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Abstract

Online reviews are often the primary factor in a customer’s decision to purchase a
product or service, and are a valuable source of information that can be used to
determine public opinion on these products or services. Because of their impact,
manufacturers and retailers are highly concerned with customer feedback and
reviews. Reliance on online reviews gives rise to the potential concern that
wrongdoers may create false reviews to artificially promote or devalue products
and services. This practice is known as Opinion (Review) Spam, where spammers
manipulate and poison reviews (i.e., making fake, untruthful, or deceptive reviews)
for profit or gain. Since not all online reviews are truthful and trustworthy, it is
important to develop techniques for detecting review spam. By extracting
meaningful features from the text using Natural Language Processing (NLP), it is
possible to conduct review spam detection using various machine learning
techniques. Additionally, reviewer information, apart from the text itself, can be
used to aid in this process. In this paper, we survey the prominent machine
learning techniques that have been proposed to solve the problem of review
spam detection and the performance of different approaches for classification and
detection of review spam. The majority of current research has focused on
supervised learning methods, which require labeled data, a scarcity when it comes
to online review spam. Research on methods for Big Data are of interest, since
there are millions of online reviews, with many more being generated daily. To
date, we have not found any papers that study the effects of Big Data analytics for
review spam detection. The primary goal of this paper is to provide a strong and
comprehensive comparative study of current research on detecting review spam
using various machine learning techniques and to devise methodology for
conducting further investigation.

Keywords: Review spam; Opinion mining; Web mining; Machine learning; Big data;
Classification
Introduction
As the Internet continues to grow in both size and importance, the quantity and

impact of online reviews continually increases. Reviews can influence people across a

broad spectrum of industries, but are particularly important in the realm of e-

commerce, where comments and reviews regarding products and services are often

the most convenient, if not the only, way for a buyer to make a decision on whether or

not to buy them. Online reviews may be generated for a variety of reasons. Often, in

an effort to improve and enhance their businesses, online retailers and service
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providers may ask their customers to provide feedback about their experience with the

products or services they have bought, and whether they were satisfied or not. Cus-

tomers may also feel inclined to review a product or service if they had an exceptionally

good or bad experience with it. While online reviews can be helpful, blind trust of these

reviews is dangerous for both the seller and buyer. Many look at online reviews before

placing any online order; however, the reviews may be poisoned or faked for profit or

gain, thus any decision based on online reviews must be made cautiously. Furthermore,

business owners might give incentives to whoever writes good reviews about their mer-

chandise, or might pay someone to write bad reviews about their competitor’s products

or services. These fake reviews are considered review spam and can have a great impact

in the online marketplace due to the importance of reviews.

Review spam can also negatively impact businesses due to loss in consumer trust.

The issue is severe enough to have attracted the attention of mainstream media and

governments. For example, the BBC and New York Times have reported that “fake

reviews are becoming a common problem on the Web, and a photography company

was recently subjected to hundreds of defamatory consumer reviews” [1]. In 2014, the

Canadian Government issued a warning “encouraging consumers to be wary of fake

online endorsements that give the impression that they have been made by ordinary

consumers” and estimated that a third of all online reviews were fake1. As review spam

is a pervasive and damaging problem, developing methods to help businesses and

consumers distinguish truthful reviews from fake ones is an important, but challenging

problem.

In the literature, review spam has been categorized into three groups, proposed by

Dixit et al. [2]: (1) Untruthful Reviews – the main concern of this paper, (2) Reviews on

Brands – where the comments are only concerned with the brand or the seller of the

product and fail to review the product, and (3) Non-Reviews – those reviews that

contain either unrelated text or advertisements. The first category, untruthful reviews,

is of most concern as they undermine the integrity of the online review system. Detec-

tion of type 1 review spam is a challenging task as it is difficult, if not impossible, to

distinguish between fake and real reviews by manually reading them. To illustrate the

difficulty of this task, we consider a real and fake example from the dataset created by

Ott et al. [3]. As a human judge it is difficult to confidently ascertain which review is

fake and which is authentic.

Review 1: Great Hotel This building has been fantastically converted into studios/

suites. We only had a studio which was brilliant can’t imagine how the suite could have

bettered what we had. The kitchen had everything cooker microwave dishwasher and

fridge freezer. Bathroom was a good size and again had everything you need including

good quality toiletries. Hotel also has a good gym and swimming pool and excellent

laundry facilities if you need them. The complimentary breakfast each morning was also

very good and had an excellent choice. The parking in the hotel was secure and reason-

ably priced. The location was pretty central and had easy access to the underground

city. Would definitely stay here again.

Review 2: During my latest business trip, both me and my wife recently stayed at the

Omni Chicago Hotel in Chicago, Illinois, at one of their Deluxe suites. Unfortunately,

and I think I speak for both of us, we were not fully satisfied with the hotel. The hotel

advertises luxury-level accommodations, and while the rooms resemble what one can
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see in the pictures, the service is certainly sub-par. When one plans a stay at such an

establishment, they expect a service that goes beyond having fresh towels in the bath-

room when they check in. First of all, the air-conditioning in the room seemed to be in

need of a new filter and when it was first turned on, the air coming out seemed musty.

Second of all, the fitness center was only open until 10:30 pm. For people who like to

exercise after dinner, this can certainly be a problem. Especiaally considering that it

does not take much to have the fitness center available around the clock or until mid-

night. For these, as well as other similar reasons, I would not recommend this hotel, if

one is looking for luxury accommodations.

There are no clear indications or signals from the text of the two reviews that indi-

cate to the casual reader that the first review is real while the second is a fake. Never-

theless, guides provided by the Consumerist2 and MoneyTalksNews3 websites offer

tips to help consumers spot fake reviews. A computer scientist might seek to utilize

this logic when training data mining and machine learning algorithms to find these

features in the review that will determine if it is real or fake.

Over 18 million reviews were created on Yelp 20144 and Trip Advisor currently has

over 200 million reviews5. Online reviews are constantly being generated on various

web sites across the Internet. Consequently, Big Data techniques are needed to address

the problem of review spam. Big Data, while an overused buzzword with an elusive

definition, is often quantified with the Four V’s6: (1) Volume – the sheer size and scale

of the data, (2) Velocity – the rate at which new data is created and consumed by pro-

cessing engines, (3) Variety – the different formats that data may be stored in, and (4)

Veracity – the quality level of the data. The Volume and Velocity of online reviews are

noted by merely visiting e-commerce and customer rating sites, such as Yelp and

Amazon. There is great Variety across the possible industry sectors for reviews (such as

hotels, restaurants, e-commerce, home services, etc.), along with the multiplicity of

languages that reviews are written in. Veracity is a problem with online reviews, since

the vast majority of reviews are unlabeled, which means it is not easily known whether

the review is fake or not. Additionally, standard machine learning algorithms tend to

break down and become ineffective when dealing with data of this size, which poses a

problem when trying to apply these algorithms for review spam detection [4]. Thus,

review spam detection is a Big Data problem, as there are numerous challenges when

analyzing and classifying varying reviews from disconnected sources.

