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1 Introduction

A form of understanding the asymptotically flat no-hair theorems is that they connect the

stability of the ground state and the existence of hairy black holes. Namely, if the relevant

scalar-tensor theory has a stable Minkowski vacuum then it does not admit hairy black

hole configurations. Indeed, the Bekenstein no-hair theorem shows that a convex scalar

field potential implies the non-existence of hairy black hole solutions [1]. The same has

been shown to be true for non-negative potentials [2, 3]. Moreover, it is now clear that a

necessary condition for the existence of asymptotically flat hairy black hole solutions is a

scalar field potential with a negative region [4–7]. Therefore, if the scalar field potential

has a extremum allowing for a Minkowski vacuum, where the scalar field potential neces-

sarily vanishes, a sufficiently large perturbation will naturally explore the sector where the

potential is negative, destabilizing the Minkowski ground state. Hence, one may wonder

whether the hairy black hole itself is stable. However, it happens that all the asymp-

totically flat hairy black holes described in the literature are unstable under spherically

symmetric perturbations [8–12]. On the contrary, odd-parity perturbations are generically

well behaved around hairy black holes [13]. For a recent review of the asymptotically flat

case see [14]. Indeed, one is having in mind here a single, real scalar field. Already the

case of a complex scalar field is different. The black holes no-hair theorems can be skipped

in this case because the scalar field and the metric do not share the same symmetries (but

the energy momentum tensor and the metric do) [15, 16].

However, for a single and real scalar field, the picture is completely different in asymp-

totically AdS spacetimes in the sense that it is not necessary to have a positive scalar

field potential to have a stable AdS vacuum. As is well-known, scalar fields with Dirichlet

boundary conditions and masses above the Breitenlohner-Freedman (BF) bound,

m2

BF = −(D − 1)2

4l2
, (1.1)
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where D is the spacetime dimension and l is the AdS radius, do not generate linear insta-

bilities in global AdS spacetimes [17, 18].

When the squared scalar field mass, m2, is above (or saturates) the BF bound and

strictly less than the unitarity bound,

m2

BF ≤ m2 < m2

BF + l−2 , (1.2)

the Klein-Gordon operator has non-trivial self-adjoint extensions in global AdS space-

time [19] (for a pedagogical discussion of self-adjoint extensions see [20]). Each of these

self-adjoint extensions defines a class of theories and some of these theories are equivalently

defined by the requirement of the existence of a soliton with a given value of the scalar field

at the origin. Such constructions go by the name of designer gravity [21]. Furthermore,

these generalized boundary conditions are present for all examples of hairy black holes

known so far [22–46].

There is a no-hair conjecture proposed by Hertog [47] that, modulo certain technical

requirements, captures the spirit of the asymptotically flat case. It states that, if there

exists a suitable superpotential that is globally defined, the boundary conditions are AdS

invariant, and there is a bound of the energy,1 then the theory does not allows the existence

of hairy black holes. Global AdS has vanishing mass for all the boundary conditions, hence

it should saturate the bound and, if there is no hairy soliton, its non-perturbative stability

would be ensured. Within the conditions of the conjecture, non-perturbative stability of

the ground state imply the no-hair condition.

In this paper we shall consider the less explored subject of hairy black hole stability

in asymptotically AdS spacetimes. The theory of black hole stability was developed by

Regge-Wheeler and Zerilli [51, 52]. The higher dimensional generalization was done by

Ishibashi-Kodama [53]. The approach to the problem is to linearize the system around a

background and to classify the perturbations as representations of the background isome-

tries. The dynamics for each type of perturbation decouples satisfying a wave equation

with an effective potential. It is straightforward to show that, in the frequency domain, the

modes satisfy a Schrödinger equation. When the spectrum is positive and the relevant do-

main of the operator is L2 (R), it has a unique self-adjoint extension, namely the Friedrichs

extension, which implies that the linearized evolution is well defined and the background

is stable, at least in the static case [54].

