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1 Introduction

The AdS3 Wess-Zumino-Novikov-Witten model is interesting in particular due to its string

theory applications. A conjecture for the spectrum of this model was proposed by Malda-

cena and Ooguri [1], but the full solution of the model is still missing. In the sense of the

conformal bootstrap, a full solution means the computation of the three-point functions of

primary fields on the sphere, and the proof of crossing symmetry of the four-point func-

tions. (Equivalently, the computation of operator product expansions of primary fields,

and the proof of their associativity.)

The conjectured spectrum of the AdS3 WZNW model is fairly complicated, as it con-

tains both discrete and continuous series of representations of the symmetry algebra, and

their images under the so-called spectral flow automorphism. On the other hand, as a geo-

metrical space, AdS3 is related by Wick rotation to the Euclidean space H+
3 , and the AdS3

WZNW model is often assumed to be related to the H+
3 WZNW model. The spectrum

of the latter model is much simpler, as it contains only a continuous series of representa-

tions, and the H+
3 model has been fully solved [2, 3]. An additional difficulty of the AdS3

WZNW model is that the group AdS3, which is the universal cover of SL(2, R), has no

realization as a group of finite-dimensional matrices. It follows that writing a simple basis

of functions on AdS3 is more difficult than in the cases of SL(2, R) or H+
3 . Similarly, it is
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in general more complicated to write functions on the Anti-de Sitter space AdSd than on

its Euclidean version H+
d . Some works like [4] which are purportedly about AdSd actually

deal with H+
d , thereby avoiding this difficulty (and other ones).

The presence of discrete representations and the lack of an obvious basis of functions

on AdS3 are two difficulties of the AdS3 WZNW model which also affect its minisuperspace

limit (also known as the zero-mode approximation), where the model reduces to the study

of functions on the AdS3 space. It is therefore interesting to solve the model in this limit.

We will do this by starting from the well-understood minisuperspace H+
3 model [5] and

using Wick rotation. The main object we wish to compute is the minisuperspace analog of

the operator product expansion, namely the product of functions on AdS3. (Equivalently,

the minisuperspace three-point function.)

We will start with a study of certain bases of functions on AdS3, SL(2, R) and H+
3

(section 2). In particular we will construct functions on AdS3 which transform covariantly

under the symmetries, and which can be interpreted as bulk-boundary propagators. Then

we will study the Clebsch-Gordan coefficients of the Lie algebra sℓ(2, R) (section 3). Due

to the symmetries of the AdS3 WZNW model in the minisuperspace limit, the products of

functions on AdS3 can be expressed in terms of these coefficients. We will check this after

obtaining these products of functions by Wick rotation from H+
3 (section 4). In conclusion

we will comment on the Wick rotation and on the problem of solving the AdS3 WZNW

model (section 5).

2 H
+

3 , SL(2, R), AdS3 and functions thereon

In this section we will review the geometries of the spaces H+
3 , SL(2, R) and AdS3, and

introduce bases of functions on these spaces. The sense in which such functions form bases

of certain functional spaces will be explained in section 2.4. While H+
3 and SL(2, R) can

be viewed as spaces of two-dimensional matrices, AdS3 cannot, and this will make the

descriptions of functions on AdS3 more complicated.

2.1 Geometry and symmetry groups

Let us start with the group SL(2, R) of real, size two matrices of determinant one. This

group is not simply connected, since the subgroup of the matrices

gτ ≡
(

cos τ sin τ
− sin τ cos τ

)
(2.1)

is a non-contractible loop. Therefore, there exists a universal covering group, sometimes

called S̃L(2, R), which we will call AdS3. If SL(2, R) elements are parametrized using three

real coordinates (ρ, θ, τ) as

g =

(
cosh ρ cos τ + sinh ρ cos θ sinh ρ sin θ + cosh ρ sin τ

sinh ρ sin θ − cosh ρ sin τ cosh ρ cos τ − sinh ρ cos θ

)
, (2.2)

where θ and τ are 2π-periodic, then AdS3 is obtained by decompactifying τ . Elements of

AdS3 can alternatively be parametrized as doublets G = (g, I) where g ∈ SL(2, R) and I
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is the integer part of τ
2π

. Writing τ
2π

= I + F , the group multiplication of AdS3 can be

written as

(g, I)(g′, I ′) = (gg′, I + I ′ + F (g) + F (g′) − F (gg′)) . (2.3)

The U(1) subgroup of the matrices gτ ∈ SL(2, R) decompactifies into an R subgroup of

elements Gτ ∈ AdS3, which we parametrize as

Gτ = exp τ
(

0 1
−1 0

)
. (2.4)

The group structures of AdS3 and SL(2, R) lead to left and right actions by group mul-

tiplication, in the AdS3 case (GL, GR) · G = GLGGR, which will be symmetries of the

models under consideration. More precisely, the geometrical symmetry group of SL(2, R)

is SL(2,R)×SL(2,R)
Z2

, where we must divide by the center Z2 = {id,−id} of SL(2, R) as its left

and right actions are identical. The geometrical symmetry group of AdS3 is AdS3×AdS3
Z

,

where the center of AdS3 is freely generated by (−id, 0) = (ρ = 0, θ = 0, τ = π) and there-

fore isomorphic to Z. These geometrical symmetry groups are not simply connected; their

first fundamental groups are Z
2 in the case of SL(2, R) and Z in the case of AdS3. This is

the origin of the spectral flow symmetries of the corresponding WZNW models. (See for

instance [1].)

