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Abstract

Background: Deciphering the genetic architecture of complex traits is still a major challenge for human genetics.
In most cases, genome-wide association studies have only partially explained the heritability of traits and diseases.
Epistasis, one potentially important cause of this missing heritability, is difficult to explore at the genome-wide level.
Here, we develop and assess a tool based on interactive odds ratios (IOR), Fast Odds Ratio-based sCan for Epistasis
(FORCE), as a novel approach for exhaustive genome-wide epistasis search. IOR is the ratio between the multiplicative
term of the odds ratio (OR) of having each variant over the OR of having both of them. By definition, an IOR that
significantly deviates from 1 suggests the occurrence of an interaction (epistasis). As the IOR is fast to calculate, we used
the IOR to rank and select pairs of interacting polymorphisms for P value estimation, which is more time consuming.

Results: FORCE displayed power and accuracy similar to existing parametric and non-parametric methods, and is fast
enough to complete a filter-free genome-wide epistasis search in a few days on a standard computer. Analysis of
psoriasis data uncovered novel epistatic interactions in the HLA region, corroborating the known major and complex
role of the HLA region in psoriasis susceptibility.

Conclusions: Our systematic study revealed the ability of FORCE to uncover novel interactions, highlighted the
importance of exhaustiveness, as well as its specificity for certain types of interactions that were not detected by existing
approaches. We therefore believe that FORCE is a valuable new tool for decoding the genetic basis of complex diseases.
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Background
During the past decade, many genome-wide association
studies (GWAS) have aimed to identify new genetic
factors determining susceptibility to a variety of diseases
[1,2]. Although promising and sometimes successful,
these large-scale studies have only led to modest ad-
vances [3]. One explanation is that the underlying model
that single SNPs contribute independently to the com-
plex trait may frequently be too simple. Rather, complex
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traits are likely to result from a complex interplay between
genes, notably epistatic gene-environment and gene-gene
interactions [4].
The principal obstacles in a genome-wide search for

epistasis are statistical power to overcome the limitations
of multiple testing and the computational time of the
search itself. Over the past decades, many tools have
been developed for epistasis detection using various statis-
tical methods [5,6], including those based on regression
[7-11], linkage disequilibrium and haplotypes [12,13], and
Bayesian approaches [14,15]. Alternative approaches
are based on data-filtering, machine-learning and data
mining [16-19]. Here, we present an approach that detects
pairwise epistasis on a genome-wide scale based on the
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classical interaction odds ratio (IOR). Introduced by
Piegorsch et al. in 1994 [20], this approach has mainly
been used for the detection of gene-environment inter-
actions in case-only designs [21]. VanderWeele et al. [22]
showed how the use of IOR can help reveal mechanistic
interactions in case-only datasets.
Firstly, we report on the first efficient implementation

of an approach for genome-wide epistasis detection,
which we call FORCE (Fast Odds Ratio sCan for Epista-
sis). Due to its mathematical simplicity, the approach is
suitable for exhaustive unfiltered epistasis analysis; i.e.,
the exact value of the IOR statistic can be evaluated for all
pairs of genotyped SNPs in reasonable time on a standard
computer. We introduce the mathematics to compute
exact P-values for the most extreme values of IOR.
Secondly, we describe the application of FORCE to the

Welcome Trust Case Control Consortium (WTCCC)
data on psoriasis, and analyze the previously unknown
statistical interactions we found in the light of already-
known results.
Lastly we ask whether the statistical interactions de-

tected by FORCE were found due to its exhaustiveness
and/or its underlying genetic model, and we present evi-
dence for both. We show that the restriction of FORCE
to analyzing only certain SNPs selected according to
their marginal effect on psoriasis (as previously described
by Knight et al. [23]) strongly limits the statistical signifi-
cance of the results. We then benchmark the performance
of FORCE and other popular methods to detect simu-
lated epistatic interactions, always using exhaustive search.
Under different common models for interaction and noise,
FORCE consistently detects certain types of interactions
better than other approaches.

Methods
Definition of interaction odds ratio (IOR)
For any given pair of SNPs, the interaction odds-ratio
statistic IOR is calculated from a pair of 2×2 contingency
tables. These tables are derived from 3×3 tables of all
allele combinations, by collapsing them according to a
dominant or recessive model (see Table 1). Following pre-
liminary evidence that the dominant model allowed more
efficient detection of epistasis (Table 2), all analyses were
performed using this dominant genetic model.
Table 1 Contingency table under a dominant model

SNP1 SNP2 Cases Controls

AA BB α β

AA Bb or bb γ δ

Aa or aa BB ε ζ

Aa or aa Bb or bb η θ

Major alleles are respectively A and B for each SNP and minor alleles a and b.
The risk allele is assumed to be the minor allele.
We define the following odds ratios:

OR1 ¼ βε

αζ
; OR2 ¼ βγ

αδ
;OR1�2 ¼ βη

αθ
; and IOR ¼ OR1�2

OR1⋅OR2
¼ αδζη

βγεθ
:

Note that IOR is undefined when the denominator of
this expression becomes zero. For formal consistency,
we therefore added a pseudocount of 1 to each cell of the
two contingency tables.

