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Abstract

For patients who survive the initial bleeding event of a ruptured brain aneurysm, delayed cerebral ischemia (DCI) is
one of the most important causes of mortality and poor neurological outcome. New insights in the last decade
have led to an important paradigm shift in the understanding of DCI pathogenesis. Large-vessel cerebral vasospasm
has been challenged as the sole causal mechanism; new hypotheses now focus on the early brain injury,
microcirculatory dysfunction, impaired autoregulation, and spreading depolarization. Prevention of DCI primarily
relies on nimodipine administration and optimization of blood volume and cardiac performance. Neurological
monitoring is essential for early DCI detection and intervention. Serial clinical examination combined with
intermittent transcranial Doppler ultrasonography and CT angiography (with or without perfusion) is the most
commonly used monitoring paradigm, and usually suffices in good grade patients. By contrast, poor grade patients
(WFNS grades 4 and 5) require more advanced monitoring because stupor and coma reduce sensitivity to the
effects of ischemia. Greater reliance on CT perfusion imaging, continuous electroencephalography, and invasive
brain multimodality monitoring are potential strategies to improve situational awareness as it relates to detecting
DCI. Pharmacologically-induced hypertension combined with volume is the established first-line therapy for DCI; a
good clinical response with reversal of the presenting deficit occurs in 70 % of patients. Medically refractory DCI,
defined as failure to respond adequately to these measures, should trigger step-wise escalation of rescue therapy.
Level 1 rescue therapy consists of cardiac output optimization, hemoglobin optimization, and endovascular
intervention, including angioplasty and intra-arterial vasodilator infusion. In highly refractory cases, level 2 rescue
therapies are also considered, none of which have been validated. This review provides an overview of current
state-of-the-art care for DCI management.
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Background
Among subarachnoid hemorrhage (SAH) patients who
survive the initial bleed of a ruptured aneurysm, delayed
cerebral ischemia (DCI) is the most important prevent-
able cause of mortality and poor neurological outcome.
DCI affects up to 30 % of patients, and leaves the majority
of survivors with motor deficits, cognitive dysfunction,
and reduced quality of life [1]. The risk of DCI is primarily
related to the severity of the initial hemorrhage, with a
greater amount of cisternal and intraventricular blood on
initial imaging and a poor post-resuscitation neurological
examination being the strongest predictors of an unfavor-
able evolution [2].
State-of-the art management in the ICU does influence

the outcome of DCI. In order to provide optimal care, cli-
nicians must grasp the underlying concepts behind DCI
and must all use the same terminology. Evidence-based
interventions can be implemented to reduce the risk of
developing DCI, adequate monitoring must be offered to
allow early detection, and timely intervention should be
offered to reverse DCI as rapidly as possible before the is-
chemic process progresses to infarction. We offer here a
practical algorithm for managing DCI in the ICU based
on the best available evidence, and on our expertise and
experience in situations where firm data are lacking. The
aim is to provide bedside clinicians with a structured and
coherent approach in order to provide optimal care to
their patients.

Concepts and definitions
Historically, arterial narrowing with subsequent down-
stream low flow and ischemia was considered the sole
cause of delayed neurological deterioration in SAH pa-
tients with vasospasm. This tenet of the SAH literature,
however, has been challenged recently. Although the
majority of SAH patients develop angiographic vasocon-
striction (up to 70 %), only around 20–30 % develop
DCI [2]. Cerebral infarction sometimes develops in the
absence of demonstrable vasoconstriction, or in a vascular
territory unaffected by vasospasm. Successful treatment
of angiographic vasoconstriction does not necessarily
lead to better functional outcome [3]. Clazosentan, an
endothelin receptor antagonist, is successful in redu-
cing angiographic vasospasm but has no significant ef-
fect on mortality, functional outcome, or the frequency
of cerebral infarction [4]. Finally, nimodipine is the only
pharmacological intervention shown to improve out-
come in SAH patients, although it has no impact on
large-vessel vasospasm [5].
Large artery vasospasm still doubtlessly plays an im-

portant role in the pathogenesis of DCI, but the scien-
tific community has now turned its interest toward
alternative explanations for a process that may be much
more complex than was previously thought. The main

thrust of this paradigm shift is general agreement that
demonstration of large-vessel narrowing is no longer re-
quired to make the diagnosis of DCI. In line with recent
publications and guidelines [6–8], we reserve the terms
vasospasm for narrowing of large cerebral arteries as evi-
denced by imaging, DCI for cerebral infarction or neuro-
logical deterioration, or both, when the cause is thought
to be vasospasm, and cerebral infarction as an infarct from
any cause demonstrated on CT or MRI within 6 weeks of
aneurysm rupture (see Table 1). The latter is now recog-
nized as the primary determinant of long-term cognitive
or motor deficits after SAH [9].