Then H+
3 is the space of hermitian, size two matrices of determinant one, which can

be parametrized using three real coordinates (ρ, θ, τ) as

h =

(
eτ cosh ρ eiθ sinh ρ

e−iθ sinh ρ e−τ cosh ρ

)
. (2.5)

We have chosen identical names (ρ, θ, τ) for the coordinates on H+
3 and AdS3, thereby

defining a bijection between these two spaces. This bijection gives rise to a map Φ(ρ, θ, τ) →

Φ(ρ, θ, iτ) from the analytic functions on H+
3 to the analytic functions on AdS3, which is

called the Wick rotation. Our bijection however does not relate the matrix forms of H+
3 and

SL(2, R) which we have given. Notice that H+
3 is not a group, rather a group coset, namely

SL(2, C)/SU(2). The geometrical symmetry group of H+
3 is SL(2,C)

Z2
, whose elements k act

on h ∈ H+
3 by k · h = khk†.

2.2 Functions: t-bases

In both cases SL(2, R) and H+
3 , the existence of a matrix realization allows us to write

functions which transform very simply under the symmetries. In the case of H+
3 , we can

indeed introduce the following “x-basis” of functions Φj
x(h), parametrized by their spin

j ∈ C and isospin x ∈ C:

Φj
x(h) ≡

2j + 1

π
|(x̄, 1)h ( x

1 )|2j ⇒ Φj
x(khk†) = |cx + d|4jΦj

ax+b
cx+d

(h) , (2.6)
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where we denote k† =
(

a b
c d

)
. Similarly, we can introduce the following “t-basis” of functions

Φj,η
tL,tR

(g) on SL(2, R), with (tL, tR) ∈ R
2:

Φj,η
tL,tR

(g) ≡
2j + 1

π

∣∣(1,−tL)g
(

tR
1

)∣∣2j
sign2η(1,−tL)g

(
tR
1

)
⇒ Φj,η

tL,tR
(g−1

L ggR)

= |(cRtR + dR)(cLtL + dL)|2j sign2η(cRtR + dR)(cLtL + dL) Φj,η
aLtL+bL
cLtL+dL

,
aRtR+bR
cRtR+dR

(g) , (2.7)

where we denote gL =
(

aL bL

cL dL

)
and gR =

(
aR bR

cR dR

)
. The parity η ∈ {0, 1

2} is the same for

both actions of SL(2, R) on itself by multiplications from the left and from the right (see

the factor sign2η(cRtR +dR)(cLtL +dL)), because the parity characterizes the action of the

central subgroup Z2.

In the case of AdS3, writing a similar ”t-basis“ of functions is more complicated. We

define t-basis functions Φj,α
tL,tR

on AdS3 by the assumption that they transform covariantly

under the left and right actions of AdS3 on itself, in a way which generalizes the transfor-

mation property of the t-basis functions Φj,η
tL,tR

on SL(2, R) eq. (2.7). (The AdS3 parameter

α ∈ [0, 1) generalizes the SL(2, R) parameter η ∈ {0, 1
2}.) The appropriate generalization

of the transformation property has been written in [6] (section 4.1); it involves a function

N(G|t) on AdS3×R such that N(G′G|t) = N(G′|Gt)+N(G|t) and ∀n ∈ Z, N((id, I)|t) = I,

where if G = (g, I) = (
(

a b
c d

)
, I) then Gt ≡ gt = at+b

ct+d
. For instance, N(G|t) can be taken

as the number of times G′t crosses infinity as G′ moves from (id, 0) to G, in which case

N(G|t) ∈ Z, and [G] ≡ N(G|t) − 1
2sign(t + d

c
) − 1

2 is a t-independent integer. Then, the

axiom for Φj,α
tL,tR

is

Φj,α
tL,tR

(G−1
L GGR)= |(cRtR+dR)(cLtL+dL)|2j e2πiα(N(GL|tL)−N(GR|tR))Φj,α

GLtL,GRtR
(G) . (2.8)

This axiom is obeyed by

Φj,α
tL,tR

(G) =
2j + 1

π
e2πiαn(G|tL,tR)

∣∣(1,−tL)g
(

tR
1

)∣∣2j
, (2.9)

provided the function n(G|tL, tR) satisfies

n(G−1
L GGR|tL, tR) − n(G|GLtL, GRtR) = N(GL|tL) − N(GR|tR) . (2.10)