Statistical significance: Empirical and exact P-values
Note that an IOR of x equals an IOR of 1/x after exchanging
counts between cases and controls. We define universal
IOR, u(IOR):

u IORð Þ ¼ 1
IOR

if IOR ≤ 1 and u IORð Þ ¼ IOR if IOR > 1:

This definition allows us to express significant devia-
tions of u(IOR) from the expectation of 1 using a one-
tailed P-value.
Pairs with high u(IOR) were identified by the straight-

forward algorithm that computes u(IOR) for each pair of
given SNPs. Our C implementation encodes, in a pre-
processing step, all data related to any given SNP into a
bit string, and then uses fast logical and bit-counting
functions to compute u(IOR) for all pairs.
Marginal empirical P-values for any given pair of SNPs

were calculated as the proportion of u(IOR) values from
randomly generated permutations of case–control labels
that were larger than or equal to the value of u(IOR)
obtained for the same pair in real data. The number of
permutations performed (1000 for simulated data, 100,000
for real data) was adapted to the number of tests perfor-
med in these two scenarios.
Exact P-values were calculated using

p ¼ Pr u IORð Þ ≥ xð Þ

¼ 2⋅
X

α0; γ 0; ε0; η0ð Þ : IOR≥x;
α0 þ γ 0 þ ε0 þ η0 ¼ αþ γ þ εþ η

αþ βα0
� �

γ þ δγ 0
� �

εþ ζε0ð Þ ηþ θη0
� �

αþ βþ γ þ δ þ εþ ζ þ ηþ θα0þγ 0þε0þη0

� �

and computed by the straightforward algorithm with
four nested loops to cover all required parameter
tuples (α’,γ’,ε’,η’). Each inner loop only visits those
parameter values that correspond to possible tuples
with α’ + γ’ + ε’ + η’ = α + γ + ε + η, given the parameter
values in the outer loop. Summed are those terms with u
(IOR) ≥ x.

Application of FORCE to psoriasis data
To evaluate FORCE, we assessed its performance on the
WTCCC psoriasis dataset. Initial GWAS and further
analyses performed on these data are described in [24].
Following general practice for pre-processing, we exclu-
ded potentially low-quality SNP data from further analysis.



Table 2 Power and Family-wise error rate (FWER) for detection of the functional pair using a dominant or recessive
transmission assumption in 6 different epistasis models

Genetic model Test Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Dominant Power 1 0.97 0.96 1 0.93 0.99

FWER 0.05 0.02 0.02 0.06 0.05 0.04

Recessive Power 0.93 0.96 0.01 0.01 0 0

FWER 0.04 0.07 0.02 0.02 0.03 0.01

Table 3 Penetrances and allele frequencies (p,q) used to
simulate the interaction models – from Ritchie [28]

Model 1 Model 2 Model 3

BB Bb bb BB Bb bb BB Bb bb

AA 0 0.10 0 AA 0 0 0.10 AA 0.08 0.07 0.05

Aa 0.10 0 0.10 Aa 0 0.05 0 Aa 0.10 0 0.10

aa 0 0.10 0 aa 0.10 0 0 aa 0.03 0.10 0.04

p = 0.5, q = 0.5 p = 0.5, q = 0.5 p = 0.25, q = 0.75

Model 4 Model 5 Model 6

BB Bb bb BB Bb bb BB Bb bb

AA 0 0.01 0.09 AA 0.07 0.05 0.02 AA 0.09 0.001 0.02

Aa 0.04 0.01 0.08 Aa 0.05 0.09 0.01 Aa 0.08 0.07 0.005

aa 0.07 0.09 0.03 aa 0.02 0.01 0.03 aa 0.003 0.007 0.02

p = 0.25, q = 0.75 p = 0.10, q = 0.9 p = 0.10, q = 0.9

Marginal penetrances for each genotype are identical as we simulate pure
epistasis effects.
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Specifically, we discarded i) any individual whose total
missing rate was above 0.05, ii) any SNP with a frequency
of missing data above 0.05, and iii) any SNP with minor
allele frequency below 0.05. After pre-processing, our
dataset consisted of 2,618 cases, 2,737 controls and
491,191 SNPs, corresponding to approximately 1.2 × 1011

SNP pairs. We excluded pairs with a genomic distance of
less than 100 kb to avoid pairs in linkage disequilibrium.
In addition, we found that low row and cell counts in the
contingency table (Table 1) can lead to extreme but fre-
quently not significant values of u(IOR). For the purposes
of this study, we excluded 3,521,114 SNP pairs with a total
count of less than 50 in any row, or less than 5 in any cell
of the contingency table. In addition to FORCE, we
performed PLINK (FastEpistasis mode) on the top-ranked
500 pairs to compare the results obtained with both
methods.

Comparison of exhaustive FORCE with semi-exhaustive
and conditional search
To assess the utility of exhaustive search, we constructed
a reference dataset of SNPs previously implicated in
psoriasis. We started with a set of 34 SNPs from two
previous reviews on psoriasis genetics [25,26] that were
part of our psoriasis dataset. After applying quality con-
trol thresholds (described above), 18 SNPs remained.
Following general practice for genome-wide approaches,

for exhaustive and semi-exhaustive searches, we used a
genome-wide significance threshold of p ¼ 2�0:05

106ð Þ2 ¼ 10−13,

which is based on a model of the human genome with 106

independent SNPs [27].