Data mining and machine learning techniques, primarily those for web and text

mining, offer an exciting contribution to detecting fraudulent reviews. According to Liu

[5], web mining is “the process for finding useful information and relations from the

contents available on the web by largely relying on the available machine learning

techniques and methods”. Web mining can be divided into three types of tasks: struc-

ture, content and usage mining. Content mining is concerned with knowledge and

information extraction, and categorizing entities using data mining and machine learn-

ing approaches. A straightforward example of content mining is opinion mining. Opin-

ion mining consists of attempting to ascertain the sentiment (i.e., positive or negative

polarity) of a text passage by analyzing the features of that passage. A classifier can be

trained to classify new instances by analyzing the text features associated with different

opinions along with their sentiment. Review spam detection, like opinion mining, lies

in the category of content mining, but also utilizes features not directly linked to the
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content [6]. Constructing features to describe the text of the review involves text min-

ing and Natural Language Processing (NLP). Additionally, there may be features associ-

ated with the review’s writer, its post date/time and how the review deviates from other

reviews for the same product or service.

It is important to mention that while most existing machine learning techniques are

not sufficiently effective for review spam detection, they have been found to be more

reliable than manual detection. The primary issue, as identified by Abbasi et al. [7], is

the lack of any distinguishing words (features) that can give a definitive clue for classifi-

cation of reviews as real or fake. A common approach in text mining is to use a bag of

words approach where the presence of individual words, or small groups of words are

used as features; however, several studies have found that this approach is not sufficient

to train a classifier with adequate performance in review spam detection. Therefore,

additional methods of feature engineering (extraction) must be explored in an effort to

extract a more informative feature set that will improve review spam detection. In the

literature, there are many studies that consider different sets of features for the study of

review spam detection utilizing a variety of machine learning techniques. Jindal et al.

[8], Li et al. [9] and Mukherjee et al. [10], used individual words from the review text

as the features, while Shojaee et al. [11] used syntactic and lexical features. An additional

study by Ott et al. [12] used review characteristic features in addition to unigram and

bigram term-frequencies.

Features associated with the behavior of the reviewer also merit further investiga-

tion. The study of writers of review spam differs from that of the review spam itself

since features representing the characteristics and behaviors for reviewers cannot be

extracted from the text of a single review. Examples of studying spammer behavior

include spotting multiple User IDs for the same author [13] and identifying groups of

spammers by studying their behavioral footprints [14–16]. Alternatively, graph-theory

based methods can also be used to find relationships between the reviews and their

corresponding authors and have shown promising results [17, 18]. Combining review

spam detection through a review’s features, and spammer detection through analysis

of their behavior may be a more effective approach for detecting review spam than

either approach alone.

Before addressing the challenges associated with improving review spam detection,

we must first address collection of data. Data is a major part of any machine learning

based model, and while a massive volume of reviews are available on the Internet,

collecting and labeling a sufficient number of them to train a review spam classifier is a

difficult task. An alternative to collecting and labeling data is to artificially create review

spam datasets by using synthetic review spamming, which takes existing truthful

reviews and builds fake reviews from them. Sun et al. [19] used this approach to create

a review spam dataset.

In this paper we discuss machine learning techniques that have been proposed for

the detection of online review spam, with an emphasis on feature engineering and the

impact of those features on the performance of the spam detectors. Additionally, the

merits of supervised, unsupervised and semi-supervised learning methods are analyzed

and results of current research using each approach presented along with a compara-

tive analysis. Finally, we provide suggestions for aspects of review spam detection

requiring further investigation, and best practices for conducting future research. To
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the best of our knowledge, this paper includes information about all of the datasets that

have been used, or generated for use, in the reviewed literature.

The structure of this paper is as follows. The Feature Engineering for Review Spam

Detection section provides an overview of feature engineering in this domain, both

for review centric spam detection and reviewer centric spam detection. The Review

Centric Review Spam Detection section discusses and analyzes current research using

supervised, unsupervised and semi-supervised machine learning for review centric

spam detection. The Reviewer Centric Review Spam Detection section provides an

overview of studies using reviewer centric features. The Comparative Analysis and

Suggestions section contains a discussion and comparison between the different

methods proposed. The Conclusion summarizes our findings and reviews the import-

ant of both past and future work.
Feature engineering for review spam detection
Feature engineering is the construction or extraction of features from data. In this

section, we analyze and discuss some of the commonly used features in the domain of

review spam detection. As briefly outlined in the introduction, previous studies have

used several different types of features that can be extracted from reviews, the most

common being words found in the review’s text. This is commonly implemented using

the bag of words approach, where features for each review consist of either individual

words or small groups of words found in the review’s text. Less frequently, re-

searchers have used other characteristics of the reviews, reviewers and products,

such as syntactical and lexical features [11] or features describing reviewer behav-

ior. The features can be broken down into the two categories of review and re-

viewer centric features. Review centric features are features that are constructed

using the information contained in a single review. Conversely, reviewer centric

features take a holistic look at all of the reviews written by any particular author,

along with information about the particular author.

It is possible to use multiple types of features from within a given category, such as

bag-of-words with POS tags, or even create feature sets that take features from both

the review centric and reviewer centric categories. Using an amalgam of features to

train a classifier has generally yielded better performance then any single type of

feature, as demonstrated in Jindal et al. [20], Jindal et al. [21], Li et al. [9], Fei. et al. [22],

Mukherjee et al. [23] and Hammad [24]. Li et al. [25] concluded that using more general

features (e.g., LIWC and POS) in combination with bag-of-words, is a more robust

approach than bag-of-words alone. A study by Mukherjee et al. [23] found that using the

abnormal behavioral features of the reviewers performed better than the linguistic features

of the reviews themselves. The following subsections discuss and provide examples of

some review centric and reviewer centric features.
Review centric features

We split review centric features into several categories. First, we have bag-of-words,

and bag-of-words combined with term frequency features. Next, we have Linguistic

Inquiry and Word Count (LIWC) output, parts of speech (POS) tag frequencies,
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Stylometric and Syntactic features. Finally, we have review characteristic features that

refer to information about the review not extracted from the text.

Bag of words

In a bag of words approach, individual or small groups of words from the text are used

as features. These features are called n-grams and are made by selecting n contiguous

words from a given sequence, i.e., selecting one, two or three contiguous words from a

text. These are denoted as a unigram, bigram, and trigram (n = 1, 2 and 3) respectively.

These features are used by Jindal et al. [21], Li et al. [9] and Fei et al. [22]. However, Fei

et al. observed that using n-gram features alone proved inadequate for supervised

learning when learners were trained using synthetic fake reviews, since the features

being created were not present in real-world fake reviews. An example of the unigram

text features extracted from three sample reviews is shown in Table 1. Each occurrence

of a word within a review will be represented by a “1” if it exists in that review and “0”

otherwise.

1. Review1: The hotel rooms were so great

2. Review2: We had a great time at this hotel great stay

3. Review3: The rooms service is bad

Term frequency

These features are similar to bag of words but also include term-frequencies. They have

been used by Ott et al. [12] and Jindal et al. [8]. The structure of a dataset that uses the

term frequencies is shown in Table 2, and is similar to that of the bag of words dataset;

however, instead of simply being concerned with the presence or absence of a term, we

are concerned with the frequency with which a term occurs in each review, so we in-

clude the count of occurrences of a term in the review.