This implies that the function n(id|tL, tR) should satisfy

n(id|tL, GtR) − n(id|G−1tL, tR) = N(G−1|tL) + N(G|tR) , (2.11)

which, using Gt = gt = at+b
ct+d

and the properties of N(G|t), amounts to

n

(
id|tL,

atR + b

ctR + d

)
− n

(
id|

dtL − b

−ctL + a
, tR

)
=

1

2
sign

(
tL −

a

c

)
+

1

2
sign

(
tR +

d

c

)
. (2.12)

A solution is found to be

n(id|tL, tR) =
1

2
sign(tL − tR) , (2.13)
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Figure 1. The integer-valued function ñ(tL, tR).

then n(G|tL, tR) − 1
2sign(tL − tR) is the number of times gtL crosses tR when g runs

from id to G. Let us now study the behaviour of n(G|tL, tR) as a function of

tL, tR for a generic choice of G. Notice that ñ(tL, tR) ≡ n(G|tL, tR) + [G] + 1
2 =

1
2

[
sign

(
(tL − a

c
)(tR + d

c
) + 1

c2

)
− 1
]
sign(tR + d

c
) takes values 0,±1, and jumps between

these values occur on the hyperbola with equation (1,−tL)g
(

tR
1

)
= 0 (see figure 1). We

now propose that certain linear combinations of the functions Φj,α
tL,tR

can be interpreted as

bulk-boundary propagators. These combinations are

Φj
(tL,tR,N)(G) ≡

∫ 1

0
dα e−2iπαNΦj,α

tL,tR
(G) = δN,n(G|tL,tR)

∣∣(1,−tL)g
(

tR
1

)∣∣2j
. (2.14)

We interpret (tL, tR, N) ∈ R ×R× Z as coordinates on the boundary of AdS3. The action

of the symmetry group AdS3 × AdS3 on the boundary is then given by

(GL, GR) · (tL, tR, N) = (gLtL, gRtR, N − N(GL|tL) + N(GR|tR)) , (2.15)

and the behaviour of Φj,α
tL,tR

under the action of AdS3 × AdS3 (2.8) implies the following

behaviour of Φj
(tL,tR,N):

Φj
(tL,tR,N)(G

−1
L GGR) = |(cRtR + dR)(cLtL + dL)|2j Φj

(GL,GR)·(tL,tR,N)(G) . (2.16)

2.3 Functions: m-bases

The t-bases of functions behave simply under symmetry transformations, but t-bases in H+
3

and AdS3 are not related by the Wick rotation. This is because the matrix realizations (2.2)

and (2.5) on which the t-bases are built are themselves not related by the Wick rotation.

We will therefore introduce the more complicated “m-bases” of functions, which are better

suited to the Wick rotation. In the case of H+
3 , the m-basis functions Φj

m,m̄(h) are defined as

Φj
m,m̄(h) ≡

∫
d2x x−j−1+mx̄−j−1+m̄Φj

x(h) with m − m̄ ∈ Z . (2.17)

The numbers m, m̄ can be written in terms of an integer n ∈ Z and a momentum p, which

is imaginary in the H+
3 model:

m =
1

2
(n + p) , m̄ =

1

2
(−n + p) . (2.18)
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The explicit expression for Φj
m,m̄(h) is found to be

Φj
m,m̄(h) = −4

Γ(−j + |n|+p
2 )Γ(−j + |n|−p

2 )

Γ(|n| + 1)Γ(−2j − 1)
e−pτ+inθ sinh|n| ρ coshp ρ

× F (−j +
|n| + p

2
, j + 1 +

|n| + p

2
, |n| + 1,− sinh2 ρ) . (2.19)

Notice that this obeys the so-called reflection property

Φj
m,m̄ = Rj

m,m̄Φ−j−1
m,m̄ , Rj

m,m̄ =
Γ(2j + 1)

Γ(−2j − 1)

Γ(−j + m)Γ(−j − m̄)

Γ(j + 1 + m)Γ(j + 1 − m̄)
(2.20)

=
Γ(2j + 1)

Γ(−2j − 1)

Γ(−j + |n|+p
2 )Γ(−j + |n|−p

2 )

Γ(j + 1 + |n|+p
2 )Γ(j + 1 + |n|−p

2 )
, (2.21)

where Rj
m,m̄ = Rj

m̄,m due to n = m − m̄ ∈ Z.

We will use the functions on AdS3 obtained from the above functions Φj
m,m̄(h) by the

Wick rotation τ → iτ . In order for the resulting functions to be delta-function normalizable,

we now need to assume the momentum p to be real, instead of imaginary in the H+
3 case.

We do not introduce a new notation for the resulting functions on AdS3, but still call them

Φj
m,m̄(G) or Φj

m,m̄.