Comparison of FORCE with other approaches on
simulated datasets
We simulated datasets of 10 biallelic SNPs over 200
cases and 200 controls following the Hardy-Weinberg
equilibrium model. Interactions were simulated accord-
ing to six different previously described models without
main effect [28] (Table 3). These models represent pure
epistasis effects, and not confounding main effects.
Model 1 is an interaction effect in which high risk of
disease occurs when inheriting heterozygous genotypes
at either locus (Aa or Bb) but not both. Model 2 repre-
sents high risk of disease when inheriting two high-risk
alleles that could be A and/or B. Models 3–6 correspond
to the epistasis model discovery method described by
Moore et al. [29]. Each of these models represents an
interaction effect without any main effects. Allele frequen-
cies are p = 0.25 and q = 0.75 for model 3 and 4, p = 0.1
and q = 0.9 for model 5 and 6.
For each of the six models, we generated 100 datasets

in each of the 16 conditions of the presence or absence
of four of the most commonly encountered sources of
noise: missing data (MS), genotyping errors (GE), genetic
heterogeneity (GH), and phenocopy (PC).
For GH, two independent interactions were simulated

instead of one, each interaction being risk-associated in
half of the affected cases. When PC was simulated, inter-
action affected the trait for half of the cases, emulating
an unknown environmental effect. GE and MS were
simulated at 5%, as previously described [28].
An epistatic pair of SNPs was considered as detected if

the empirical P-value was below 0.001, i.e., below 0.05
after Bonferroni correction. Power was estimated as
n/100, where n is the number of datasets with detection
(s). When two pairs (P1, P2) of SNPs were simulated,
detection was counted under one of three different condi-
tions: D1) when P1 and P2 were detected, D2) when P1
was detected, or D3) when P1 or P2 was detected. Family-
wise error rate (FWER) was calculated as m/100, where m



Grange et al. BMC Genetics  (2015) 16:11 Page 4 of 13
is the number of datasets for which at least one pair other
than the simulated pair was detected.

Results
FORCE enables exhaustive unfiltered epistasis analysis
The FORCE method for epistasis detection is based on
the choice of a dominant or recessive model that collapses
combinations of allele counts into two 2×2 incidence
tables (see Methods). Interactions are then detected as
extreme values of the IOR statistic. We implemented the
FORCE method for epistasis in C language [30]. Due to its
mathematical simplicity and efficient implementation, the
computation of IOR could be performed rapidly, compared
to other approaches (4.3 days on a single core of a stand-
ard computer). Table 4 shows running times of different
methods selected for this study.

Identification of statistically strong interactions requires
exhaustive search
To assess the value of exhaustive search, we first evaluated
the performance of a conventional, non-exhaustive ap-
proach of constraining the analysis to pairs of SNPs that
were previously shown to have main effects associated
with the phenotype. We therefore performed a constrained
analysis on all pairs of 18 high-quality SNPs that had
main effects on psoriasis in previous GWA studies (see
Methods). Table 5 gives the best 25 hits obtained through
this approach when evaluated on the WTCCC dataset
on psoriasis [24] (the results of all pairs are shown in
Additional file 1: Table S1). None of the 153 pairs reached
a significant interaction P-value below a genome-wide
significance threshold of 10−13.
A more comprehensive approach, to which we will

here refer to as semi-exhaustive, constrains only one of
the SNPs in a pair to a set of previously identified SNPs
[8]. Table 6 shows, for each of the 18 previously identified
“main effects” SNPs, the highest-scoring interactors, ac-
cording to the FORCE and PLINK FastEpistasis statistics.
Note that FORCE and PLINK identified a few genome-
wide significant interactions with P-values as low as 10−20.
Table 4 Average time needed to exhaustively test one/all
1.25×1011 pairs among 500,000 SNPs using a single-core
CPU computer

Software Time for one/all SNPs (single core)

MB-MDR [16] 5×10-3 s/20 years [31]

PLINK Epistasis [7] 2×10-4 s/289 days [5]

PLINK FastEpistasis [8] 2×10-5 s/29 days [32]

FORCE 3×10-6 s/4.3 days

GWIS - 3 filters [33] 1.6×10-6 s/2.2 days [33]

GWIS - 1 filter [33] 3.8×10-7 s/0.5 days [33]

We included the recent GWIS approach that is described as ‘exhaustive’, but
uses filtering to avoid computing test statistics for all pairs of SNPs.
Finally, the relatively low computational complexity
required for the FORCE statistic allowed us to perform
exhaustive analysis of all SNP pairs in the psoriasis data-
set. The results are shown in Table 7 (100 best hits
shown in Additional file 1: Table S2). Strikingly, the best
resulting P-values are another 20 orders of magnitude
lower than the P-values identified by semi-exhaustive
search. This shows that a large number of the most
significant interactions are missed by the semi-exhaustive
approach, and hence that the possibility of discovering
the statistically best-supported interactions requires an
exhaustive approach. Interestingly, FORCE and PLINK
identify distinct interactions.