Pathogenesis
Although in-depth exploration of the pathophysiology of
DCI is beyond the scope of this review, a basic under-
standing of the prevailing hypotheses is useful to the
clinician. As mentioned earlier, large-vessel narrowing
with subsequent low flow might be one of multiple
mechanisms of DCI, but the causal framework now also
includes early brain injury (EBI), microcirculatory dys-
function with loss of autoregulation, cortical spreading
depolarization (CSD), and microthrombosis [10]. EBI en-
compasses the multiple physiological derangements that
are thought to occur in the first 72 hours after the ictus.
The initial ICP crisis and global hypoperfusion trigger
glial activation, endothelial dysfunction, and inflammatory
pathways. Animal and human data suggest an ultra-early
diffuse neuroinflammatory process that predicts later is-
chemic damage [11]. Associated necrosis and apoptosis,

Table 1 Harmonized definition of delayed cerebral ischemia
and cerebral infarction

Delayed cerebral ischemia

Focal (hemiparesis, aphasia, hemianopia, or neglect) or global (2 points
decrease on GCS) neurological impairment lasting for at least 1 hour
and/or cerebral infarction, which:

▪ Is not apparent immediately after aneurysm occlusion

▪ Is attributable to ischemia

▪ Is not attributed to other causes (i.e. surgical complication, metabolic
derangements) after appropriate clinical, imaging, and laboratory
evaluation

Cerebral infarction

Presence of cerebral infarction on CT or MR scan of the brain within
6 weeks after SAH, or on the latest CT or MR scan made before death
within 6 weeks, or proven at autopsy; that is:

▪ Not present on the CT or MR scan between 24 and 48 hours after
early aneurysm occlusion

▪ Not attributable to other causes such as surgical clipping or
endovascular treatment

▪ Not due to a nonischemic lucency related to a ventricular catheter,
intraparenchymal hematoma, or brain retraction injury

Based on references [101, 102]
GCS Glasgow Coma Scale, CT computed tomography, MR magnetic resonance,
SAH, subarachnoid hemorrhage

Francoeur and Mayer Critical Care  (2016) 20:277 Page 2 of 12



as well as endothelial dysfunction, lead to neuronal loss
and cerebral edema, respectively. CSD represents a wave
of electrical depolarization that propagates across the
cerebral gray matter at a speed of 2–5 mm/min, with en-
suing depression of ECoG activity for 5–15 min [12]. This
process is accompanied by neurovascular uncoupling: as
the energy expenditure of neurons is reaching its peak,
paradoxical vasoconstriction occurs, resulting in cortical
hypoperfusion and energy failure. CSD is present in 80 % of
poor grade SAH patients, has a biphasic distribution with
peak frequency on SAH days 0 and 7, and has an uncertain
relationship to large-vessel vasospasm and concurrent seiz-
ure activity [13]. Endothelial and platelet dysfunction, co-
agulation cascade activation, and impaired fibrinolysis all
occur after SAH. Numerous biological markers of these
events have been associated with DCI and poor outcome.
Postmortem studies have found evidence of microthrombi,
particularly in areas of cerebral infarction, after SAH. In
fact, this correlates better with cerebral infarction lesions
than vasospasm or aneurysm location [14].

Prevention
Nimodipine
DCI prevention has been the Holy Grail of SAH re-
search for decades, but few options are available and un-
fortunately most attempts have yielded disappointing
results (see Table 2). Nimodipine, a dihydropyridine

calcium channel antagonist, is the only pharmacologic
intervention so far associated with better outcome in
SAH patients. Multiple trials have demonstrated a
benefit [15], with the seminal trial showing an impres-
sive reduction in cerebral infarction, poor neurological
outcome, and death with oral nimodipine 60 mg given
every 4 hours for 21 days [16]. This is now the recom-
mended regimen, although intravenous nimodipine is
approved as an alternative in Europe. Since nimodipine
can cause hypotension, the dose can be divided into
30 mg every 2 hours or reduced to 30 mg every 4 hours.
An ongoing phase 3 trial evaluating a single administra-
tion of intraventricular nimodipine (600 mg) micropar-
ticles to optimize its efficacy and reduce its side effects
is in progress [17].

Enhanced blood clearance
The presence of blood and its breakdown products is
strongly associated with vasospasm. Numerous attempts
have been made to accelerate clearance of subarachnoid
blood, with the hope that this might result in the pre-
vention of delayed arterial spasm. The only randomized
controlled trial (RCT) investigating the use of intraop-
erative administration of rt-PA failed to show any ef-
fect on outcome [18]. Lumbar drainage of CSF was
also unsuccessful at improving mRS [19] or GOS [20]
scores at 6 months in two RCTs. Different other in-
terventions, including cisternal irrigation or use of
urokinase, have been evaluated for feasibility and re-
ported mixed results. Use of such techniques cannot
be advocated at present.