In contrast to t-basis functions, m-basis functions on AdS3 do not transform simply

under the action of the AdS3×AdS3 symmetry group. However, they do transform simply

under the action of the R × R subgroup made of pairs (GτL
, GτR

), where Gτ was defined

by eq. (2.4):

Φj,α
m,m̄(GτL

GGτR
) = e−2i(mτL+m̄τR)Φj,α

m,m̄(G) . (2.22)

Notice that the identity GπGG−π = G implies m − m̄ ∈ Z. (In the particular case of

SL(2, R), we have the additional identity g2π = id, which implies m, m̄ ∈ 1
2Z.) Introducing

α ∈ [0, 1) such that m, m̄ ∈ α + Z , (2.23)

this parameter α is identical to the parameter α of the t-basis functions Φj,α
tL,tR

(2.9). We

will look for a relation of the type

Φj
m,m̄ = cj,α

∫

R

dtL (1 + t2L)−j−1eiπm

(
1 − itL
1 + itL

)m∫

R

dtR (1 + t2R)−j−1

(
1 + itR
1 − itR

)m̄

Φj,α
tL,tR

,

(2.24)

where cj,α is a normalization factor. We can check that the right-hand side of this relation

obeys the transformation property (2.22), thanks to the behaviour eq. (2.8) of Φj,α
tL,tR

. To

see this it is useful to notice that the integrand in eq. (2.24) is continuous through tL = ∞

and tR = ∞, as can be deduced from the behaviour of the phase factor e2iπαn(G|tL,tR) of

Φj,α
tL,tR

, which is depicted in the diagram 1. This makes it possible to perform translations

of the variables ϕL, ϕR such that tL,R = tan 1
2ϕL,R. The normalization factor cj,α is easily

computed in the limit ρ → ∞, where the dependences of the integrand on tL and tR
factorize. We find

cj,α =
42j sinπ2j

sin π(j − α) sin π(j + α)
. (2.25)

– 6 –



J
H
E
P
0
4
(
2
0
1
0
)
0
9
6

2.4 Completeness of the bases of functions

We have been considering functions on a space X with X ∈ {H+
3 , SL(2, R), AdS3}. Given

X, let us consider the space of complex-valued square-integrable functions L2(X) with the

scalar product 〈f, g〉 =
∫
X

dµ f̄g, where the invariant measure can be written in all three

cases as dµ = sinh 2ρ dρ dθ dτ . Although our functions Φ do not necessarily belong to

L2(X), they form orthogonal bases in the same sense as {eipq|p ∈ R} is an orthogonal basis

of the space of functions on R. Namely, there exist sets BX of values of the parameters

and {Φb, b ∈ BX} of the corresponding functions such that any pair (f, g) of smooth,

compactly supported functions on X obeys 〈f, g〉 =
∑

b∈BX
N(b) 〈f,Φb〉 〈Φb, g〉, where N(b)

is a normalization factor, and the sum
∑

b∈BX
becomes an integral whenever it involves

continuous parameters.

More specifically, the x-bases of functions are

H+
3 :

{
Φj

x|j ∈ −
1

2
+ iR+, x ∈ C

}
, (2.26)

SL(2, R) :

{
Φj,η

tL,tR
|j ∈ −

1

2
+ iR+, (tL, tR) ∈ R

2, η ∈

{
0,

1

2

}}

∪

{
Φj,η

tL,tR
|j ∈ −1 −

1

2
N, (tL, tR) ∈ R

2, η = j mod 1

}
, (2.27)

AdS3 :

{
Φj,α

tL,tR
|j ∈ −

1

2
+ iR+, (tL, tR) ∈ R

2, α ∈ [0, 1)

}

∪

{
Φj,α

tL,tR
|j ∈

(
−

1

2
,∞

)
, (tL, tR) ∈ R

2, α = j mod 1

}
, (2.28)

and the corresponding m-bases are

H+
3 :

{
Φj

m,m̄|j ∈ −
1

2
+ iR+,m + m̄ ∈ iR,m − m̄ ∈ Z

}
, (2.29)

SL(2, R) :

{
Φj

m,m̄|j ∈ −
1

2
+ iR+,m + m̄ ∈

1

2
Z,m − m̄ ∈ Z

}

∪

{
Φj

m,m̄|j ∈ −1 −
1

2
N,m, m̄ ∈ ±(j + 1 + N)

}
, (2.30)

AdS3 :

{
Φj

m,m̄|j ∈ −
1

2
+ iR+,m + m̄ ∈ R,m − m̄ ∈ Z

}

∪

{
Φj

m,m̄|j ∈

(
−

1

2
,∞

)
,m, m̄ ∈ ±(j + 1 + N)

}
. (2.31)

The completeness of both the x- and m-bases of functions on H+
3 was proved in [5]. In

the case of AdS3, the completeness of the m-basis follows from the results of [? ], where

a Plancherel formula for AdS3 was proved. The completeness of the t-basis then follows

from the integral relation (2.24). The case of SL(2, R) can be deduced from the case of

AdS3 by noting that functions on SL(2, R) correspond to τ -periodic functions on AdS3

with period 2π.

Moreover, in each case the basis {Φb, b ∈ BX} provides a spectral decomposition of

the Laplacian on X, which is Hermitian with respect to the scalar product 〈f, g〉. A

– 7 –
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function of spin j is an eigenvector of the Laplacian for the eigenvalue −j(j + 1). In

the cases X ∈ {SL(2, R), AdS3} this follows from the transformation properties of such

functions under the symmetries, and the fact that the Laplacian coincides with the Casimir

differential operators associated with these symmetries. In the case of H+
3 this can be

deduced from the case of AdS3 by Wick rotation.