AdS is not globally hyperbolic, which means that to make sense of the evolution it

is necessary to provide the initial data and impose certain boundary conditions. Namely,

around a black hole background, the Schrödinger operator governing the dynamics acts on

L2 (]−∞, 0]). Hence, it has an infinite number of self-adjoint extensions parameterized by a

real number. For the case at hand, and even if the effective potential is everywhere positive,

the self-adjoint extensions modify the spectrum of the Schrödinger operator introducing

exactly one negative eigenvalue. As we shall see below, these non-trivial self-adjoint exten-

sions are associated with the existence of the two normalizable modes in the window (1.2).

The main objective of this paper is to establish which boundary conditions implies the

1Mixed boundary conditions introduce subtleties to the existence of a bound [48], see [49, 50].
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existence of this instability, thus providing a simple tool to analyze a complex problem.

The condition is sufficient and, if one would be interested in finding a stable hairy black

hole, it allows to reduce the number of cases relevant to study in the first place.

Whenever the gravitational theory has a CFT dual and the boundary conditions are

AdS invariant, they correspond to multi-trace deformations of the boundary CFT [55] — for

a nice discussion with the detailed holographic dictionary, see [56]. As formulated in [21],

the non-perturbative stability of AdS corresponds to a convex potential in the field theory

with only one global minimum. If the effective potential has several global minima, with

zero energy, they are identified with the existence of hairy solitons. A clear holographic

picture thus arises connecting stability of the gravitational theory and of the field theory.

Furthermore, the dual interpretation of hairy black holes (and their stability) in terms of

a finite temperature version of the field theory effective potential was first put forward

and analyzed in [57]. Indeed, our condition for hairy black hole instability seems to be

suited for an interpretation along the lines of [21, 57] and we comment on it. This shows

a clear connection between the mechanical stability of hairy black holes and the study of

the positive energy theorems. There has been a lot a of work on proving positive energy

theorems for certain classes of designer gravity theories. The first theorem for bounded

effective potentials were proven in [58] and this was generalized to certain classes of effective

potential that are even unbounded below in [48].

This kind of instability at the conformal mass has been already observed by Mar-

tinez [59] in the particular case of the Martinez-Zanelli hairy black hole [60], whose source

is a conformally coupled scalar field in three dimensions. The Schrödinger operator gov-

erning the evolution of the linearized dynamics has an everywhere non-negative effective

potential around the Martinez-Zanelli hairy black hole, however a normalizable mode that

is exponentially growing in time is shown to exist. Our analysis sheds light on this coun-

terintuitive result.

2 Linear stability

The theory of the linear spherically symmetric perturbations in the case of gravity coupled

to scalar fields dates back to [8], more recently it has been discussed in [9–12]. Here, we

provide a straightforward generalization to the hyperbolic and planar modes. The action

principle is given by

S[gµν , φ] =

∫

d4x
√−g

[

R

2κ
− 1

2
(∂φ)2 − V (φ)

]

. (2.1)

In this section V (φ) is an arbitrary function of φ with at least one AdS vacuum. The field

equations are

Eµν = Rµν −
1

2
gµνR− κTµν , (2.2)

When the Einstein equations are satisfied, the scalar field equation holds as a consequence

of the conservation of the energy momentum tensor

Tµν = ∂µφ∂νφ− gµν

[

1

2
(∂φ)2 + V (φ)

]

. (2.3)
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Let us consider the four dimensional time dependent metric

ds2 = −∆1(x, t)dt
2 +∆2(x, t)dx

2 + C(x, t)dΣk , (2.4)

where dΣk is the metric of a two dimensional space of constant curvature, with Ricci scalar

normalized to 2k, and the scalar field

φ = φ(x, t) . (2.5)

It is always possible to use the differmorphism invariance to set C(x, t) = C(x), where, for

the sake of generality, we choose to let C(x) arbitrary. We are interested in studying the

linearized dynamics around a background solution. Hence, we introduce the expansion