FORCE pinpoints interactions beyond main effects in the
HLA region
We also analyzed the exhaustive FORCE results with
regard to previous studies, which have detected numerous
main effects [24-26], but only few weak statistical interac-
tions [24,34,35]. We assessed the performance of FORCE
using the WTCCC psoriasis dataset, which contains 2,618
cases, 2,737 controls and 491,191 SNPs. Table 7 shows the
25 best FORCE hits. Twenty-one out of 25 SNP pairs
involve SNPs located in the HLA region on chromosome
6, which is consistent with the known strong involvement
of the HLA region in psoriasis. Interestingly, certain SNP
pairs found to be statistically significant by FORCE did
not reach genome-wide significance when using PLINK
FastEpistasis.
It is well known that SNPs with main effects may

falsely appear to be interacting [36]. To avoid such artifacts
in our analysis, we removed those SNPs that displayed a
univariate statistical association P-value of 10−5 or less [24].
The results show three highly significant interactions
involving SNPs from the HLA region that display no main
effect (Table 8). In the absence of correlation between the
SNPs we claim that these findings provide evidence of
interactive effects involved in psoriasis susceptibility. This
confirms that FORCE is able to uncover novel statistical
interactions in the HLA region that have not been detected
before using conventional approaches.

FORCE systematically detects interactions missed by
other approaches
Besides its exhaustiveness, the other characteristic feature
of the FORCE approach is the use of the IOR statistic for
genome-wide epistasis analysis. To study the extent to
which the choice of this statistic contributed to the identi-
fication of novel statistical interactions, we used datasets
that contained different simulated epistatic interactions
between SNPs without main effects, according one of six
models of Ritchie [28], and none or one of the four
sources of noise: Genotyping Error (GE), Missing Data
(MS), Genetic Heterogeneity (GH), Phenocopy (PC) (see



Table 5 Results from conditional search, restricted to pairs of previously implicated SNPs

First GWAS SNP Second GWAS SNP FORCE PLINK FastEpistasis

rs number Chromosomal location rs number Chromosomal location IOR Empirical p-value p-value

rs10484554 6p21.33 rs27524 5q15 6.846 0.008882 0.003095

rs10484554 6p21.33 rs3134792 6p21.33 1.068 0.3014 0.007746

rs2201841 1p31.3 rs3213094 5q33.3 4.737 0.02952 0.012373

rs3134792 6p21.33 rs4795067 17q11 3.188 0.07419 0.012783

rs20541 5q31 rs17716942 2q24 6.987 0.008212 0.013389

rs702873 2p16 rs4795067 17q11 3.414 0.06466 0.014129

rs10484554 6p21.33 rs4795067 17q11 2.597 0.1071 0.018096

rs610604 6q23 rs17716942 2q24 6.591 0.01025 0.023261

rs3213094 5q33.3 rs12580100 12q13.2 5.132 0.02349 0.028993

rs4649203 1p36 rs240993 6q21 2.270 0.1319 0.037791

rs4649203 1p36 rs702873 2p16 1.237 0.266 0.041136

rs3134792 6p21.33 rs27524 5q15 11.840 0.000581 0.041483

rs702873 2p16 rs2546890 5q33.3 0.804 0.37 0.041729

rs27524 5q15 rs17716942 2q24 5.280 0.02158 0.045812

rs610604 6q23 rs6701216 1q21 4.289 0.03837 0.057701

rs2201841 1p31.3 rs2546890 5q33.3 2.587 0.1077 0.059206

rs27524 5q15 rs7993214 13q14.11 3.596 0.05793 0.059609

rs3134792 6p21.33 rs3213094 5q33.3 2.610 0.1062 0.072999

rs702873 2p16 rs2201841 1p31.3 1.669 0.1964 0.083717

rs10484554 6p21.33 rs12580100 12q13.2 2.535 0.1113 0.086631

rs4649203 1p36 rs6701216 1q21 3.518 0.06072 0.086671

rs2201841 1p31.3 rs27524 5q15 1.666 0.1968 0.088785

rs4112788 1q21.3 rs7993214 13q14.11 1.546 0.2137 0.090419

rs240993 6q21 rs7993214 13q14.11 1.896 0.1685 0.096038

rs6701216 1q21 rs8016947 14q13 1.087 0.2971 0.100508
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Methods for details). We then evaluated the power of
FORCE and three other popular epistasis detection
methods (PLINK Epistasis [7] and PLINK FastEpistasis
[8] using default parameters, and MB-MDR [16], using
recommended parameters [37]) to detect the simulated
interactions. We used a significance threshold of 0.001.
Figure 1 shows the results for all epistatic models for
the case of no noise.
Under all six models, FORCE and MB-MDR consist-

ently showed power close to 1. The situation became
more interesting in the presence of noise. Figure 2 shows
the power of the tested methods for all six models in the
presence of one type of noise (numerical values for are
given in Tables 9, 10, 11 and 12). While the results for
Genotyping Errors (GE) and Missing Data (MS) were
very similar to the no-noise scenario, the presence of
Genetic Heterogeneity (GH, independent of the definition
of “detection”) or Phenocopy (PC) revealed larger differ-
ences among the different approaches. Firstly, we noted
that, with GH and PC, all approaches lose power. Secondly,
we observed that different approaches worked consistently
better than others, depending on the interaction model.
For interaction models 1 and 2, MB-MDR dominated all
other approaches; FORCE dominated the other approaches
for interaction models 3–6.
Discussion
This study introduces the FORCE approach for genome-
wide epistasis analysis. On the basis of the Interaction
Odds Ratio (IOR) statistic, it performs a genome-wide
search for epistatic interactions between pairs of SNPs
in a reasonable time on a standard laptop computer.
The search is exhaustive and filter-free; i.e., the result is
guaranteed to reflect the most extreme IOR values over
all possible interactions. Exhaustive search using FORCE
is possible because of the computational simplicity of
the IOR statistic.