3 Representations and Clebsch-Gordan coefficients

3.1 Representations of sℓ(2, R)

The minisuperspace limit of the spectrum of the AdS3 WZNW model is the space of delta-

function normalizable functions on AdS3. It is subject to the action of the geometrical

symmetry group AdS3×AdS3
Z

, and therefore of its Lie algebra sℓ(2, R)×sℓ(2, R). Three types

of unitary representations of sℓ(2, R) appear in the minisuperspace spectrum: continuous

representations, and two series of discrete representations. Continuous representations

Cj,α are parametrized by a spin j and a number α ∈ [0, 1) such that m ∈ α + Z. Discrete

representations Dj,± are parametrized by a spin j ∈ (−1
2 ,∞), and their states obey m ∈

±(j + 1 + N). All these representations of sℓ(2, R) extend to representations of the group

AdS3. However, only representations with m ∈ 1
2Z, namely Cj,α with α ∈ 1

2Z and Dj,±

with j ∈ 1
2N, extend to representations of the group SL(2, R).

More precisely, given the sℓ(2, R) algebra with generators J3, J± and relations

[J3, J±] = ±J±, [J+, J−] = −2J3, the spin j is defined by (J3)2 − 1
2(J+J− + J−J+) =

j(j + 1), and the states |m〉 are such that

J3|m〉 = m|m〉 , J+|m〉 = (m + j + 1)|m + 1〉 , J−|m〉 = (m − j − 1)|m − 1〉 .(3.1)

These conventions are incompatible with the unit normalization of the states (which would

mean 〈m|m′〉 = δm,m′), however they will turn out to agree with the behaviour of our

functions Φj
m,m̄ eq. (2.19).

The tensor product laws for sℓ(2, R) representations are well-known. They are equiva-

lent to knowing the three-point invariants, which we schematically depict here in the cases

when they do not vanish:

2

C ⊗ C ⊗ C

,

D− ⊗ C ⊗ C

,

D− ⊗ D+ ⊗ C

,

D+ ⊗ D+ ⊗ D−

. (3.2)

For instance, the first diagram means that any continuous representation Cj,α appears

twice in the tensor product Cj1,α1 ⊗ Cj2,α2 of two continuous representations. (The m-

conservation rule α = α1 + α2 mod 1 is implicitly assumed.) The fourth diagram means

that Dj,+ ⊂ Dj1,+ ⊗ Dj2,+. (The rule j ∈ j1 + j2 + 1 + N is implicitly assumed.) The

fourth diagram also means that Dj,− may appear once in Dj1,− ⊗ Dj2,+. (This happens if

j ∈ j2 − j1 − 1−N.) We omit the diagrams obtained by reverting the arrows in the second

and fourth diagrams, namely D+ ⊗ C ⊗ C and D− ⊗ D− ⊗ D+.
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3.2 Clebsch-Gordan coefficients: m basis

We will rederive the tensor product rules by studying the Clebsch-Gordan co-

efficients. These coefficients are the three-point invariants, viewed as functions

C(j1, j2, j3|m1,m2,m3) subject to the equations

3∑

i=1

(mi + ji + 1)C(mi + 1) =

3∑

i=1

(mi − ji − 1)C(mi − 1) =

3∑

i=1

miC = 0 . (3.3)

It is of course possible to prove a priori that these equations are obeyed by the three-

point function
〈∏3

i=1 Φji
mi,m̄i

〉
≡
∫
AdS3

dG
∏3

i=1 Φji
mi,m̄i

(G). To do this, we would in-

troduce a realization of the Lie algebra sℓ(2, R) as first-order differential operators Da

wrt ρ, θ, τ , such that D+Φj
m,m̄(G) = (m + j + 1)Φj

m,m̄(G), D−Φj
m,m̄(G) = (m − j −

1)Φj
m,m̄(G) and D3Φj

m,m̄(G) = mΦj
m,m̄(G). Then eq. (3.3) would follow from the identity〈∏3

i=1 Φji
mi,m̄i

(G)
〉

=
〈∏3

i=1 Φji
mi,m̄i

(GLG)
〉
. We however abstain from doing this, as we

will later explicitly compute the three-point function
〈∏3

i=1 Φji
mi,m̄i

〉
and write it in terms

of solutions of the equation (3.3).

Given three irreducible representations of sℓ(2, R), there exist zero, one or two linearly

independent solutions of the equation (3.3). In the case of three continuous representations,

the momenta (m1,m2) belong to a two-dimensional lattice of the type
∏2

i=1(αi + Z) (with

of course m3 = −m1−m2), and the coefficients mi±(ji +1) never vanish. In this situation,

a solution of eq. (3.3) is determined once the values of C at two neighbouring points of the

lattice are given. In the case when at least one representation is discrete, say m1 ∈ j1+1+N,

the lattice becomes semi-infinite in one direction, and a solution is determined once the

value of C at one point is given.