4. Review4: The hotel rooms were so great, were so comfort

5. Review5: We had a great time at this hotel great stay

6. Review6: The rooms service is bad so bad

LIWC output and POS tag frequencies

Linguistic Inquiry and Word Count7 (LIWC) is a text analysis software tool in which

users can “build [their] own dictionaries to analyze dimensions of language specifically

relevant to [their] interests.” Part of Speech (POS) tagging involves tagging word fea-

tures with a part of speech based on the definition and its context within the sentence

in which it is found [26]. Ott et al. [3] and Li et al. [25] achieved better results by also

including these features than with bag of words alone. Table 3 shows the results from
Table 1 Example of text features dataset structure, for reviews 1, 2 and 3

Review the hotel rooms were so great we had a time at this service is bad stay

Review1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Review2 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1

Review3 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0



Table 2 Example of text features frequencies dataset structure, for reviews 4, 5 and 6

Review the hotel rooms were so great comfort we had a time at this service is bad stay

Review4 1 1 1 2 2 1 1 0 0 0 0 0 0 0 0 0 0

Review5 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1

Review6 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 2 0
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the LIWC program when applied to Review 7. Personal text refers to text associated

with personal concerns such as work, home or leisure activities. Formal text refers to

text disassociated from personal concerns, consisting of psychological processes, lin-

guistic processes and spoken categories. Below Review 7 is the review along with POS

tags for each word. Table 4 shows the meaning of each POS tag8, while Table 5 presents

the frequencies of these tags within the review.

7. Review7: I like the hotel so much, the hotel rooms were so great, the room service

was prompt, I will go back for this hotel next year. I love it so much. I recommend

this hotel for all of my friends.
Tabl

LIWC D

Self-re

Social

Positiv

Negat

Overal

Article

Big wo
Review7: I_PRP like_VBP the_DT hotel_NN so_RB much_RB,_, The_DT hotel_NN

rooms_NNS were_VBD so_RB great_JJ,_, the_DT room_NN service_NN was_VBD

prompt_JJ,_, I_PRP will_MD go_VB back_RB for_IN this_DT hotel_NN next_JJ

year_NN ._. I_PRP love_VBP it_PRP so_RB much_RB ._. I_PRP recommend_VBP

this_DT hotel_NN for_IN all_DT of_IN my_PRP$ friends_NNS ._.
Stylometric

These features were used by Shojaee et al. [11] and are either character and word-

based lexical features or syntactic features. Lexical features give an indication of the

types of words and characters that the writer likes to use and includes features such as

number of upper case characters or average word length. Syntactic features try to “rep-

resent the writing style of the reviewer” and include features like the amount of punctu-

ation or number of function words such as “a”, “the”, and “of”.

Semantic

These features deal with the underlying meaning or concepts of the words and are

used by Raymond et al. [1] to create semantic language models for detecting
e 3 LIWC results when applying Review7 text

imension Your data Personal texts Formal texts

ferences (I, me, my) 12.50 11.4 4.2

words (Mate, talk, they, child) 2.50 9.5 8.0

e emotions (Love, nice, sweet) 5.00 2.7 2.6

ive emotions (Hurt, ugly, nasty) 0.00 2.6 1.6

l cognitive words (cause, know, ought) 0.00 7.8 5.4

s (a, an, the) 7.50 5.0 7.2

rds (>6 letters) 7.50 13.1 19.6



Table 4 POS tags abbreviation descriptions

Tag Description Tag Description

CC Coordinating conjunction PRP$ Possessive pronoun

CD Cardinal number RB Adverb

DT Determiner RBR Adverb, comparative

EX Existential there RBS Adverb, superlative

FW Foreign word RP Particle

IN Preposition or subordinating conjunction SYM Symbol

JJ Adjective TO to

JJR Adjective, comparative UH Interjection

JJS Adjective, superlative VB Verb, base form

LS List item marker VBD Verb, past tense

MD Modal VBG Verb, gerund or present participle

NN Noun, singular or mass VBN Verb, past participle

NNS Noun, plural VBP Verb, non-3rd person singular present

NNP Proper noun, singular VBZ Verb, 3rd person singular present

NNPS Proper noun, plural WDT Wh-determiner

PDT Predeterminer WP Wh-pronoun

POS Possessive ending WP$ Possessive wh-pronoun

PRP Personal pronoun WRB Wh-adverb
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untruthful reviews. The rationale is that changing a word like “love” to “like” in a re-

view should not affect the similarity of the reviews since they have similar meanings.
Review characteristic

These features contain metadata (information about the reviews) rather than informa-

tion on the text content of the review and are seen in works by Li et al. [9] and

Hammad [24]. These characteristics could be the review’s length, date, time, rating,

reviewer id, review id, store id or feedback. An example of review characteristic

features is presented in Table 6. Review characteristic features have shown to be bene-

ficial in review spam detection. Strange or anomalous reviews can be identified using

this metadata, and once a reviewer has been identified as writing spam it is easy to

label all reviews associated with their reviewer ID as spam. Some of these features

may not be available for all sources of review spam and thus limits their utility for

detection of spam in many data sources.

Reviewer centric features

As highlighted earlier, identifying spammers can improve detection of fake reviews,

since many spammers share profile characteristics and activity patterns. Various combi-

nations of features engineered from reviewer profile characteristics and behavioral

patterns have been studied, including work by Jindal et al. [20], Jindal et al. [21], Li et al.

[9], Fei et al. [22], Mayzlin et al. [27] and Mukherjee et al. [23]. Examples of reviewer

centric features are presented in Table 7 and further elaboration on select features used in

Mukherjee et al. [23] along with some of their observations follows:



Table 5 POS tagging frequencies for Review 7

POS Tag DT IN JJ MD NN NNS PRP RB VB VBD VBP

Review Review 7 6 3 3 1 7 2 6 6 1 2 3
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Maximum number of reviews

It was observed that about 75 % of spammers write more than 5 reviews on any given

day. Therefore, taking into account the number of reviews a user writes per day can

help detect spammers since 90 % of legitimate reviewers never create more than one

review on any given day.

Percentage of positive reviews

Approximately 85 % of spammers wrote more than 80 % of their reviews as positive

reviews, thus a high percentage of positive reviews might be an indication of an un-

trustworthy reviewer.

Review length

The average review length may be an important indication of reviewers with question-

able intentions since about 80 % of spammers have no reviews longer than 135 words

while more than 92 % of reliable reviewers have an average review length of greater

than 200 words.

Reviewer deviation

It was observed that spammers’ ratings tend to deviate from the average review rating

at a far higher rate than legitimate reviewers, thus identifying user rating deviations

may help in detection of dishonest reviewers.

Maximum content similarity

The presence of similar reviews for different products by the same reviewer has been

shown to be a strong indication of a spammer. Mukherjee et al. [23] used cosine simi-

larity; however, other more advanced similarity functions based upon word meanings

versus the words themselves have shown promise [1].