Table 6 Semi-exhaustive search among SNP pairs containing a GWAS-identified SNP

GWAS-identified SNP Highest-scoring interactor with GWAS-identified SNP

FORCE u(IOR) PLINK FastEpistasis Z-score

rs number Chromosomal location Risk allele OR Single association
p-value

rs number Chromosomal
location

u(IOR) Empirical
p-value

Exact
p-valuea

rs number Chromosomal
location

Exact p-value

rs10484554 6p21.33 4.66 4.0E-214 rs4151664 6p21.33 2.97 <10E-06 7.86E-10 rs28615950 6p21.3 2.12E-14

rs2546890 5q33.3 1.54 1.0E-20 rs7525345 1p31.1 2.53 7.10E-04 2.17E-06 rs4796093 17q12 1.24E-06

rs6701216 1q21 1.45 6.2E-05 rs2156892 22q11.22 2.5 <10E-06 1.30E-13 rs10853580 18q21.1 4.99E-07

rs4112788 1q21.3 1.41 6.5E-09 No pair meeting all inclusion criteria rs4459983 4q21.1 3.35E-08

rs7993214 13q14.11 1.41 2.0E-06 No pair meeting all inclusion criteria rs10800559 1q23.3 4.04E-08

rs3213094 5q33.3 1.39 5.0E-11 No pair meeting all inclusion criteria rs10512686 5p13.1 8.12E-06

rs17716942 2q24 1.29 1.1E-13 rs16928722 10q22.1 2.69 4.10E-06 2.78E-06 rs2553680 8q13.2 5.67E-07

rs20541 5q31.1 1.27 5.0E-15 No pair meeting all inclusion criteria rs17171818 5q31.2 5.63E-07

rs240993 6q21 1.25 5.3E-20 rs4727157 7q21.12 2.78 <10E-06 1.88E-20 rs2877327 22q12.1 1.26E-07

rs4795067 17q11 1.19 4.0E-11 No pair meeting all inclusion criteria rs3819847 3q27.3 4.59E-07

rs8016947 14q13 1.19 1.5E-11 No pair meeting all inclusion criteria rs11071746 15q22.31 1.58E-08

rs610604 6q23 1.19 7.0E-07 rs17585537 3p26.2 2.69 <10E-06 6.47E-19 rs4794888 17q11.1 1.11E-06

rs12580100 12q13.2 1.17 1.0E-06 rs7565742 2q31.2 3.39 <10E-06 6.80E-20 rs2992154 13q21.31 2.07E-06

rs4649203 1p36 1.13 6.8E-08 No pair meeting all inclusion criteria rs7661684 4q28.1 1.70E-06

rs2201841 1p31.3 1.13 3.0E-08 No pair meeting all inclusion criteria rs12783252 10q26.11 3.79E-06

rs27524 5q15 1.13 2.6E-11 No pair meeting all inclusion criteria rs7849719 9q21.31 1.37E-08

rs702873 2p16 1.12 3.6E-09 No pair meeting all inclusion criteria rs10897897 11q13.4 1.79E-06

rs3134792 6p21.33 NR 1.0E-09 rs1062070 6p21.32 2.88 <10E-06 2.85E-10 rs1062070 6p21.32 5.25E-14
aBold data are genome-wide significant interactions.
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Table 7 FORCE Exhaustive search top hits, and PLINK FastEpistasis results in WTCCC psoriasis data

SNP pair description Epistasis search results

First SNP Second SNP FORCE PLINK FastEpistasis

rs number Chromosomal location (position) rs number Chromosomal location (position) u(IOR) p-valuea p-valuea

rs4151664 6p21.33 (31,920,873) rs9267532 6p21.33 (31,639,979) 10.588 3.32E-33 4.65E-33

rs4151664 6p21.33 (31,920,873) rs2227956 6p21.33 (31,778,272) 9.662 2.02E-26 7.72E-06

rs3132468 6p21.33 (31,475,486) rs4151664 6p21.33 (31,920,873) 9.571 3.14E-25 1.82E-07

rs9267546 6p21.33 (31,673,436) rs4151664 6p21.33 (31,920,873) 8.340 1.08E-31 2.88E-31

rs4151664 6p21.33 (31,920,873) rs2260000 6p21.33 (31,593,476) 7.749 3.74E-18 1.81E-06

rs2523608 6p21.33 (31,322,559) rs4151664 6p21.33 (31,920,873) 7.695 1.08E-18 4.93E-09

rs4151664 6p21.33 (31,920,873) rs2855807 6p21.33 (31,469,323) 7.444 3.88E-17 3.35E-05

rs2596464 6p21.33 (31,416,156) rs4151664 6p21.33 (31,920,873) 7.379 2.67E-15 5.40E-10