Let us introduce the function

G

(
a b c

e f

)
≡

Γ(a)Γ(b)Γ(c)

Γ(e)Γ(f)
3F2

(
a b c

e f

∣∣∣∣∣ 1
)

=

∞∑

n=0

1

n!

Γ(a + n)Γ(b + n)Γ(c + n)

Γ(e + n)Γ(f + n)
, (3.4)

where the sum converges provided a + b + c − e − f < 0, and the poles of G are the same

as those of Γ(a)Γ(b)Γ(c)Γ(e + f − a − b − c). Knowing the identity

(a − e + 1)G

(
a b c

e f

)
+ (b − f)G

(
a + 1 b c

e f + 1

)
+ (c − 1)G

(
a b c − 1

e − 1 f

)
= 0 , (3.5)

we can use this function for writing a solutions of eq. (3.3):

C = δ(m1 + m2 + m3) G

(
−j2 + m2 − j3 − m3 − j1

23

1 + j1 − j3 + m2 1 + j1 − j2 − m3

)
≡ δ(m1 + m2 + m3)g

23 ,

(3.6)

which is well-defined provided 2 + j123 > 0, where we use the notations j123 = j1 + j2 + j3

and j1
23 ≡ j2 + j3 − j1. Of course five other solutions of the type gab with a 6= b ∈ {1, 2, 3}
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can be obtained by permutations of indices. These solutions are not linearly independent,

as can be shown with the help of the identity

s(b)s(c − a)G

(
a b c

e f

)
= s(e − a)s(f − a)G

(
a a − e + 1 a − f + 1

a − b + 1 a − c + 1

)

− s(c − e)s(c − f)G

(
c c − e + 1 c − f + 1

c − a + 1 c − b + 1

)
, (3.7)

where s(x) ≡ sin πx, and we will also use c(x) ≡ cos πx. Thus we obtain
(

g21

g12

)
= M13

(
g32

g23

)
, M13 =

1

s(j3
12)

( s(j2+m2)s(j3−m3)
s(j1+m1)

s(j3+m3)s(j3−j1+m2)
s(j1+m1)

s(j3−m3)s(j3−j1−m2)
s(j1−m1)

s(j2−m2)s(j3+m3)
s(j1−m1)

)
.(3.8)

Together with the other identities obtained by permuting the indices, this shows that at

most two of the solutions gab are linearly independent.

Due to our convention j ∈ (−1
2 ,∞) for discrete representations, we have ℜj ≥ −1

2 for

all representations of interest. This ensures that the sum in eq. (3.4) converges, so that gab

is well-defined provided the summand is finite, which occurs unless Γ(−ja + ma)Γ(−jb −

mb)Γ(−jc
ab) has a pole.

Case C ⊗ C ⊗ C. In this case, two given solutions say g23, g32 are linearly independent,

and they provide a basis of the two-dimensional space of invariants.

Case D−⊗C ⊗C. We assume for example m2 = −j2−1−ℓ with ℓ ∈ N. Some relations

of the type of eq. (3.8) simplify, and we find

g21 = (−1)ℓ
s(j3 + m3)

s(j1 + m1)
g23 = −

s(j2
13)

s(2j2)
g31 = −(−1)ℓ

s(j3 + m3)

s(j1 + m1)

s(j2
13)

s(2j2)
g13 . (3.9)

Since the space of invariants is one-dimensional, the two remaining functions g12 and g32

must also be proportional to the other four. However, this proportionality relation is not

very simple, as can be seen in the case of the highest-weight state ℓ = 0 when g12 and g32

fail to become expressible as products of Γ-functions, in contrast to the other four solutions.

Case D+ ⊗ C ⊗ C. The situation is completely analogous to the previous case. We

assume for example m2 = j2 + 1 + ℓ with ℓ ∈ N and find

g12 = (−1)ℓ
s(j3 − m3)

s(j1 − m1)
g32 = −

s(j2
13)

s(2j2)
g13 = −(−1)ℓ

s(j3 − m3)

s(j1 − m1)

s(j2
13)

s(2j2)
g31 . (3.10)

Case D− ⊗ D− ⊗ C. We expect no invariants to exist in this case. Let us check this,

assuming for example m2 ∈ −j2−1−ℓ2 and m3 ∈ −j3−1−ℓ3 with ℓ2, ℓ3 ∈ N. Equation (3.9)

implies two incompatible relations between g21 and g31, which must therefore both vanish.