Review centric review spam detection
Review centric review spam detection is the most common form of review spam

detection, which uses machine learning techniques to build models using the content

and metadata of the reviews. Supervised learning refers to the task of learning from
Table 6 Reviews characteristics dataset structure

Review Review ID Product ID Reviewer ID Rating Helpfulness Review char Review
words

Date Time

Review4 152 012345 226 1 1 38 9 8/5/2013 09:24

Review5 153 012345 789 5 0 35 10 9/1/2015 12:06

Review6 154 012345 789 5 0 25 7 9/1/2015 12:07



Table 7 Reviewers characteristics dataset structure

Reviewer# Product
ID

Reviewer
ID

Reviewer
name

Email
address

# of
Reviews

First
review

Last
review

Max #
reviews
per day

Average
rating

Date Time

Reviewer1 123456 152 JO jo@gmail 2000 09/01/13 09/30/14 30 5 09/30/14 12:05

Reviewer2 123456 153 LI jo@gmail 2300 09/01/13 09/30/14 31 5 09/30/14 12:06

Reviewer3 123456 154 SA sa@gmail 3 05/02/11 06/05/14 1 4 06/05/14 12:00
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labeled data and is the most prevalent method used for review spam detection in the

literature. Unfortunately, this method requires labeled data in order to train a classi-

fier, presenting the challenge of needing methods to procure and accurately label a

sufficient amount of data, which can be problematic in the field of review spam detec-

tion. Conversely, unsupervised learning uses unlabeled data to find unseen relation-

ships between instances independent of a class attribute. An example of unsupervised

learning is clustering, which is able to group instances of unlabeled data based upon

some type of similarity function. Semi-supervised learning is a combination of the

two and uses a few labeled instances in combination with a large number of unlabeled

instances to train a classifier and has shown promise in the area of review spam

detection. These methods are summarized in Table 8 and the following subsections

outline research conducted using these different types of learning in the domain of

review spam detection.
Supervised learning

Supervised learning can be used to detect review spam by looking at it as the classifica-

tion problem of separating reviews into two classes: spam and non-spam reviews. To

the best of our knowledge, the first researchers to have studied deceptive opinion spam

using supervised learning were Jindal et al. [21]. They discuss the evolution of opinion

mining, which had primarily focused on extracting or summarizing the opinions from

text by using Natural Language Processing (NLP). Prior to their contribution, the

content characteristics of the text that might indicate abnormal activities, such as creat-

ing review spam, had not been addressed. In an effort to investigate opinion spam in

reviews and devise techniques for review spam detection, Jindal et al. collected 5.8
Table 8 Types of machine learning techniques

Method Attributes

Supervised Learning Learning from a set of labeled data

Requires labeled training data

Most common form of learning

Unsupervised Learning Learning from a set of unlabeled data

Finds unseen relationships in the data independent of class label

Most common form is clustering

Semi-supervised Learning Learning from labeled and unlabeled data

Only requires a relatively small set of labeled data which is
supplemented with a large amount of unlabeled data

Ideal for cases such as review spam where vast amounts of unlabeled data exist
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million reviews of products on Amazon generated by 2.14 million users. The authors

categorized the reviews of class spam into three types: untruthful opinion, reviews on

brand only, and non-review (labeled types 1, 2 and 3 respectively). They started by find-

ing the near duplicate reviews, which they defined as reviews with a Jaccard similarity

score of over 90 % of their 2-g. This was done using a method known as w-shingling9.

An alternate method for detecting near duplicates using Symantec Language Models

(SLM) was developed by Raymond et al. [1]. They then extracted 36 additional

features that describe the review, reviewer and product reviewed. A logistic regression

model was built using these examples, and when tested using 10-fold cross validation,

an Area Under the receiver operating characteristic Curve (AUC) score of 0.78 was

achieved when using all features, compared to an AUC score of 0.63 when only using

text features. However, the authors recognized that simply finding duplicate reviews is

a trivial task and they wanted to test if a model trained using duplicate reviews would

generalize to find review spam in general. They manually analyzed 100 non-duplicate

reviews that the classifier predicted were spam with the most confidence and found

that 52 % were clearly spam. It was also hypothesized that outlier reviews may in fact

also be opinion spam and a series of lift curves was constructed to demonstrate the

classifier’s effectiveness in identifying these outliers as potential spam.

As a further test, to compare these results with detection of type 2 and 3 review

spam, they manually labeled 470 instances of these types of spam and trained a logis-

tic regression classifier using them. They also tried to use Naïve Bayes (NB) and

Support Vector Machine (SVM) classifiers but found they did not perform as well.

The best model, evaluated using 10-fold cross validation, achieved an AUC score of

over 98 %. From this, they concluded that review spam of types 2 and 3 are much

easier to spot and focus should be paid on type 1 (untruthful opinion) review spam.

Using text only features resulted in an AUC score of 90 % for detection of type 2 and

3 review spam. Their work shows that text features alone are insufficient for detection

of review spam, and the addition of other types of features often improves results;

however, as more types of features are extracted it can be expected that feature set

size increases along with the training dataset size, making the training of a classifier

more computationally expensive and also possibly leading to over fitting. Further

work should also investigate feature selection techniques as a means of reducing data

dimensionality and improving classifier performance. Feature selection selects an

optimal subset of features, removing redundant and irrelevant features that may be

detrimental to classification performance, or result in over-fitting [28]. Additionally,

by reducing the number of features used to train a model, the computational com-

plexity of the task is reduced.

Ott et al. [3] developed and compared three approaches for performing deceptive spam

detection. For their study, they produced a new dataset using Amazon Mechanical Turk

(AMT)10 in combination with TripAdvisor. The untruthful reviews were created by

requesting a group of people to deliberately write 400 fake reviews of positive senti-

ment (i.e., 5 star reviews) for a set of hotels. Additionally, 400 “truthful” 5-star reviews

were collected from the TripAdvisor website for the same hotels. The resulting data-

set consisted of 800 reviews with positive sentiment towards the hotels (fully balanced

with 400 deceptive and 400 truthful-reviews). In a later work they created a second

dataset of the same size and similarly balanced, but of negative sentiment (i.e., 1 and
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2 star reviews) [12]. Combined together, they claimed this to be the first known

“gold-standard” dataset for review spam. For this work, three groups of features were

identified: POS tag frequencies, LIWC output [29], and text categorization based fea-

tures using bigrams. Naïve Bayes and SVM classifiers were trained and evaluated

using 5-fold nested cross-validation where all reviews for any given hotel are fully

contained within a given fold. Their best model achieved an accuracy of 89.8 % using

bigram and LIWC features with an SVM classifier. They also had three human judges

evaluate one fold (160 reviews); the highest accuracy score achieved by a human judge

was approximately 61 %, showing the classifier to outperform human judges by a sub-

stantial margin. It should be noted that while the data set developed in this study is

one of the most used datasets for research in review spam detection, it is not neces-

sarily an accurate representation of actual review spam since the fake reviews gener-

ated for this data set were written with the intent of being used for research and

outsourced to unknown parties, rather than consisting of authentic spam reviews de-

signed with the intent of influencing consumers. It is unclear if a model trained using

this dataset will yield similar results when evaluated on real world data.