rs3129939 6p21.32 (31,412,961) rs3131296 6p21.32 (32,172,993) 7.376 6.43E-41 4.45E-30

rs2516464 6p21.33 (31,416,156) rs12663103 6p21.32 (32,161,324) 7.229 4.25E-13 3.74E-07

rs6906662 6p21.32 (32,266,506) rs9267649 6p21.33 (31,824,828) 7.187 1.59E-25 2.86E-06

rs12153855 6p21.33 (32,074,804) rs2523608 6p21.33 (31,322,559) 7.181 1.59E-23 6.91E-09

rs4149013 12p12.2 (21,282,410) rs9356206 6q27 (164,818,834) 6.485 9.82E-09 1.11E-05

rs535586 6p21.33 (31,860,337) rs2523589 6p21.33 (31,327,334) 6.299 1.84E-44 5.45E-43

rs2523589 6p21.33 (31,327,334) rs659445 6p21.33 (31,864,304) 6.268 4.08E-45 9.51E-44

rs408359 6p21.32 (32,141,883) rs4151664 6p21.33 (31,920,873) 6.038 4.30E-21 1.64E-21

rs2164182 chr11q21 (95,981,029) rs16864296 1q24.3 (171,236,326) 5.945 8.34E-08 9.86E-06

rs2227956 6p21.32 (31,778,272) rs2523589 6p21.33 (31,327,334) 5.851 1.39E-42 2.91E-42

rs12050395 14q31.3 (86,210,504) rs2301092 5q14.3 (83,363,112) 5.831 1.67E-08 2.33E-06

rs12663103 6p21.32 (32,161,324) rs9267649 6p21.33 (31,824,828) 5.827 4.99E-15 1.21E-02

rs535586 6p21.33 (31,860,337) rs12663103 6p21.32 (32,161,324) 5.810 6.66E-11 2.62E-05

rs9267532 6p21.33 (31,639,979) rs9267487 6p21.33 (31,511,350) 5.806 6.48E-19 3.25E-20

rs9267487 6p21.33 (31,511,350) rs9501587 6p21.33 (31,346,937) 5.804 1.75E-24 1.96E-05

rs12663103 6p21.32 (32,161,324) rs3130637 6p21.33 (31,488,145) 5.800 4.52E-16 2.79E-05

rs2948369 8p22 (12,736,387) rs4077920 8q22.1 (98,893,864) 5.800 6.05E-09 1.90E-07
aBold data are genome-wide significant interactions.
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Wu et al. [38] introduced a haplotype-based measure
based on the following term:

IGH ¼ ORG1H1

ORG1H2ORG2H1

where ORG1H1 is the odds ratio for both risk haplo-
types when carried together, compared to the baseline
Table 8 Most significant interactions detected through exhau

rs number Chromosome Position

SNP1 SNP2 SNP1 SNP2 SNP1 SN

rs2254556 rs9267532 6 6 31,374,854 31

rs9267532 rs2523518 6 6 31,672,202 31

rs2596437 rs9267532 6 6 31,371,309 31
aBold data are genome-wide significant interactions. bR2 were calculated using cont
haplotypes; ORG1H2 and ORG2H1 are the odds ratios
for each risk haplotype, respectively, compared to the
baseline haplotype.
Although both methods are based on odds ratios, the

methods differ in several respects. First, and most sig-
nificantly, Wu’s method uses haplotypes, which typically
require the statistical inference of haplotypes. Even though
this design was shown to be better powered than classical
stive search after main effect SNPs removal

Marginal effect p-valuea IOR R2b

p-value

P2 SNP1 SNP2

,672,202 0.008 0.076 1.22E-22 5.23 0.002

,373,351 0.076 0.006 3.15E-22 5.15 0.002

,672,202 0.006 0.076 7.56E-22 5.1 0.002

rols only.



Figure 1 Power of different approaches to detect simulated epistatic interactions across the six epistasis models by Ritchie [28]. Purple:
FORCE – Green: MB-MDR – Blue: PLINK Epistasis – Red: PLINK FastEpistasis. Refer to Table 3 for the definitions of the 6 interaction models.

Figure 2 Power of different approaches to detect simulated epistatic interactions across the six epistasis models by Ritchie [28], in the
presence of noise. Comparison of the power of four methods to detect interaction in the presence of one source of noise. GH: Genetic
heterogeneity – GE: Genotyping errors – MS: Missing data – PC: Phenocopy. When GH is simulated, three different ways of calculating power are
employed: the power of detecting both pairs in the same dataset, the power of detecting the first (fixed) pair and the power to detect either of
the two epistatic pairs. Purple: FORCE – Green: MB-MDR – Blue: PLINK Epistasis – Red: PLINK FastEpistasis.
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Table 9 Power and family-wise error rate (FWER) of FORCE, MBMDR, Plink Epistasis and Plink FastEpistasis on 6 epistasis
models with or without noise