Avoidance of hypovolemia and hyponatremia
Hyponatremia and hypovolemia occur frequently after
SAH due to physiological changes favoring excessive
natriuresis and inappropriate antidiuretic hormone ele-
vation, and have been associated with impending DCI
[21]. Retrospective data indicate that fluid restriction,
the typical treatment for syndrome of inappropriate
antidiuretic hormone (SIADH), can be deleterious and
increases the risk of DCI due to aggravation of hypo-
volemia [22]. Isotonic crystalloid fluid resuscitation tar-
geting normal serum sodium values and euvolemia is
presently the favored fluid management strategy for
preventing DCI. The latter is notoriously difficult to as-
sess in critically ill patients, and the readers are referred
to papers dedicated to this specific subject for a more
in-depth approach to the matter [23–26]. Administra-
tion of fludrocortisone (between 0.2 and 0.4 mg/day)
has been shown to reduce the occurrence of hyponatre-
mia [27], with some indication towards DCI reduction.
Anecdotal evidence indicates that correction of acute
symptomatic hyponatremia with hypertonic saline (3 %)
infusion is usually effective.

Table 2 Selected pharmacologic interventions that have been
evaluated for DCI preventiona

Intervention Effect

Aspirin No effect on new lesion associated with
neurological worsening [103]

Clazosentan No effect on mortality or vasospasm-related
morbidity [5]

Enoxaparin No effect on DCI or GOS at 3 months [104]

Erythropoietin Less neurological deficit with cerebral infarct;
no difference in mRS or GOS at 6 months [105]

Fludrocortisone No effect on incidence of cerebral ischemia or
independent living [27]

Magnesium No difference in mRS at 3 months [106]

Methylprednisolone No effect on neurologic worsening; trend
towards better GOS at 6 months [107]

Nicardipine No effect on neurological worsening or GOS
at 3 months [102]

Prophylactic
angioplasty

No effect on new neurologic deficits or GOS
at 3 months [86]

Prophylactic
hypervolemia

No effect on neurologic worsening or GOS
at 3 months [69]

Statins No effect on DCI, death or mRS at
6 months [108]

aExcluding nimodipine. Only randomized controlled trials are considered.
References are either the most recent, most definitive, or most robust trial
according to the authors’ opinion
DCI delayed cerebral ischemia, GOS, Glasgow Outcome Scale, mRS modified
Rankin Scale
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Detection and diagnosis
Early detection of DCI is critical to allow for timely inter-
vention. Although straightforward in relatively intact pa-
tients, early detection is notoriously difficult in poor grade
SAH patients (Table 3). Depending on the context, the
technique can vary from simple serial clinical examinations
to multiple advanced monitoring strategies, as described in
the following section.

Clinical examination
Clinical examination in awake patients who can follow
commands is the most reliable way to detect and diagnose
DCI. Neurological impairment can be focal or global. The
Glasgow Coma Scale (GCS) is the most commonly used
tool for measuring and documenting the level of con-
sciousness in the ICU setting. Serial testing of attention
and concentration by reciting from 20 to 1 and from
December to January in good grade patents has been used
successfully to quantify subtle changes in mental status
that are not detected by the GCS [28]. However, poor
grade SAH patients, defined here as WFNS grades 4 and
5, do not consistently manifest symptoms when DCI oc-
curs, although they constitute the most at-risk group.
More than 20 % will present DCI as asymptomatic cere-
bral infarction, and these patients are less likely to receive
acute hypertensive therapy [29]. This is the primary ra-
tionale for using other modalities, including invasive brain
multimodality monitoring (MMM) [30], in this specific
subgroup.

Transcranial Doppler ultrasonography
Transcranial Doppler (TCD) ultrasonography is a nonin-
vasive test that allows indirect detection of large-vessel