∆1(x, t) = A(x) + ǫA1(x, t) , (2.6)

∆2(x, t) = B(x) + ǫB1(x, t) , (2.7)

φ(x, t) = φ0(x) + ǫφ1(x, t) , (2.8)

V (φ) = V0 + ǫV1φ1(x, t) , (2.9)

where

V0 = V (φ0) , Vn =
dnV

dφn

∣

∣

∣

∣

φ=φ0

. (2.10)

From now on, we shall assume that the Einstein field equations are solved by the ǫ = 0 set

of functions. Birkhoff’s theorem ensures that all the dynamics is driven by the scalar field.

Indeed, it is possible to write the metric perturbations in terms of the φ1(x, t) by using the

Einstein field equations. Let us consider first:

Etx =

(

C ′

2BC
Ḃ1 − κφ̇1φ

′

0

)

ǫ+O
(

ǫ2
)

, (2.11)

where φ̇1 = ∂tφ1 and φ′

1
= ∂xφ1. Thus, modulo a trivial redefinition of the perturbations

it follows from (2.11) that

B1(x, t) = 2κ
CB

C ′
φ1φ

′

0 , (2.12)

We replace (2.12) in the remaining Einstein equations, then automatically follows that

Ett = O(ǫ2). The radial equation is also a simple constraint

Exx=

(

−1

2

C ′A′

CA2
A1 +

1

2

C ′

CA
A′

1 + κ
B

C ′

[

−2kφ′

0 + V1C
′ + 2κCV0φ

′

0

]

φ1 − κφ′

0φ
′

1

)

ǫ+O
(

ǫ2
)

.

(2.13)

Hence, it is possible to obtain A′

1
from (2.13). When A′

1
and B1 are replaced in the equation

along the coordinates of the sphere a messy expression is obtained. However, this equation

can be simplified by introducing a master variable

ψ(z, t) = φ1(x, t)C(x)1/2 , (2.14)

where z is the tortoise coordinate

dz =

(

B

A

)1/2

dx . (2.15)
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The master equation is

− ∂2

zψ + Uψ = −∂2

t ψ , (2.16)

with the effective potential

U

A
= 4κC

[

(κV0C − k)

(

dφ0

dC

)2

+ V1

(

dφ0

dC

)

]

− κV0 + V2 +
k

C
− 1

4B

(

C ′

C

)2

. (2.17)

If z takes its values in the whole real line and U is non-negative, the operator (2.16)

is essentially self-adjoint and its spectrum is positive which implies that the background

is mode stable under spherically symmetric perturbations.2 It is possible to extract some

generic behaviour of U if the asymptotic form of the theory is specified.

3 Asymptotic effective potential

We shall consider a potential that yields the following expansion around the AdS vacuum

V = − 3

κl2
+

1

2
m2φ2 + ξφ4 +O(φ5) . (3.1)

We have intentionally omitted a cubic term in the self-interaction, as its inclusion makes

the analysis more complicated due to the existence of subleading logarithmic branches [62].

Evaluating (2.17) in the AdS background with coordinates C = r2, A = r2

l2
+ k = B−1 we

get3

U =

(

m2 +
2

l2

)(

r2

l2
+ k

)

. (3.2)

For masses above m2 = −2l−2 the potential U (2.17) is asymptotically positive and

divergent. For masses below this one, the potential U is asymptotically unbounded from

below [61]. However, when m2 ≥ m2

BF and for suitable boundary conditions the spectrum

can be positive. The case m2 = −2l−2 is the limiting case and we shall focus on it from

now on. As it has been worked out in detail in [25, 62], in this case the scalar field fall-off is

φ =
α

r
+

β

r2
+O(r−3) , (3.3)

where α and β denote two functions of the other coordinates. The relevant fall-off of the

metric is

−gtt =
r2

l2
+ k +O(r−1) , (3.4)

gmn = r2hmn +O(r−1) , (3.5)

grr =
l2

r2
− (l4k + κα2l2/2)

r4
+O(r−5) , (3.6)