Ott et al. [12] conducted a more recent study of deceptive opinion spam using the

same data and framework as they used earlier [3]; however, they limited their scope to

n-gram based features and only used the SVM classifier since it outperformed Naïve

Bayes in their earlier work. Using unigram and bigram term frequency features

achieved an accuracy of approximately 86 % when considering only reviews with

negative sentiment. Again they had human judges evaluate the reviews and found the

classifier outperformed them, with the best judge achieving an accuracy of 65 %. They

also tested classifier performance when using both the positive and negative reviews

together for training and observed that the accuracy on reviews with positive senti-

ment dropped from 89.3 to 88.4 %. The most notable observation is that doubling the

size of the training data, by adding negative sentiment training instances, did not

improve results and, in fact, slightly lowered the accuracy of detecting positive senti-

ment spam reviews. This suggests that separating spam review detection into positive

sentiment spam review detection and negative sentiment spam review detection is

beneficial. Again, some of the data being used is not real-world data and it remains

unknown if the performance of classifiers trained using their data will carry over to

purely real world datasets. Additionally, it should be noted that their experiment

relied entirely on n-gram features, which were shown by Jindal et al. [21] to be inferior

to n-grams in combination with other types of features.

An alternative classification framework was proposed by Li et al. [25]. In their work

they argued that existing supervised learning algorithms in literature are usually

narrowed to one specific domain and rely heavily on domain-specific vocabulary. To

address this, they tried to improve our understanding of the nature of deceptive reviews

by creating a cross domain dataset that included three types of reviews from three

domains (hotel, restaurant and doctor). AMT was used to solicit fake reviews; however

an additional set of fake reviews was solicited from “domain experts”. Truthful reviews

were collected from review websites. Their classification framework was based on using

the Sparse Additive Generative Model (SAGE), which is a generative Bayesian approach

introduced by Eisenstein et al. [30]. Basically, it is “a Bayesian generative approach that

can capture the multiple generative facets (i.e., deceptive vs. truthful, positive vs.
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negative, experienced vs. non-experienced, hotel vs. restaurant vs. doctor)” [25]. The

authors used a combination of topic models (statistical models for discovering abstract

topics in a collection of documents) and generalized additive models (linear models in

which the linear predictor is dependent on unknown, smoother functions) generated

using SAGE as well as SVM in their classification experiments. Additionally, they inves-

tigated different methods of feature engineering and found the use of more general fea-

tures, such as LIWC and POS, to be more robust than unigram features alone when

modeled using SAGE for cross-domain classification; however, when comparing the

intra-domain classification (i.e., hotels reviews only) the best performance is achieved

by unigram features. This indicates that different linguistic features may appear in differ-

ent domains, and more robust cues of deceptive opinion spam need to be identified if a

cross domain classifier is to be created. Of note was that the classifier exhibited particular

difficulty when trained using the restaurant and hotel reviews and evaluated against the

doctor reviews. Using SAGE, accuracies of 64.7 and 63.4 % were achieved using LIWC

and POS tag features respectively but only 52.0 % when using Unigram features.

Shojaee et al. [11] proposed a novel method for detecting review spam by using Stylo-

metric (Lexical and Syntactic) features. (For further details on Stylometric features see

Abbasi et al. [31]). The features in this work are categorized as either lexical features or

syntactic features. Lexical features are character/word based features, while syntactic fea-

tures represent the writing style of the reviewers at the sentence level, such as occurrences

of punctuations or function words. In this work they built SVM and Naïve Bayes classi-

fiers on the dataset created by Ott et al. [3] using a hybrid set of both the lexical and syn-

tactic features and compared this with using either lexical or syntactic features alone.

Using 10-fold cross validation, they observed that the hybrid feature set using the SVM

learner achieved the highest performance, an F-measure of 84 %. Additionally, SVM out-

performed Naïve Bayes for all sets of features. A potential concern of this study is that the

model was trained and evaluated on synthetic fake reviews. Due to this, it is possible that

the classifier performance measured is a poor indication of real world performance, as

was demonstrated by Mukherjee et al. [32]. Also there is no comparison evaluation to de-

termine if using these Stylometric features in addition to n-gram features enhances classi-

fication performance.

Review spam can be found in multiple languages, as reviewers from all around the

world can write online reviews in any language they want. While many of the features

will remain unchanged (i.e., spammers characteristics and behaviors), word features

will change to reflect each language. One study by Hammad [24] proposes an ap-

proach for spam detection in Arabic opinion reviews, illustrating that the methods

used in the above papers can be extended to multiple languages. Hammad, in

addition, recognized the imbalanced class distribution of reviews gathered online. An

imbalanced class distribution occurs when the class of interest, in this case spam

reviews, has relatively few instances compared with the class that is not of interest

(non-spam) reviews. Class imbalance makes it more difficult to identify spam reviews

as classifiers may be biased towards the majority class. Moreover, Hammad created a

new datatset by crawling Arabic reviews from tripadvisor.com, booking.com, and

agoda.ae. He then manually labeled the data by following a set of rules such as: dupli-

cate and near duplicate reviews are labeled as spam, reviews about brands only are

considered as spam, and non-reviews such as ads, discussions, or irrelevant reviews
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are labeled as spam. He extracted 26 features for use in his experiments by combining

review content (text) features, reviewer features, and hotel information features. As

the data he collected was extremely imbalanced, he applied Random Undersampling

(RUS) and Random Oversampling (ROS) to alleviate problems associated with data

skew. Contrary to other research efforts, he found that Naïve Bayes yielded the best

performance, and outperformed SVM. Using ROS he was able to achieve an F-

measure score of 99.59 %. This study is important since it was the first to try to

address the class imbalance inherent to real world spam detection, in contrast to pre-

vious studies that constructed balanced, or roughly balanced data sets.

Unsupervised learning

Because of the difficulty of producing accurately labeled datasets of review spam, the

use of supervised learning is not always applicable. Unsupervised learning provides a

solution for this, as it doesn’t require labeled data. A novel unsupervised text mining

model was developed and integrated into a semantic language model for detecting

untruthful reviews by Raymond et al. [1] and compared against supervised learning

methods. Their model creates an approximation method for calculating the degree of

untruthfulness for reviews based on the duplicate identification results by estimating

the overlap of semantic contents among reviews using a Semantic Language Model

(SLM). In addition to performing unsupervised review spam detection, they also

developed a high-order concept of association mining to extract context-sensitive

concept association knowledge. Their model follows the assumed logic that if the

semantic content of a review is close to those of another review, it is likely that the

two reviews are duplicates and thus examples of spam reviews. For their experiment,

they built a dataset from real-world reviews collected from Amazon. They first identi-

fied reviews with a cosine similarity above some threshold and manually reviewed

them to determine if they were indeed spam. Pairs of reviews which were determined

to be spam by at least 2 out of 3 human judges were labeled as such, and the rest

thrown out. Conversely, reviews that did not have a cosine similarity above a certain

threshold with any other reviews were kept as instances of truthful reviews and not

manually reviewed. The final dataset contained 54,618 reviews, of which 6 % were spam.