narrowing based on quantification of acceleration of
flow. Velocities lower than 120 cm/s in the middle cere-
bral artery (MCA) show high negative predictive value
for angiographic vasospasm, whereas velocities exceeding
180 cm/s have high positive predictive value [31]. The
Lindegaard ratio, defined as MCA mean cerebral blood
flow (CBF) velocity divided by extracranial internal carotid
artery mean cerebral flow velocity, is an index thought to
be less affected by systemic hemodynamic variations. Used
as a screening tool in many tertiary centers, TCD ultra-
sonography suffers from both technical and anatomical
limitations [32]. TCD ultrasonography provides no infor-
mation about the distal vasculature and can be affected by
hydrocephalus or elevated intracranial pressure. Proper
vessel insonation is highly operator dependent and at least
10 % of patients do not have adequate bone windows. Fi-
nally, just as with vascular imaging, TCD ultrasonography
detects vasospasm, but this does not directly translate into
a high risk of DCI. In one study, 40 % of SAH patients
who experienced DCI never had a MCA flow velocity that
exceeded 120 cm/s during the entire period of monitoring
[33]. It is the authors’ opinion that the aforementioned
cutoff values are specific enough to mandate additional
investigations if the clinical picture is compatible with
impending or ongoing DCI. However, due to its low
sensitivity, TCD ultrasonography should not be the sole
screening examination in a patient with a poor clinical
examination.

Vascular imaging
Imaging of the cerebral vasculature allows recognition of
arterial narrowing. A decrease in luminal diameter of
more than 50 % is usually considered severe vasospasm

Table 3 Components of brain multimodality monitoring for poor grade SAH

Device Physiological parameter
measured

Normal range Pathological condition

Continuous
electroencephalography

Brain activity
Epileptiform discharges

• Alpha/delta ratio > 50 %
• No epileptiform discharges
• Reactivity to stimuli

• Alpha/delta ratio < 50 %
• Epileptiform discharges
• No reactivity

Transcranial Doppler
ultrasound

Mean blood flow velocity (FVm) • FVm MCA: 30–75 cm/s • MCA FVm 120–180 cm/s: intermediate probability
of vasospasm

• MCA FVm >180 cm/s: high probability of vasospasm

Cerebral blood flow
monitor (Hemedex)

Cerebral blood flow (CBF) • >40 ml/100 g/min • <20 ml/100 g/min: indicative of ischemia assuming
preserved metabolic demand

Jugular venous oximetry Balance between oxygen
delivery and consumption (SjO2)

• 50–75 % • <50 %; increased oxygen extraction fraction, indicative
of ischemia

Brain tissue oxygen
tension (Licox)

Regional parenchymal brain
tissue oxygen tension (PbtO2)

• 25–35 mmHg in white
subcortical matter

• <20 mmHg: indicative of cerebral hypoxia

Cerebral microdialysis • Glucose
• Lactate
• Pyruvate
• Lactate/pyruvate ratio
• Glutamate
• Glycerol

• 0.8–4.0 μmol/L
• 0.7–3.0 μmol/L
• Unknown
• < 25
• 2–10 μmol/L
• 10–90 μmol/L

• <0.2 μmol/L
• ≥4.0 μmol/L
• Unknown
• >40 indicative of anaerobic metabolism
• >10 μmol/L
• >90 μmol/L

SAH subarachnoid hemorrhage
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and is associated with lower CBF. Conventional angiog-
raphy (digital subtraction angiography (DSA)) is the gold
standard and offers the possibility of endovascular treat-
ment. Complication rates for diagnostic angiography are
in the range of 1 %. Computed tomographic angiography
(CTA) is a less invasive and a more readily available op-
tion. Studies comparing CTA with DSA have found good
agreement, suggesting high sensitivity and specificity in
vasospasm diagnosis [34]. The authors use CTA as a
first-line screening tool for detecting large-vessel vaso-
spasm, with the initial study timed to occur between
SAH day 4 (for patients felt to be at greater risk) and
day 8 (for lower risk patients). Lack of appreciable large-
vessel spasm on SAH day 8 or later implies a very low
risk of subsequent DCI, enabling fast-tracking out of the
ICU into a lower intensity, step-down setting.

Brain perfusion imaging
Directly assessing cerebral perfusion is appealing because
it allows for evaluation of the functional consequences of
both large-vessel and small-vessel vasospasm. Xenon CT,
single photon emission computed tomography, positron
emission tomography, MR perfusion, and computed
tomographic perfusion (CTP) all allow tomographic CBF
assessment. CTP is currently the most widely used and
studied modality [35]. Various cutoff values that correlate
with DCI have been reported, including a mean transit
time (MTT) exceeding 5.0–6.4 s, or regional CBF below
25–40 ml/100 g/min [36]. One detriment to this type of
analysis is the high degree of variability due to differences
in equipment and postprocessing methods [37]. CTP
seems to correlate fairly well with DCI, but focal flow
reductions can also occur as a consequence of brain

retraction injury or perihematomal brain dysfunction.
Many centers perform CTA and CTP together, as a
complement to serial TCD monitoring, in the critical time
window for DCI onset (SAH days 4–8, see Fig. 1).