2Non-modal stability is harder to prove and just recently has been confirmed for the Schwarzschild black

hole [63].
3For obvious reasons we change the notation from x to r in this section.
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Here, hmn(x
m) is the two-dimensional metric associated to the sphere, plane or locally

hyperbolic space of constant Ricci scalar 2k, dΣk. The asymptotic value of the potential is

U0 := lim
r→∞

U =
3

2

α2
(

8ξl2 + κ
)

l4
. (3.7)

Hence, we see that the quartic term governs the asymptotic value of U when the slow

branch is on. As we have just discussed the effective potential for massless perturbations,

m2 = −2l−2, vanishes in local AdS spacetime (3.2). However, the same effective potential

evaluated in asymptotically local AdS spacetime is not asymptotically zero.

As is standard, the tortoise coordinate (2.15) goes to −∞ at the black hole horizon

and can be set to be zero at the AdS boundary. Hence, the relevant Schrödinger operator

has non-trivial self-adjoint extensions and stability becomes subtler.

4 A necessary condition for stability

As the subject of self-adjoint extensions is not so well-known we would like to start this

section with a short heuristic discussion. Let us consider the operator H = −∂2
z . If z

belongs to the half real line, z ∈ ]−∞, 0] , then H has a square integrable eigenfunction

with a negative eigenvalue,

ψ = exp (λz) , (4.1)

ψ = exp (λz) =⇒ Hψ = Eψ = −λ2ψ . (4.2)

with λ > 0. The existence of this eigenvalue is related to the boundary conditions that the

eigenfunction has. It satisfies mixed boundary conditions

bψ(0) = aψ′ (0) , (4.3)

with

λ =
b

a
. (4.4)

a = 0 is the Dirichlet boundary condition, b = 0 is the Neumann boundary condition

and any other combination are Robin boundary conditions. In this case, H admits a one-

parameter family of self adjoint extensions, parameterized by λ. It is easy to see that the

negative eigenvalue only exists for Robin boundary conditions. Furthermore, ψ is square

integrable only when the ratio of a and b is positive. Still, when λ < 0 the self-adjoint

extensions exists but the negative energy state is excluded from the spectrum.

Let us consider now the operator H = −∂2
z +U , defined on the half real line as before

and let us consider a, square integrable, energy eigenstate ψ. It satisfies

Hψ = Eψ =⇒ ψHψ = Eψ2 , (4.5)

Integrating by parts (4.5) yields

− ψ∂zψ|0−∞
+

∫

0

−∞

[

(∂zψ)
2 + Uψ2

]

dz = E

∫

0

−∞

ψ2dz . (4.6)

– 6 –
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Using the boundary conditions and the fact that ψ is a bound state, ψ(−∞) = 0, (4.6)

yields

− λψ (0)2 +

∫

0

−∞

[

(∂zψ)
2 + Uψ2

]

dz = E

∫

0

−∞

ψ2dz . (4.7)

As in the case where the potential vanishes we see that U ≥ 0 and λ ≤ 0 automatically

excludes negative energies. Moreover, whenever U ≥ 0, the l.h.s. integral in (4.7) seems

to suggest that it is still possible to have a positive spectrum for λ > 0; introducing a

competition between the potential, U , and the self-adjoint extension parameter λ.

Indeed, let us suppose that the spectrum of H is positive with U ≥ 0 and λ > 0. As

is well-known, given the zero-energy Schrödinger operator

Hχ = 0 . (4.8)

the number of nodes of χ, count the number of bound states of H. The linearity of the

problem allows to set the boundary conditions in the simplified form

χ(0) = 1 , χ′(0) = λ . (4.9)

We shall assume that χ has no node. Hence, there must be a z0, where χ′(z0) = 0. Notice

that U > 0 ⇐⇒ χ′′ > 0 =⇒ z0 is a local minimum of χ. The integral of (4.8) between z0
and 0 yields