Their SLM was then used to assign a “spamminess” score to each instance. Using this

score, they were able to achieve an AUC of .9987 while an SVM model trained on the

same data achieved an AUC of 0.5571. They argue that their experimental results show

that a semantic language modeling and a text mining-based computational model are ef-

fective for the detection of untruthful reviews, and that unsupervised methods can achieve

a high detection rate of duplicate spam reviews.

It should be noted that the high results achieved by SLM are to be expected, as SLM is

performing an operation similar to how the data was labeled. Data was labeled as spam if

it had a high cosine similarity with another instance while their model measures similarity

between instances using semantic analysis. Further work is needed to address how SLM,

and other unsupervised methods, perform on datasets that have review spam which is not

similar to other instances and instances of truthful reviews that are similar to other truth-

ful reviews, since their particular dataset gathered spam and non-spam reviews from the

two ends of the similarity spectrum, ignoring everything in the middle.
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Semi-supervised learning

In other domains, it has been found that using unlabeled data in conjunction with a

small amount of labeled data can considerably improve learner accuracy compared to

completely supervised methods [33]. In a study by Li et al. [9], a two-view semi-

supervised method for review spam detection was created by employing the frame-

work of a co-training algorithm to make use of the large amount of unlabeled reviews

available. The co-training algorithm was developed by Blum and Mitchell [34], and is

a bootstrapping method that uses a set of labeled data to incrementally apply labels to

unlabeled data. It trains 2 classifiers on 2 distinct sets of features and adds the in-

stances most confidently labeled by each classifier to the training set. This effectively

allows large datasets to be generated and used for classification, reducing the demand

to manually produce labeled training instances. A modified version of the co-training

algorithm that only adds instances that were assigned the same label by both classi-

fiers was also proposed. Their dataset was generated with the assistance of students

who manually labeled 6000 reviews collected from Epinions.com, 1394 of which were

labeled as review spam. Four groups of review centric features were created: content,

sentiment, product and metadata. Another two groups of reviewer centric features

were created: profile and behavioral.

In order to use the two-view method for adding unlabeled instances to the training

set, classifiers were trained on each set of features (i.e., one with review centric

features and another with reviewer centric ones). Note that these 2 classifiers are only

used to add instances to the labeled data and the final classifier is trained using all

available features, both review centric and reviewer centric. Experiments were con-

ducted using Naïve Bayes, Logistic Regression and SVM with 10-fold cross validation,

and it was found that Naïve Bayes was the best performer, so all additional work was

performed with Naïve Bayes. They observed that using the co-training semi-

supervised method, they were able to obtain an F-Score of .609, which was higher

than the 0.583 they obtained when not including any unlabeled data. Further, it was

observed that by using their co-training with agreement modification, they were able

to raise this value to 0.631. While these F-Scores appear low, it is hard to compare

them with the performance from other studies as they used their own dataset. The

results do seem to indicate that this type of semi-supervised learning may indeed

help in the area of review spam detection and demands further study with additional

datasets.

PU-Learning is a second type of semi-supervised learning approach, developed by

Liu et al. [35], to learn from a few positive examples and a set of unlabeled data.

Montes-y-Gómez and Rosso adapt this approach for review spam detection in their

work “Using PU-Learning to Detect Deceptive Opinion Spam” [36]. PU-learning is

an iterative method which tries to identify a set of reliably negative instances in the

unlabeled data. The model is trained and evaluated using all of the unlabeled data as

the negative class and any instances that are classified as positive are removed. The

process is repeated until some stop criterion is reached. For evaluation purposes, the

dataset generated by Ott et al. [3] was used and the performance was evaluated using

F-Measure. Classifiers were trained using both Naïve Bayes and SVM as learners.

PU-learning achieved an F-measure of 83.7 % with NB, using only 100 positive exam-

ples. While this is better than the results achieved using 6000 labeled instances and
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co-training by Li F. et al. [9], it is difficult to make a conclusive statement as the

methods use different datasets and, as previously discussed, the dataset created by

Ott et al. may not provide an accurate indication of real world performance.

Although there is little research in the area of using semi-supervised learning for

review spam detection, results obtained using this approach are promising and with

additional research, may yield better performance than supervised learning while

reducing the need to generate large labeled datasets.
Reviewer centric review spam detection
We mentioned earlier that recognizing reviewers who are writing fake reviews is im-

portant in the effort to detect review spam. Using reviewer centric features in combin-

ation with review centric features may be preferred over a review centric only approach

for spam detection. Additionally, gathering behavioral evidence of spammers is easier

than identifying review spam [37].

A thorough study of supervised learning approaches for deceptive review detection

was conducted by Mukherjee et al. [23]. They studied how well existing research

methods work for detecting real-world fake reviews on a commercial website. The

authors tested their models using the Amazon Mechanical Turk (AMT) synthetic fake

reviews dataset on a real-world fake reviews dataset procured from Yelp. In this study,

they found similar results to previous studies, confirming that using n-gram features

performs well on the AMT dataset, however, when used with the real world Yelp data-

set it performed significantly worse. They observed that using behavioral features yields

higher performance than linguistic features alone on the real world Yelp dataset. Three

different features sets were used in the experiment: LIWC, POS and bigrams. In

addition, feature selection using Information Gain (IG) was applied to select the top 1

and 2 % features. One of the main conclusions of the study was that the synthetic

reviews are not necessarily representative of what is found in real world review spam.

Additionally, they observed that using the abnormal behavioral features (i.e., higher

percentage of positive reviews, high number of reviews, average review length, etc.)

yields better results than the n-gram features in these more realistic datasets. The

results of a 5-fold cross validation experiment with an SVM classifier using bigram and

POS features resulted in an accuracy of 68.1 % for the real-world fake reviews. This is

far lower than the 90 % reported by Ott et al. when evaluating their model on synthetic

data. From this, it appears that that using AMT, one cannot effectively generate fake

reviews consistent with real-world fake reviews, or at least consistent with the types of

reviews that Yelp filters. The addition of behavioral features increases their accuracy to

86.1 % on Yelp's filtered reviews dataset. Feature selection was found to offer no im-

provement to classification performance, and actually decreased performance slightly;

however, only a single combination feature selection technique, learner and perform-

ance metric was considered.

In a later study, Mukherjee et al. [14] confirmed that the writers of review spam

have different behaviors than truthful reviewers in a set of Amazon reviews as well.

Jindal et al. [8] also studied the impact of reviewer centric features on review spam

detection. They identified unusual review patterns and reviewer behaviors that were

highly correlated with spam review activity. They found unexpected rules and rule
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groups using Class Association Rules (CAR), which proposes unexpectedness mea-

sures after a set of expectations has been defined. These unexpected rules and rule

groups represent the unusual behaviors of spam reviewers, which in turn allow for

identification of review spam activity. This technique itself is generic and can be

applied to solve a variety of problems due to its domain independence.