Continuous electroencephalography
Continuous electroencephalography provides noninva-
sive, real-time continuous information about cortical ac-
tivity, and quantitative electroencephalography allows
decomposition of the data contained in the raw EEG. In
the presence of cortical hypoperfusion leading to neur-
onal dysfunction, EEG changes are detectable and may
precede the onset of symptoms [38]. Recent data suggest
that reductions in the alpha/delta ratio (ADR) or in
alpha variability are most sensitive and specific for pre-
dicting DCI at a point where it is potentially reversible
[39]. Even more interesting, reversal of those changes
could serve as a surrogate target to titrate therapy. For
example, as explained later, induced hypertension could
be titrated to ADR normalization. Despite its theoretical
attractiveness, the intense manpower commitment re-
quired to provide around-the-clock real-time neurotele-
metry has hampered widespread adoption of continuous
electroencephalography for neuromonitoring after SAH.

Multimodality monitoring
Advanced neuromonitoring using MMM provides con-
tinuous, real-time information allowing early detection
of physiological derangements, providing both a trigger
and a target for intervention. In addition to acting as an
early warning system for improving situational aware-
ness, MMM can be proactively used to create an opti-
mized physiological environment for the injured brain,

Fig. 1 Mean maximal TCD values during SAH days 3–14 in patients who did or did not develop DCI. TCD examinations after the diagnosis of DCI
were censored. Histogram shows the number of patients with new onset DCI between SAH days 3 and 14. Nine patients had DCI between days
15 and 29. Number (in parentheses) represents the number of TCD examinations performed for each corresponding SAH day. From reference [33],
with permission. DCI delayed cerebral ischemia, mBFV mean blood flow velocity, SAH subarachnoid hemorrhage
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with the goal of secondary injury prevention. Many high-
volume centers equipped with invasive MMM now rou-
tinely use it in poor grade SAH patients, with various com-
binations of ICP, brain tissue oxygen, CBF, and metabolic
monitoring, as well as intracranial electroencephalography.
ICP monitoring is essential to any MMM bundle.

Intracranial hypertension is common in SAH, especially
in poor grade patients where occurrence in up to 80 %
of patients has been described [40]. It is associated with
severely deranged cerebral metabolism [41] and consist-
ently leads to poor outcome [42, 43], warranting aggres-
sive management. ICP monitoring also permits cerebral
perfusion pressure (CPP) measurement. We have re-
ported in poor grade patients that simply maintaining
CPP >70 mmHg is associated with a lower risk of brain
metabolic crisis and tissue hypoxia [44], which may be a
useful clinical guideline for minimizing the risk of sec-
ondary brain injury in unmonitored patients.
Parenchymal brain tissue oxygenation (PbtO2) monitor-

ing allows quantification of oxygen tension in the brain
interstitial space and will detect episodes of cerebral com-
promise even in the absence of elevated ICP or low CPP
[30], underlying its role as a complement to conventional
neuromonitoring in SAH patients. This is probably helpful
in early detection of silent infarcts [29], and higher mean
PbtO2 is associated with improved survival [30].
Microdialysis allows determination of interstitial fluid

composition and cellular metabolism. The most com-
mon targets of clinical microdialysis analysis are extra-
cellular lactate levels and the lactate/pyruvate ratio
(LPR) [45]. These metabolic derangements precede si-
lent infarction by a few hours [29], are often detected in
the setting of normal ICP and even normal PbtO2 [30],
and are fairly specific for DCI (0.89 for lactate levels >
4 mmol) [46]. Microdialysis is actually superior to TCD
ultrasonography and DSA in predicting clinical deterior-
ation secondary to DCI [47]. Some experienced centers
also use the biochemical profile to differentiate ischemia
from mitochondrial dysfunction [48] or to monitor brain
glucose metabolism [49], but these applications need
further evaluation before being widely adopted.
Intracranial electroencephalography includes subcortical

electrocorticography (ECoG) and intracortical electroen-
cephalography (ICE). ECoG allows detection of CSD is-
chemia, a potent mechanism of DCI [13] that decreases
brain O2 supply and increases brain O2 consumption in
SAH patients [50], providing a potential therapeutic target
[51]. ICE, on the other hand, can detect ictal discharges
not apparent on scalp EEG [52]; ICE ADR reduction may
outperform scalp quantitative electroencephalography in
early DCI detection [53].
Finally, ICP or PbtO2 monitoring also permits dynamic

evaluation of autoregulation through moving linear cor-
relation coefficients such as the pressure reactivity index

(PRx, which correlates MAP with ICP) or the PtiO2 pres-
sure reactivity index (ORx, which correlates PbtO2 with
CPP) [54]. Early autoregulatory failure is predictive of DCI
[55] and is associated with poor outcome in SAH patients
[56]. Theoretically, these indices might also be used to de-
fine the optimal CPP for a given patient [57].
Proper positioning in at risk cerebral region is essential,

but offers no guarantee that other brain regions are not is-
chemic [58]. We prefer to place the MMM bolt in the
frontal anterior and middle cerebral territory watershed
region ipsilateral to the ruptured aneurysm, or in the non-
dominant hemisphere in the case of a midline aneurysm.
The invasive and regional nature of MMM, its associated
cost, and the required expertise are the main obstacles to
its implementation.