An apparent paradox comes from the non-vanishing of g12, g32, g23, g13. However, these

functions do not provide solutions to eq. (3.3), because they become infinite at ℓ2 = −1

or ℓ3 = −1. For instance, if C(m1,−j2,m3) = ∞, then (m1 + j1 + 1)C(m1 + 1,−j2 −

1,m3) + (−j2 + j2)C(m1,−j2,m3) + (m3 + j3 + 1)C(m1,−j2 − 1,m3 + 1) = 0 may have

an unwanted nonvanishing second term. Therefore, the analysis of gab agrees with the

representation-theoretic expectations that no invariant exists.
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Case D+ ⊗ D− ⊗ C. We assume for example m2 = −j2 − 1 − ℓ2 and m3 = j3 + 1 + ℓ3

with ℓ2, ℓ3 ∈ N. We find the relations

g31 = g12 = −
s(2j3)

s(j3
12)

g13 = −
s(2j2)

s(j2
13)

g21 =
s(2j2)s(2j3)

s(j2
13)s(j

3
12)

g23 . (3.11)

The functions g13, g21, g23 stay finite for any values ℓ2, ℓ3 ∈ Z, and therefore provide three

proportional invariants. The functions g31 and g12 become infinite if ℓ3 < 0 and ℓ2 < 0

respectively, so that it is not a priori clear that they provide invariants. That they actually

do is guaranteed by the above relations.

Case D− ⊗ D− ⊗ D+. We assume for example m1 = j1 + 1 + ℓ1, m2 ∈ −j2 − 1 − ℓ2

and m3 ∈ −j3 − 1 − ℓ3, with ℓ1, ℓ2, ℓ3 ∈ N. Noticing s(2j2)s(2j3) = s(j2
13)s(j

3
12), we find

the relations

g12 = g23 = −
s(2j3)

s(j3
12)

g13 = −
s(2j3)

s(j3
12)

g32 . (3.12)

These four proportional functions provide the invariant in this case. In particular, g12 and

g13 no longer become infinite at ℓ2 = −1 or ℓ3 = −1 respectively, as happened in the case

D−⊗D−⊗C. The remaining two functions g21, g31 vanish, as they already did in the case

D− ⊗ D− ⊗ C. Notice that the selection rule j1 ∈ j2 + j3 + 1 + N manifests itself as g23

becoming infinite if j1 ∈ j2 + j3 − N, due to a series of poles which correspond to those of

Γ(−j1
23).

3.3 Clebsch-Gordan coefficients: t-basis

Our m-basis invariants gab are not symmetric under permutations of the indices, but the

equation (3.3) which they solve is. In the t-basis, we will now show that there exist natural

permutation-symmetric invariants, and we will relate them to combinations of the gab

invariants. A similar analysis was already performed for the Clebsch-Gordan coefficients

of SO(2, 1) = SL(2,R)
Z2

, in the articles [7, 8]. The representations of SO(2, 1) correspond to

representations of sℓ(2, R) such that m ∈ Z, or in other words α = 0. We will perform the

generalization to arbitrary values of α.

In the t-basis, AdS3 invariants should be solutions of

C({ti}) = C

({
ati + b

cti + d

}) 3∏

i=1

|cti + d|2jie−2iπαiN(G|ti) , (3.13)

for any AdS3 element G whose projection onto SL(2, R) is g =
(

a b
c d

)
. Solutions exist

provided α1 + α2 + α3 ∈ Z, and we will assume α1 + α2 + α3 = 0. The solutions are [9]

C({ti}) = |t12|
j3
12 |t23|

j1
23 |t31|

j2
31 eiπ(α12signt12+α23signt23+α31signt31) , (3.14)

where α12, α23, α31 should obey the equation α12 − α23 = α2 mod Z and the two other

equations obtained by even permutations thereof. The solutions to such equations are

αab =
1

3
(αb − αa) + α0 , (3.15)
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where α0 is an arbitrary constant. (In SL(2, R) we have αa = ηa ∈ 1
2Z and it is more conve-

nient to adopt the convention αab = ηa+ηb+α0. Equivalently, we can use the above formula

provided we assume αa ∈ 3
2Z.) Let us now apply the change of basis (2.24) to C({ti}).

After the change of integration variables ti = tan ϕi

2 the m-basis version of C({ti}) is

C({mi}) =

3∏

i=1

[∫ π

−π

dϕi eimiϕi

] ∣∣∣∣ sin
1

2
ϕ12

∣∣∣∣
j3
12
∣∣∣∣ sin

1

2
ϕ23

∣∣∣∣
j1
23
∣∣∣∣ sin

1

2
ϕ31

∣∣∣∣
j2
13

× eiπ(α12sign sin 1
2
ϕ12+α23sign sin 1

2
ϕ23+α31sign sin 1

2
ϕ31) , (3.16)

where the integrand has the same values at ϕi = π and ϕi = −π. This integral can be

explicitly evaluated by generalizing the computations of [7], and in particular using the

formula, valid for ϕ ∈ (−π, π):

∣∣∣sin ϕ

2

∣∣∣
−2a

eiπαsign sin 1
2
ϕ = s(a + α)e−iπα22aΓ(1 − 2a)

∞∑

n=−∞

ei(n+α)ϕ Γ(a+n+α)

Γ(1−a+n+α)
. (3.17)

Thus, we find

C({mi}) = −δ(
∑

mi)2
−j123

1

π2
Γ(1+j3

12)Γ(1+j1
23)Γ(1+j2

31)e
−iπ(α12+α23+α31)gα0 , (3.18)

where we introduce the invariants

gα0 = π2s

(
1

2
j3
12 − α12

)
s

(
1

2
j1
23 − α23

)
s

(
1

2
j2
31 − α31

)