λ =

∫

0

z0

Uχdz . (4.10)

A bound on λ then follows from
∫

0

z0

Uχdz < χ(0)

∫

0

z0

Udz =

∫

0

z0

Udz <

∫

0

−∞

Udz . (4.11)

A necessary condition for stability is then

λ <

∫

0

−∞

Udz . (4.12)

In terms of the original perturbation

φ1 =
α1

r
+

β1
r2

+O(r−3) , (4.13)

ψ(0) = α1, ψ
′(0) = −β1l

−2 we get

λ = − β1
α1l2

. (4.14)

It is now clear that not all the boundary conditions allow for linear stability due to the

existence of non-trivial self-adjoint extensions. Indeed, if the original scalar-tensor theory

has either Dirichlet or Neumann boundary conditions the equation for the perturbation

does not admit self-adjoint extensions. When the prescribed dynamics is in terms of Robin

boundary conditions, the boundary condition of the perturbation can be read-off from the

following equality

φ =
α

r
+

β(α)

r2
+O(r−3) = φ0(r) + ǫφ1(r, t) . (4.15)

– 7 –
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Indeed, using that the background configuration is such that

φ0 =
α0

r
+

β(α0)

r2
+O(r−3) , (4.16)

it follows that the perturbation satisfy

φ1 =
α1

r
+

α1β
′(α0)

r2
+O(r−3) . (4.17)

Thus, comparing (4.12), (4.13), (4.14) and (4.17) we find that our necessary condition for

stability, in terms of the boundary condition of the scalar-tensor theory is

β′(α0) + l2
∫

0

−∞

Udz > 0 . (4.18)

We could have written the bound in terms of
∫

0

z0
Udz, however in practice is much more

useful the bound in terms of the full integral.

When the Schrödinger operator is defined in the whole real line there is an estimate

of the value of the lowest eigenvalue due to Simon [65]. It can also be seen as a necessary

condition, for the positivity of the spectrum:

∫

∞

−∞

Udz > 0 . (4.19)

Our result may be seen as a generalization of it.

5 Holography and effective potentials

In the dual field theory, α represents the expectation value of the operator that condensates

in the hairy black hole states. Effective potentials built from supergravity data are an

important tool to investigating the stability of the equilibrium states under perturbations

of the condensate.

Using the standard AdS/CFT dictionary it was proposed in [21] that the effective field

theory potential induced by the scalar field is

V(α) =
∫ α

0

[β(α)− βS(α)] dα , (5.1)

where β(α) are the boundary conditions and βS(α) is the soliton line or a regularity con-

dition that can be build as follow. Take a finite value of the scalar field at the origin and

starting from this value shoot up towards infinity. The fall-off at infinity is fixed by the

scalar field mass. The coefficients of the leading and subleading terms provide a point in the

(α, β)-plane. Repeat the operation several times and construct the line βS(α). This pre-

scription is such that the solitons are extremum of the effective field theory potential (5.1).

In the well-known 5-dimensional case when the boundary topology is R×S3, there is a

non-vanishing Casimir energy and the vacuum gravitational energy of global AdS5 can be

exactly matched to the vacuum energy of the large N limit of N = 4 super Yang-Mills (see,

– 8 –
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e.g., [66]). The Hertog-Horowitz prescription also points out towards the identification of

the gravitational energy and the energy of the field theory dual in designer gravity in the

sense that the minimum energy solution is precisely the hairy soliton that corresponds to

the minimum of the effective potential.

The prescription (5.1) is motivated by the fact that at finite temperature and α = 0, the

gravitational solution is global AdS with zero mass. Therefore, a natural finite temperature

generalization of (5.1) is as follows [57]. Take the Schwarzschild-AdS black at mass M . For

large enough M , there are boundary conditions, βM (α) that ensure the existence of a hairy

black hole with the same mass. The finite temperature effective field theory potential is:

VM (α) = C

∫ α

0

[β(α)− βM (α)] dα+M , (5.2)

where C is a positive constant that depends on the theory and allows to interpret VM (α)

as the exact energy of the gravitational system. Note that there may be a critical value

of the VEV where the hairy black hole ceases to exists and the line βM (α) describe null

or timelike singularities of the same mass. We exclude the singularities from our analysis.