Treatment
SAH patients are complex and should be cared for in
specialized, high-volume centers to maximize good out-
come [59]. The suggested approach below assumes that
the standards of care in all other aspects of treatment
are followed. An organized approach that has been
agreed upon in advance by all stakeholders minimizes
conflicts and streamlines the process of care. Although
presented as a three-stage algorithm (Fig. 2), manage-
ment should always be tailored to the individual patient,
to the available resources, and in a contextualized fashion.
Our approach to treatment divides interventions into: first-
line therapy for new-onset DCI, which can manifest as
neurological deterioration, characteristic imaging findings,
or MMM abnormalities indicative of ischemia; and second-
line “rescue therapy” for refractory DCI, indicating inad-
equate reversal of ischemia in response to first-line therapy.

First-line therapy for new-onset DCI
Induced hypertension
Successful reversal of neurological symptoms following
induced hypertension has been described in case series
since the late 1970s, and most clinicians caring for SAH
patients can testify to its benefit. Use of vasopressors to
augment blood pressure is still the cornerstone of first-
line therapy for DCI. A normal saline bolus (15 ml/kg over
1 hour) at the institution of therapy increases CBF [60].
Norepinephrine [61], dopamine [62], and phenylephrine-
induced [63] hypertension all have been demonstrated to
significantly improve CBF and/or cerebral oxygenation,
resulting in clinical improvement of the neurological
deficit in approximately 70 % of patients. The authors
use norepinephrine as the first-line treatment of choice
due to its combination of alpha and beta receptor
stimulation, the low frequency of tachycardia, and the
reliable hemodynamic response that results. Arginine
vasopressin has also been reported as a safe supplemen-
tary vasopressor in a small group of SAH patients [64].
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We reserve its use for refractory DCI patients when
multiple vasoactive agents are required to attain
hemodynamic targets.
A starting systolic target ranging between 160 and

180 mmHg is usually selected, depending on the pa-
tient’s baseline blood pressure. Mean arterial pressure
(MAP) can be used as an alternative to systolic pressure,
as per unit standards. In poor grade patients with an
ICP monitor, induced hypertension should be targeted at
increasing CPP, which is the relevant perfusing pressure
of the brain. The target can then be increased stepwise in
a goal-directed fashion and titrated to clinical response,
which is usually linked to what triggered intervention in
the first place. In symptomatic patients with a reliable
clinical examination, the goal is resolution of symptoms.
In poor grade patients, clinicians must rely on available
monitoring, including reversal of changes in PbtO2, LPR,
and continuous electroencephalography. Once therapy is
instituted, absence of response in 30 min should trigger
an escalation of the BP target. Most centers use a maximal
target range of around 120 mmHg for CPP, 140 mmHg
for MAP, and 220 mmHg for SBP. Clinicians should
monitor for complications such as heart failure and myo-
cardial demand ischemia. Recent data confirm that pursu-
ing induced hypertension in patients with unruptured,
unsecured aneurysms is safe [65].

As far as de-escalation of hypertensive therapy is con-
cerned, the literature is devoid of guidelines. The au-
thors obtain at least a 24–48-hour window of stable
neurological condition before deescalating in a stepwise
fashion, monitoring for recurrence of ischemia. While
induced hypertension is now hardwired in clinical practice
and in every guideline, its impact on outcome has not yet
been submitted to the scrutiny of a RCT. This was the
aim of the HIMALAIA study (Hypertension Induction in
the Management of AneurysmaL subArachnoid haemor-
rhage with secondary IschaemiA) [66], a multicenter RCT
that was terminated in 2015 due to slow recruitment. This
termination confirms that it seems unlikely any such trial
will ever be conducted given the lack of clinical equipoise.