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

No noise FORCE Powera 1 0.97 0.96 1 0.93 0.99

FWERb 0.05 0.02 0.02 0.06 0.05 0.04

MBMDR Power 1 1 1 0.98 0.87 0.97

FWER 0.02 0 0 0.01 0.01 0.01

Plink Epistasis Power 0 1 0.32 0.98 0.9 0.97

FWER 0.04 0.05 0.02 0.02 0 0.03

FastEpistasis Power 0 1 0.38 0.98 0.81 0.84

FWER 0.07 0.07 0.02 0.02 0.01 0.05

GE FORCE Power 0.99 0.99 0.97 1 0.95 0.99

FWER 0.03 0.03 0.08 0.03 0.03 0.04

MBMDR Power 1 1 1 0.99 0.85 1

FWER 0 0 0.01 0.02 0 0

Plink Epistasis Power 0 1 0.28 0.99 0.87 0.99

FWER 0 0 0.07 0.02 0 0

FastEpistasis Power 0.01 1 0.31 1 0.74 0.92

FWER 0.04 0 0.09 0.05 0 0

MS FORCE Power 0.99 0.96 0.95 1 0.93 0.99

FWER 0.07 0.02 0.02 0.03 0.03 0.06

MBMDR Power 1 1 1 0.99 0.8 0.94

FWER 0 0 0 0 0 0

Plink Epistasis Power 0 1 0.26 1 0.8 0.97

FWER 0.03 0.02 0.08 0.02 0 0

FastEpistasis Power 0 1 0.29 1 0.67 0.91

FWER 0.06 0.01 0.1 0.04 0 0

PC FORCE Power 0.08 0.55 0.13 0.33 0.23 0.37

FWER 0.03 0.05 0.05 0.06 0.04 0.07

MBMDR Power 0.72 0.98 0.12 0.09 0.11 0.16

FWER 0 0 0 0 0 0

Plink Epistasis Power 0 0.95 0.01 0.21 0.19 0.28

FWER 0.04 0.03 0.05 0.06 0.01 0

FastEpistasis Power 0 0.99 0.01 0.23 0.07 0.21

FWER 0.07 0.03 0.04 0.06 0.01 0.01

Genotype errors (GE), missing data (MS) or phenocopy (PC). aIn bold, power higher than 50%. bIn bold, FWER lower than 5%.
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genotype-based statistics, the additional calculations are
computationally costly. As a result, FORCE can perform
an exhaustive genome-wide epistasis search in a few days
on a single compute core while, in practice, Wu’s method
only allows a limited number of SNP pairs to be tested.
In addition to the different statistics themselves, the

approaches to calculating significance differ. FORCE
relies on an exact P-value that requires too much time
to be calculated exhaustively for all SNP pairs. Instead,
P-values are calculated only for pairs with the highest
IOR. Conversely, Wu et al. used an approximate, chi-
square distribution-based, P-value which can be applied
to each investigated pair of the search.
Our study on WTCCC psoriasis data suggests that the

computational effort for exhaustive testing is currently
not just a luxury. The popular class of conditional ana-
lyses focuses only on possible interactions of previously
implicated SNPs – often the only option to perform
large-scale analysis in reasonable time. When comparing
conditional and exhaustive FORCE analyses, we found
that the conditional approach only detects interactions
of vastly weaker statistical significance.



Table 10 Power and family-wise error rate (FWER) of FORCE, MBMDR, Plink Epistasis and Plink FastEpistasis on 6 epistasis models without noise or with simu-
lated genetic heterogeneity (GH)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Both First Either Both First Either Both First Either Both First Either Both First Either Both First Either

FORCE Powera 0.01 0.08 0.14 0.38 0.6 0.82 0.03 0.19 0.34 0.16 0.39 0.62 0.04 0.21 0.38 0.1 0.34 0.57

FWERb

0.02
0.07 0.07 0.04 0.02 0.02

MBMDR Power 0.75 0.86 0.97 0.96 0.98 1 0 0.09 0.17 0.01 0.07 0.13 0 0.07 0.13 0.03 0.16 0.28

FWER
0

0 0 0 0 0

Plink Epistasis Power 0 0 0 0.91 0.96 1 0 0.02 0.03 0.05 0.29 0.52 0 0.13 0.26 0.02 0.25 0.47

FWER 0.01 0.02 0.01 0.05 0 0

FastEpistasis Power 0 0 0 0.96 0.98 1 0 0.02 0.04 0.08 0.31 0.54 0 0.07 0.14 0.02 0.18 0.34

FWER 0.02 0.03 0.01 0.07 0.01 0
aIn bold, power higher than 50%. bIn bold, FWER lower than 5%.
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Table 11 Power of FORCE detection method, impact of various sources of noise and combinations of them for the 6
epistatic models

Type of noise Model 1a Model 2 Model 3 Model 4 Model 5 Model 6

No noise 1 0.97 0.96 1 0.93 0.99

Genotype
errors (GE)

0.99 0.99 0.97 1 0.95 0.99

Phenocopy (PC) 0.08 0.55 0.13 0.33 0.23 0.37

Misssing
data (MS)

0.99 0.96 0.95 1 0.93 0.99

GE + PC 0.05 0.62 0.18 0.3 0.31 0.35

GE +MS 0.95 0.98 0.96 1 0.91 0.99

PC + MS 0.06 0.52 0.21 0.31 0.21 0.26

GE + PC +MS 0.09 0.55 0.21 0.46 0.13 0.35

both first either both first either both first either both first either both first either both first either

Genetic
heterogeneity (GH)