The hairy black holes of mass M are indeed critical points of (5.2). The condition for hairy

black hole stability is the convexity of the effective potential

β′(α0)− β′

M (α0) > 0 (5.3)

The most stringent bound that we found in the previous section can be written as

β′(α0) + l2
∫

0

z0

Udz > 0 (5.4)

Hence, we conclude that

−l2
∫

0

z0

Udz > β′

M (α0)

Note that we are able to obtain a bound on β′

M (α0) with our best estimate, given by

the l.h.s. integral. The idea is that (5.3) represents the exact condition for stability. In

the analysis of the previous section we have found an estimate that bounds its value. We

do not claim that it is a sharp bound. Conversely, this opens the interesting scenario of

providing sharp bounds for Schrödinger operators on the half-line determining the exact

effective potential at finite temperature of a given field theory dual.

6 Conclusions

Let us explore in retrospective the linear stability of AdS4. The relevant operator is H =

−∂2
z . z belongs to the interval, z ∈

[

−π
2
l, 0

]

, where the boundary is at z = 0. The

regular perturbation with negative energy and generalized boundary conditions is ψ (z) =

sinh
[

λ
(

z + πl
2

)]

. The relevant combination at the boundary is

ψ′ (0)

ψ(0)
= λ

cosh
(

πl
2
λ
)

sinh
(

πl
2
λ
) >

2

πl
. (6.1)

– 9 –
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In terms of the boundary condition of the scalar tensor theory we find AdS4 instabilities

for −β′(α = 0) > 2l
π . Namely, linear vacuum stability is ensured whenever

0 ≤ 2l

π
+ β′(α = 0) . (6.2)

Going back to the discussion in the first paragraph of the introduction, and with the

hindsight of our results, we see that it may very well be possible to have hairy black holes

in theories where the vacuum is linearly stable. In particular, AdS invariant boundary

conditions, β = Cα2, satisfy trivially the bound (6.2). This makes the study of the general

families of hairy black holes at the conformal mass indeed relevant.

We expect that the competition between the boundary condition and the effective

potential of the master equation can be generalized to other cases, namely when the effective

potential has a negative region. It may very well be possible as well that adequate boundary

conditions could render the theory stable even when the effective potential is everywhere

negative. This understanding is particularly relevant for gauged supergravity.

In four dimensions, there is the well known gauged N = 8 supergravity [67]. The mass

of the 70 scalars, around the maximally supersymmetric AdS4 vacuum, is m2 = −2l−2,

see for instance table 2 in [68] and references therein, which reflects the fact that they are

effectively massless around this vacuum. In a remarkable paper [71] it has been shown that

the Nicolai-deWit gauged N = 8 supergravity is not unique, but a single member of a one

parameter (ω) family of supergravities. As discussed in [72], two of the single scalar field

truncations allow for a non-trivial ω−deformation. For related work see also [73].

The four single-scalar field consistent truncations of the SL(8,R)/SO(8) sector, worked

out in detail in [69], see also table 1 of [70], with a possible ω−deformation, can be described

by the scalar field self-interaction introduced in [30]. It also provide infinitely many exam-

ples that can be embedded in gauged N = 1 supergravity [39] and as recently remarked

in [44] in gauged N = 2 supergravity with a Fayet-Iliopoulos term. We shall apply the

methods discussed here to provide a throughout study of the hairy black hole stability in

these theories in a future work.
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[42] P.A. González, E. Papantonopoulos, J. Saavedra and Y. Vásquez, Extremal hairy black holes,

JHEP 11 (2014) 011 [arXiv:1408.7009] [INSPIRE].
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