Volume optimization
As induced hypertension was embraced as a therapy
for symptomatic DCI in the 1980s, the concept of
hemodynamic augmentation for DCI evolved into a bun-
dle of hypertension, hypervolemia, and hemodilution: the
so-called “Triple-H” therapy [67, 68]. It has since become
apparent that the hypervolemia component is probably
useless and might actually be harmful [61]. In one clinical
trial, prophylactic hypervolemic therapy directed toward
maintaining elevated central venous pressure failed to
prevent DCI; the additional volume resulted in no net

Fig. 2 Stepwise approach to the treatment of active DCI from vasospasm. The order or the intensity of therapy must be adapted to each
situation. CI cardiac index, Hb hemoglobin, SBP systolic blood pressure
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increase in cumulative fluid balance, blood volume, or
CBF [69]. Other studies have shown that hypervolemic
therapy increases the risk of pulmonary edema, especially
in the setting of cardiac dysfunction [70], and that positive
fluid balance in SAH is associated with poor outcome
[71]. Current guidelines suggest that isotonic fluids be
used judiciously to correct hypovolemia, with the ultimate
goal of maintaining a euvolemic state while avoiding fluid
overload [7].

Rescue therapy for medically-refractory DCI
Tier One interventions

Hemoglobin optimization Based on current evidence
from randomized clinical trials in the general ICU popu-
lation [72], a restrictive strategy aiming for a hemoglobin
level above 70 g/L is the favored approach for SAH pa-
tients prior to the onset of DCI. It is questionable, how-
ever, whether this is the appropriate threshold for
patients with active and ongoing brain ischemia. Anemia
is seen in more than 50 % of SAH patients [73] and is
consistently associated with poor outcome [74, 75].
Moreover, hemoglobin levels of less than 90 g/L, and
even less than 100 g/L, are associated with brain tissue
hypoxia and metabolic distress in poor grade patients
[76]. Packed red blood cell transfusion successfully in-
creases brain tissue oxygen tension in poor grade SAH
patients with a baseline hemoglobin level of 80 g/L [77].
This makes the use of red blood cell transfusion to
optimize cerebral oxygen delivery appealing when facing
active brain ischemia refractory to first-line therapies.
However, blood transfusions are also associated with
medical complications [78], poor outcome [79], and even
higher mortality in the [80] SAH population. The on-
going RCT Aneurysmal Subarachnoid Hemorrhage: Red
Blood Cell Transfusion and Outcome (SAHaRA Pilot)
comparing RBC transfusion triggers from 100 g/L down
to 80 g/L will hopefully shed light on this debate. In the
meantime, the Neurocritical Care Society guidelines [7]
suggest a transfusion threshold of 80 g/L in SAH pa-
tients without DCI, with a more aggressive transfusion
trigger of 90–100 g/L as a Tier One rescue therapy in
cases of DCI unresponsive to first-line therapy.

Endovascular therapy When confronted with medically
refractory DCI—cases in which significant neurologic
deficits exist despite hemodynamic optimization—endo-
vascular treatment should be the next step [81]. In recent
years, indications for deploying intra-arterial therapy have
evolved and this treatment is introduced much earlier, es-
pecially if there are reasons to believe that medical therapy
is at high risk of failure or in the face of complications
resulting from heart failure, fluid overload, or myocardial
ischemia [82].

Endovascular therapy can be subdivided into mechan-
ical dilation and intra-arterial infusion of vasodilators.
Percutaneous transluminal balloon angioplasty (PTCA)
is based on mechanical stretching and dilation of vaso-
spastic arteries. The technique is limited to proximal
vessels, mainly the internal carotid artery and vertebral
or basilar artery, M1 and sometimes M2 segments of the
MCA, and A1 and P1 segments of the anterior and pos-
terior cerebral artery respectively. The success rate in
most case series is over 90 % and long-lasting [83], with
occasional cases of recurrence that require repeated
procedures. Improvement in CBF post PTCA has also
been clearly demonstrated [84]. Observational studies
suggest that early intervention (less than 2 hours after
neurological decline) results in a better clinical re-
sponse [85]. The drawback of PTCA is that serious
complications can occur in up to 5 % of patients, in-
cluding embolism, thrombosis, dissection, and vessel
rupture. The only published RCT to date evaluated
PTCA as a prophylactic measure in good grade patients
with large amounts of cisternal clot [86]. Three patients
died of vessel perforation and there was no difference
in frequency of DCI, condemning this indication. If the
clinician is convinced that ongoing ischemia is ex-
plained by the visualized local vasospasm, PTCA is a
potent therapy.
Numerous cases series have shown various degrees of

reversal of vasospasm with intra-arterial vasodilators,
evaluated by angiography, TCD ultrasonography, Xenon
CBF, cerebral oxygenation, or angiographic cerebral cir-
culation time. Over the years, numerous agents have
been evaluated, including papaverine, nicardipine, ver-
apamil, nimodipine, milrinone, amrinone, and fasudil.
None of these have ever been tested objectively in a
clinical trial against a control group. Intra-arterial vaso-
dilators have several advantages over PTCA: better dis-
tal penetration, a more diffuse effect, and a better safety
profile. It is most often used with balloon angioplasty,
for more distal or diffuse vasospasm. Disadvantages
include recurrent vasospasm due to the short-lasting
effect of these agents, increased ICP secondary to vaso-
dilation [87], and potential hypotension due to systemic
effects. Today the most commonly used agents are
intra-arterial nicardipine 10–20 mg or verapamil 20–
40 mg, infused over about 1 hour. Doses of up to
720 mg per treatment have been described in refractory
severe vasospasm [88].