A novel technique for detecting review spammers was proposed by Fei. et al. [22],

where they exploit the “bursty” nature of reviews generated by spammers to identify

review spam. Bursty reviews are reviews that suddenly become popular and receive

great attention from reviewers within a certain time period or certain area. The reviews

and reviewers in those situations become suspicious as review spam and review spam-

mer respectively. For burst detection, the authors used Kernel Density Estimation

(KDE) techniques to detect review bursts. KDE is a technique closely related to histo-

grams, which has attributes that allow it to asymptotically converge to any density

function. Behavioral features for spammers were created that combined the spammers’

behaviors with the features of review bursts. In addition, these features can be used in

conjunction with review spam features in a hybrid approach to improve the classifica-

tion results. The features listed below are examples of the features used in this study.
Ratio of Amazon Verified Purchase (RAVP)

This feature is the number of the Amazon verified purchases divided by the number of

total reviews written by this user. Because verified purchase reviews most likely reflect

a genuine review, a reviewer with a higher RAVP is considered more trustworthy.

Rating Deviation (RD)

This feature measures the average deviation of a reviewer’s reviews. Since the expected

behavior of a reviewer is to give similar ratings as other users gave for the same prod-

uct, spammers may exhibit a higher divergence in their rating behavior.

Burst Review Ratio (BRR)

This value is computed as the ratio of a reviewer’s reviews that occur in bursts to the

total number of reviews that he/she wrote.

Review Content Similarity (RCS)

The average pairwise cosine similarity of all of a reviewer’s reviews. Higher scores may

be an indication of a possible spammer.

Reviewer Burstiness (RB)

This measures the amount of reviews that occur in both the reviewer’s and product’s

bursts. The more that this occurs, the more likely the reviewer is a spammer.

A Markov Random Field (MRF) model engaged with a Loopy Belief Propagation

algorithm was used to identify the spam reviewers in their proposed model. The dataset

produced by Jindal et al. [21] was used for training and evaluation. Unigrams features

were used with SVM to classify the reviews for evaluation purposes, but not used in

the main model. Using only reviewer centric features Fei et al. achieved an F-score of

75.4 % for burst reviews, and 68.7 % for all reviews. Earlier results by Jindal et al. [21]
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indicate similar performance can be achieved using text based features; however work

by Mukherjee et al. [14] shows that classifiers benefit from using both review centric

and reviewer centric features.

Comparative analysis and suggestions
When developing a new review spam detection framework, it is important to under-

stand what approaches and techniques have been used in prior studies. In previous

sections, we presented an overview of machine learning techniques that have been

used in the review spam domain and some of the important results of these studies.

As this domain is young, relatively few studies on machine learning techniques and

review spam detection have been conducted.

Based on our survey, most of the previous studies have focused on supervised learn-

ing techniques. However, in order to use supervised learning, one must have a labeled

dataset, which can be difficult (if not impossible) to acquire in the area of review

spam. From the literature we discussed, it can be observed that most of the available

datasets used in the previous studies are synthetically created, most likely due to the

lack of review spam examples and the difficulty of labeling them [19]. Building and

evaluating classifiers based on these synthetic datasets can be problematic, as it has

been observed that they are not necessarily representative of real world review spam.

For example, when using the same framework to evaluate the artificial AMT dataset

used in [3, 12, 25] and Yelp’s filtered reviews dataset, the extracted features and results

differed greatly, especially when using n-gram text features [23]. Comparing classifica-

tion performance across these datasets shows that when evaluated on the synthetic

review dataset, the classifier achieved an accuracy of 87 %, but while using Yelp’s

reviews only achieved 65 % accuracy. This 22 % drop in accuracy implies that synthet-

ically created reviews have different distinguishing features than real-life fake reviews,

and that the reviews produced by AMT do not accurately reflect real world spam

reviews.

Feature engineering can have a significant impact on classifier performance. Differ-

ent studies have used the same datasets, learners, and performance metrics but

achieved different results due to different feature engineering methods; [3] and [25]

or [23] and [11] are examples. Table 8 reports the performance for some of the stud-

ies discussed in this paper and what types of features were used to achieve that value.

In studying the various sets of features used in the literature, one of the most notable

conclusions is that performance increases through combining multiple types of fea-

tures, and that using the most relevant and expressive features can make a predictive

model more robust [25]. Jindal et al. [21] found that adding additional features (both

review centric and reviewer centric) to text features improved performance. It can

also be observed in Table 8 that augmenting bigrams with LIWC yields a small per-

formance improvement [3]. Several experiments used the same datasets (built by Ott

et al. [3] using AMT) and show that for this dataset, the highest performance is

achieved using bigrams and LIWC [3, 11, 12]. As other studies are using unique data-

sets, or datasets that have been in some way altered, it is difficult to directly compare

their results.

Although there are a large number of machine learning algorithms (learners) avail-

able, current research using supervised learning methods has been, for the most part,
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limited to three learners: Logistic Regression (LR), Naïve Bayes (NB) and Support

Vector Machine (SVM). While SVM generally offered the best performance; it is

occasionally beaten by NB or LR, and not compared to many other available learners,

thus it cannot be considered the best learner. The best learner found by each study is

shown in Table 9, but should not be considered conclusive due to the experiments

not thoroughly studying multiple learners. Future research should test multiple

learners across multiple datasets using many different feature engineering methods.

To the best of our knowledge, methods and tools for learning from Big Data

have not been used in the literature even though real world datasets of only a sin-

gle site (such as Trip Advisor) can contain upwards of 200 million reviews5. New

reviews are constantly being added to large repositories of reviews across various

websites at a high rate, over 1.5 million per month in the case of Yelp4. Conse-

quently, distributed and streaming applications of machine learning algorithms
Table 9 Comparison of previous works and results for review spam detection along with the
relative complexity of the approach (including feature extraction and learning methodology)

Paper Dataset Features used Learner Performance
metric

Score Method
complexity

[20] 5.8 million reviews written by
2.14 reviewers crawled
from amazon website

Review and
reviewer features

LR AUC 78 % Low

[21] 5.8 million reviews written by
2.14 reviewers crawled from
amazon website

Features of the
review, reviewer and
product characteristics

LR AUC 78 % Medium

[21] 5.8 million reviews written by
2.14 reviewers crawled
from amazon website

Text features LR AUC 63 % Low

[9] 6000 reviews from Epinions Review and
reviewer features

NB with Co-training F-Score 0.631 High

[3] Hotels through Amazon
Mechanical Turk (AMT)
by Ott et al.

Bigrams SVM Accuracy 89.6 % Low

[3] Hotels through Amazon
Mechanical Turk (AMT)
by Ott et al.

LIWC + Bigrams SVM Accuracy 89.8 % Medium

[25] Hotels through Amazon
Mechanical Turk (AMT) by
Ott et al. + gathered 400
deceptive hotel and doctor
reviews from domain experts

LIWC + POS + Unigram SAGE Accuracy 65 % High

[23] Yelp’s real-life data Behavioral features
combined with the
bigram features

SVM Accuracy 86.1 % Medium

[11] Hotels through Amazon
Mechanical Turk (AMT)
by Ott et al.