0.01 0.08 0.14 0.38 0.6 0.82 0 0.19 0.34 0.2 0.39 0.62 0 0.21 0.38 0.1 0.34 0.57

GH + GE 0.01 0.09 0.16 0.34 0.6 0.85 0.03 0.18 0.32 0.17 0.4 0.62 0.04 0.23 0.41 0.14 0.31 0.50

GH + PC 0 0.015 0.03 0.02 0.09 0.16 0 0.01 0.02 0 0.02 0.04 0.01 0.035 0.06 0.01 0.04 0.07

GH +MS 0.01 0.04 0.07 0.37 0.57 0.77 0.02 0.145 0.27 0.18 0.385 0.59 0.03 0.19 0.35 0.07 0.28 0.50

GH+GE + PC 0 0.01 0.02 0.03 0.105 0.18 0 0.02 0.04 0 0.025 0.05 0 0.025 0.05 0 0.03 0.06

GH +GE +MS 0 0.05 0.1 0.33 0.665 0.80 0.02 0.155 0.29 0.13 0.385 0.64 0.03 0.23 0.43 0.13 0.305 0.48

GH + PC +MS 0 0.005 0.01 0.01 0.095 0.18 0 0.025 0.05 0 0.04 0.08 0 0.005 0.01 0 0.035 0.07

GH + GE +
PC +MS

0 0.015 0.03 0.01 0.08 0.15 0 0.015 0.03 0 0.035 0.07 0 0.015 0.03 0 0.03 0.06

GE: Genotyping errors – GH: Genetic heterogeneity – MS: Missing data – PC: Phenocopy. In case of GH, power is calculated in 3 different ways as the proportion
of datasets in which both, the first or either of the interacting pairs are detected. aIn bold, power higher than 50%.

Table 12 Family-wise error rate (FWER) of FORCE for the 6 epistatic models and 16 noise conditions tested

Family-wise error rate Model 1a Model 2 Model 3 Model 4 Model 5 Model 6

No noise 0.05 0.02 0.02 0.06 0.05 0.04

Genotype errors (GE) 0.03 0.03 0.08 0.03 0.03 0.04

Genetic heterogeneity (GH) 0.02 0.07 0.07 0.04 0.02 0.02

Phenocopy (PC) 0.03 0.05 0.05 0.06 0.04 0.07

Misssing data (MS) 0.07 0.02 0.02 0.03 0.03 0.06

GE + GH 0.05 0.07 0.04 0.03 0.01 0.07

GE + PC 0.05 0.05 0.01 0.02 0.03 0.02

GE +MS 0.02 0.01 0.06 0.04 0.04 0.07

GH + PC 0.05 0.05 0.03 0.02 0.03 0.03

GH +MS 0.04 0.07 0.05 0.03 0.03 0.01

PC + MS 0.03 0.02 0.03 0.06 0.04 0.03

GE + GH + PC 0.07 0.03 0.06 0.03 0.02 0.04

GE + GH +MS 0.07 0.05 0.04 0.01 0.05 0.05

GH + PC +MS 0.04 0.02 0.06 0.02 0.03 0.03

GE + PC + MS 0.05 0.08 0.06 0.06 0.05 0.05

GE + GH + PC +MS 0.02 0.07 0.06 0.04 0.05 0.06

GE: Genotyping errors – GH: Genetic heterogeneity – MS: Missing data – PC: Phenocopy. aIn bold, FWER > 0.05.
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Our systematic study on small simulated datasets indi-
cates that FORCE not only “goes farther” than existing
approaches because of its exhaustive search, but also
detects fundamentally different types of interactions, in
particular in the biologically more relevant models 3–6.
In two out of six models of epistatic interaction de-
scribed by Ritchie [28], and across the different sources
of noise in the data, FORCE consistently displayed a
good power of detection compared to other approaches.
Interestingly, each of the four approaches is always less
efficient than another for at least one model associated
with one type of noise.
Finally, by applying FORCE to WTCCC psoriasis data,

we were able to detect statistical interactions between
SNPs in the HLA region, even after the exclusion of all
SNPs with main effects. To our knowledge this consti-
tutes the first demonstration that the genetic structure
of the HLA region cannot be understood by the analysis
of main effects alone and that more than one interacting
locus exists in that region.

Conclusions
Together, the different elements of our study suggest
that FORCE represents a valuable new addition to the
arsenal of genome-wide epistasis detection approaches
for case–control studies. As with other approaches, the
additionally detected interactions are a priori of a statis-
tical nature, and require detailed analysis and follow-up.
Beyond this, our study has provided an example for

the need for exhaustive epistasis analysis. In the future,
exhaustive analysis will be facilitated by the ever-
increasing computational power available to biological
research. On one hand, this may enable the exhaustive
calculation of FORCE P-values, which can be expected
to lead to a potentially much enlarged set of statistically
significant interactions. On the other hand, more com-
putational power, as well as algorithmic improvements,
may also render exhaustive analysis under those models
of interactions feasible for which running times are pro-
hibitive today. Finally, we believe that these improve-
ments are necessary for the integration of different types
of interactions and other types of large-scale data, which
may ultimately be key to understanding the genetic basis
of complex diseases.

Additional file

Additional file 1: Table S1. Epistasis analysis among GWAS hits: all 153
pairs of the conditional search. Table S2. FORCE Exhaustive search top
100 hits on psoriasis data.
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