliability and
cost of selection. With many new technologies and
options available, breeders and breeding companies need
accurate advice on the potential of each investment to
yield returns. Costs of genotyping are decreasing rapidly,
and imputation using less dense marker sets allows the
missing genotypes to be obtained almost for free.

Conclusions
Genotypes and genomic computations are rapidly expand-
ing the data and tools available to breeders. Very high
marker density increases reliability of within-breed selec-
tion slightly (1.6%) in simulation, whereas lower densities
allow breeders to apply cost-effective genomic selection to
many more animals. Numbers of reference animals affect
reliability more than number of markers, and animals with
imputed genotypes contribute to the reference population.
New methods for combining information from multiple
data sets can improve gains with less cost. Individual reli-
abilities can be adjusted to account for the number of
markers and the accuracy of imputation. More precise

estimates of reliability allow breeders to properly balance
benefits vs. costs of using different marker sets.
Computer programs that combined population haplo-

typing with pedigree haplotyping performed well with
mixtures of 500,000 and 50,000 marker genotypes simu-
lated for subsets of 33,414 animals. Population haplotyp-
ing methods rapidly matched DNA segments for
individuals with or without genotyped ancestors, and
pedigree haplotyping efficiently imputed genotypes of
the non-genotyped parents and correctly filled most
missing alleles for progeny genotyped with lower marker
density. Accurate imputation can give breeders more
reliable genomic evaluations on more animals without
genotyping each for all markers.
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variance; n: equivalent reference size needed to achieve 50% genomic
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ratio of polygenic variance to additive genetic variance; RELmax: maximum
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