Stylometric features SVM F-measure 84 % Low

[12] Hotels through Amazon
Mechanical Turk (AMT)
by Ott et al.

n-gram features SVM Accuracy 86 % Low

[1] Dataset collected from amazon.com Syntactical, lexical,
and stylistic features

SLM AUC .9986 High

[24] Their own crawled Arabic
reviews from tripadvisor.com,
booking.com, and agoda.ae

Review and
reviewer features

NB F-measure .9959 Low
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across these datasets are of interest as traditional machine learning tools, such as

R or Weka, cannot scale to datasets of this size. Tools such as Mahout11, Spark

(MLlib)12, H2O
13, and SAMOA14 should be explored to effectively model the large

corpus of online reviews which exist in the real world [38]. Mahout has been used

for large-scale recommendation systems [39], which would be useful to apply to re-

view spam detection, as reviewers may be related to each other on different review

websites. MLlib and SAMOA can perform large-scale online learning, where ma-

chine learning models are trained and tuned as new data flows in. This is espe-

cially desirable in the field of review spam detection, as reviews are constantly

being added to the corpus. SAMOA has been used to analyze live Twitter streams

[40], which involves similar text processing that can be applied to online reviews.

Current research has largely ignored feature selection techniques in their experi-

ments, even when using text features, which can potentially lead to highly dimen-

sional feature sets. The experiment by Mukherjee et al. [23] is a notable exception,

as they used Information Gain (IG) to perform feature selection of top 1 and 2 %

of features. Though they found this had no impact on classifier performance, we

believe that using feature selection techniques can potentially improve performance

based on results from other domains. Feature selection also has the benefit of re-

ducing the computational costs associated with training a classifier. This is highly

desirable as review spam detection is a big data domain and datasets may have a

very large number of instances and features. In order to ascertain the impact of

feature selection, additional techniques should be tested while considering different

features, feature subset sizes and datasets.

In addition, current research has ignored the use of ensemble learning techniques,

such Bagging or Boosting, to obtain better predictive performance than using the

traditional learning algorithms. These techniques are especially useful for improving

performance on noisy or imbalanced data [41, 42]. Noisy data is data with inaccur-

acies or, “noise”, in either the features or class attributes. For example, training data

may contain review spam instances that have been mislabeled as true reviews or vice

versa [43]. As classification performance on synthetic review datasets has shown to be

a poor indicator of performance on real world data, it is beneficial to use real world

data. Unfortunately it is difficult to accurately label training data. As seen in the study

by Ott et al. [3], human judges have difficulty in accurately discriminating between,

and thus labeling, spam and non-spam reviews. It is likely any labeled training data

from real world sources would contain mislabeled instances. Due to this, ensemble

techniques could be highly beneficial in this domain to mitigate the negative impact

of noisy data.

Finally, there are a massive number of online reviews, and fake reviews are usu-

ally less frequent than truthful ones, resulting in highly imbalanced datasets [44].

Class imbalance can adversely affect classifier performance as the majority class

may be favored, and must be taken into consideration when training a model.

Two works have considered the class imbalance problem in this domain, [24] and

[44]. Both used random undersampling and random oversampling to overcome

imbalanced distributions and have promising but inconclusive results. Ensemble

techniques can be used alongside, or in place of, data sampling as they have been

shown to be more robust to the effects of class imbalance than single classifiers
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[41], but have yet to be used to address imbalanced data in this domain. Future

work should include further investigation of the role class imbalance in review

spam data as well as mitigating its effects using ensemble learners and sampling

techniques.

Conclusion
In recent years, review spam detection has received significant attention in both busi-

ness and academia due to the potential impact fake reviews can have on consumer

behavior and purchasing decisions. This survey covers machine learning techniques

and approaches that have been proposed for the detection of online spam reviews.

Supervised learning is the most frequent machine learning approach for performing

review spam detection; however, obtaining labeled reviews for training is difficult and

manual identification of fake reviews has poor accuracy. This has led to many experi-

ments using synthetic or small datasets. Features extracted from review text (e.g., bag

of words, POS tags) are often used to train spam detection classifiers. An alternative

approach is to extract features related to the metadata of the review, or features asso-

ciated with the behavior of users who write the reviews. Disparities in performance of

classifiers on different datasets may indicate that review spam detection may benefit

from additional cross domain experiments to help develop more robust classifiers.

Multiple experiments have shown that incorporating multiple types of features can

result in higher classifier performance than using any single type of feature.

One of the most notable observations of current research is that experiments should

use real world data if possible. Despite being used in many studies, synthetic or artifi-

cially generated datasets have been shown to give a poor indication of performance on

real world data [23]. As it is difficult to procure accurately labeled real-world datasets,

unsupervised and semi-supervised methods are of interest. While unsupervised and

semi-supervised methods are currently unable to match the performance of supervised

learning methods, research is limited and results are inconclusive, warranting further

investigation. A possibility for a less labor-intensive means of generating labeled train-

ing data is to find and label duplicate reviews as spam. Multiple studies have shown

duplication, or near duplication, of review content is a strong indicator of review spam.

Another data related concern is that real world data may be highly class imbalanced, as

there are currently many more truthful than fake reviews online. This could be

addressed through data sampling and ensemble learning techniques. A final concern

related to quality of data is the presence of noise, particularly class noise due to mis-

labeled instances. Ensemble methods, and experiments with different levels of class

noise, could be used to evaluate the impact of noise on performance and how its effects

may be reduced.

The studies discussed in this paper have primarily focused in the area of feature

engineering, but which combination of features is best remains unclear. Research by

Jindal et al. [20, 21] shows that the addition of reviewer centric features yields higher clas-

sifier performance than the use of n-gram features alone, and other experiments

support this conclusion [3, 9, 23]. The best observed performance was achieved by

combining text and non-text features. Reviewer centric features have also been demon-

strated to be important for accurate detection of review spam as seen in [9, 20, 21, 23,

24]. Despite many studies focusing on feature engineering, it is not possible to identify
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the best types of features since the experiments make use of different datasets; however,

it has been shown that there is no silver bullet for review spam detection and multiple

types of features are needed. Future work should evaluate different feature engineering

methods across multiple datasets to determine which types of features are most useful

for online review spam detection.

As review text is an important source of information and tens of thousands of text

features can easily be generated based on this text, high dimensionality can be an issue.

Additionally, millions of reviews are available to be used to train classifiers, and training

classifiers from a large, highly dimensional dataset is computationally expensive and

potentially impractical. Despite this, feature selection techniques have received little

attention. Many experiments have avoided this issue by extracting only a small number

of features, avoiding the use of n-grams, or by limiting number of features through

alternative means such as using term frequencies to determine what n-grams are

included as features. Further work needs to be conducted to establish how many fea-

tures are required and what types of features are the most beneficial. Feature selection

should not be considered optional when training a classifier in a big data domain with

potential for high feature dimensionality. Additionally, we could find no studies that

incorporated distributed or streaming implementations for learning from Big Data into

their spam detection frameworks.
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5http://www.tripadvisor.com/PressCenter-c4-Fact_Sheet.html
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