Cardiac output augmentation Several authors have
demonstrated that increasing cardiac output (CO) with
fluids and inotropes is feasible and can improve brain
perfusion after SAH [89]. CO augmentation with dobuta-
mine has been shown to increase CBF by almost 50 % in
SAH patients with severe vasospasm, which is comparable
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with the effect of phenylephrine [63]. Milrinone, a select-
ive inhibitor of the phosphodiesterase III isoenzyme, pro-
vides more effective inotropy than dobutamine in the
setting of neurogenic stunned myocardium, which is
associated with beta-receptor desensitization [90]. The
Montreal Neurological Institute published an uncon-
trolled case series in which high-dose milrinone
(0.75–1.25 μg/kg/min) was used as first-line therapy with
good results, without CO monitoring, to improve microcir-
culatory flow [91]. By contrast, the authors and most cen-
ters use CO augmentation as a second-line hemodynamic
intervention once arterial BP has been optimized. The au-
thors recommend the use of a validated CO monitoring
device, such as a transpulmonary thermodilution (PICCO;
Maquet Medical) or a pulmonary artery catheter, to titrate
fluids, pressors, and inotropes [92], targeting a cardiac
index of >4.0 L/min/m2.

Tier Two interventions
When facing evidence of ongoing neurological injury
despite the aforementioned measures, the clinician is left
with the option of pursuing nonevidence-based therap-
ies. These interventions should only be instituted in cen-
ters with the appropriate expertise and monitoring, and
should be proportionate to the global goals of care. In-
fusion of hypertonic saline (2 ml/kg of HTS 23.5 % over
20 min) has been shown to improve CBF [93] in poor
grade patients and can be considered if facing elevated
ICP concomitantly to DCI. Most clinicians will favor
advanced fever control, even if it requires heavier sed-
ation or paralysis [94]. The next step involves targeted
temperature management to attain hypothermia to levels
between 33 and 36 °C [95], with or without use of barbitu-
rates [96]. Although this has been described, no objective
substantiation of success or safety is available.
Experimental interventions include aortic flow diver-

sion, intrathecal nicardipine, and intra-aortic balloon
pump (IABP) counter-pulsation. The aortic flow diver-
sion NeuroFlo System™ (Zoll Medical) partially occludes
the descending aorta in order to divert a greater propor-
tion of the CO towards the brain, resulting in higher
perfusion pressure and microcirculatory flow [97]. Its
use remains investigational and in the USA is limited to
a Food and Drug Administration Humanitarian Device
Exemption. Intrathecal nicardipine, given via a ventricu-
lar catheter, has been reported to reduce TCD velocities
within 8 hours of administration and has been used off-
label as rescue therapy for patients with refractory DCI
[98]. Intrathecal nitroprusside has also been evaluated as
a potential therapy for refractory vasospasm [99]. Finally,
anecdotal reports mention successful use of an IABP in
cases of refractory DCI associated with severe cardiac
dysfunction, making it another option to consider in ex-
treme cases [100].

Conclusion
DCI prevention, detection, and reversal are among the
top priorities of clinicians caring for SAH patients. Based
on the best available evidence, nimodipine administra-
tion and maintenance of euvolemia are the surest way to
prevent DCI. Detection of delayed ischemia can rely on
simple clinical examination in intact patients, but re-
quires advanced MMM in poor grade patients. Early
diagnosis and treatment is the key to treating active,
symptomatic DCI. Induced hypertension and volume
optimization are the cornerstone of first-line therapy.
Rescue therapy for medically refractory vasospasm relies
primarily on endovascular intervention and circulatory
optimization. A shift from the paradigm emphasizing
large-vessel narrowing to recognition that vasospasm
represents a complex, multifaceted pathophysiological
process involving the microcirculation, disturbed auto-
regulation, and spreading depolarization should allow
for new insights and novel therapeutic targets in the fu-
ture. Fast-paced developments in imaging and advanced
neuromonitoring also promise better understanding and
earlier detection of DCI. Although fraught with many
difficulties, dogma not being the least of them, new in-
terventions will have to face rigorous trials in order to
move towards a better outcome for our patients.
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