×
∑

n∈Z

Γ(−1
2j3

12 + α12 + n)

Γ(1 + 1
2j3

12 + α12 + n)

Γ(−1
2j2

13 + m1 + α12 + n)

Γ(1 + 1
2j2

13 + m1 + α12 + n)

Γ(−1
2j1

23 − m2 + α12 + n)

Γ(1 + 1
2j1

23 − m2 + α12 + n)
,

(3.19)

which can be expressed in terms of the invariants gab (3.6) as

gα0 = s

(
1

2
j2
13 − α31

)
s(j3 − α3)s(j1 + α1)g

31 + s

(
1

2
j2
13 + α31

)
s(j1 − α1)s(j3 + α3)g

13 .

(3.20)

In this formula, gα0 depends on the paramter α0 only through α31 eq. (3.15). There are

two particularly interesting special values of α0, namely 0 and 1
2 . In the case α0 = 0

then C({ti}) and g0 are invariant under permutations. In the case α0 = 1
2 then C({ti})

and g
1
2 are odd under permutations i.e. invariant up to a sign. When the three involved

representations are continuous, g0 and g
1
2 can serve as a basis of the two-dimensional space

of invariants. Notice that in the case of SL(2, R) only these two values of α0 are possible.

4 Products of functions

In the conformal bootstrap approach to the AdS3 WZNW model, all correlation functions

can in principle be constructed from the knowledge of three objects: the spectrum, the two-

point correlation functions on a sphere, and the operator product expansions — or equiv-

alently the three-point correlation functions on a sphere. We will now determine these ob-

jects in the minisuperspace limit. We first recall their definitions. Given n functions Φi(G)
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on AdS3, the corresponding correlation function is
〈∏n

i=1 Φi
〉
≡
∫

dG
∏n

i=1 Φi(G) where

dG is the invariant measure. If {Φi}i∈S form an orthogonal basis of the spectrum (that is
〈
ΦiΦj

〉
= 0 if i 6= j), the product of functions is schematically Φ1Φ2 =

∑
i∈S

〈Φ1Φ2Φi〉
〈ΦiΦi〉

Φi.

This product is obviously associative and commutative.

The functions Φj
m,m̄(G) on AdS3 are related to corresponding functions Φj

m,m̄(h) on

H+
3 by a Wick rotation, and therefore their correlation functions can be deduced from H+

3

correlation functions by that Wick rotation. This will involve some subtleties, because the

discrete representations which appear in the minisuperspace spectrum on AdS3 are absent

in H+
3 . But let us first review the products of functions on H+

3 .

4.1 Products of functions on H+
3

The minisuperspace spectrum of H+
3 is generated by the functions

{
Φj

n,p(h)|j ∈ −
1

2
+ iR, n ∈ Z, p ∈ iR

}
. (4.1)

The correlation functions
〈∏n

i=1 Φji
ni,pi

〉
≡
∫

dh
∏n

i=1 Φji
ni,pi(h) are obtained by integrating

products of such functions with respect to the invariant measure dh = sinh 2ρ dρ dθ dτ .

The two-point functions can be computed from the expression (2.19) of Φj
n,p(h):

〈
Φj

n,pΦ
j′

n′,p′

〉
= 128π2δn+n′,0 δ(p + p′)

[
δ(j + j′ + 1) + Rj

n,pδ(j − j′)
]

, (4.2)

where the reflection coefficient Rj
n,p was defined in eq. (2.20). A similar direct computation

of the three-point function seems complicated. Instead, we will make use of the known

x-basis three-point function [5]

〈
3∏

i=1

Φji
xi

〉
= C(j1, j2, j3)|x12|

2j3
12 |x23|

2j1
23 |x31|

2j2
31 , (4.3)

C(j1, j2, j3) ≡ π−3Γ(−j123 − 1)
Γ(−j3

12)Γ(−j1
23)Γ(−j2

31)

Γ(−2j1 − 1)Γ(−2j2 − 1)Γ(−2j3 − 1)
. (4.4)

The transformation to the m-basis (2.17) can be performed thanks to an integral formula

of Fukuda and Hosomichi [10]. The result can be written in terms of the Clebsch-Gordan

coefficients gab (3.6):

〈
3∏

i=1

Φji

mi,m̄i

〉
= C(j1, j2, j3) δ(2)(

∑
mi) K2s(j2

13)
2s(j1

23)
2

×

[
g23ḡ31 +

s(2j2)

s(j2
13)

g23ḡ32 +
s(2j1)

s(j1
23)

g13ḡ31 + g13ḡ32

]
, (4.5)

where ḡab denotes gab with mi replaced by m̄i, and we introduced the factor

K ≡
1

π2
Γ(1 + j3

12)Γ(1 + j2
13)Γ(1 + j1

23) . (4.6)
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It can be checked that the two- and three-point functions have the behaviour under re-

flection which is expected from the behaviour of Φj
m,m̄ (2.20). Now, using the three-point

function, products of functions on H+
3 can be written as

Φj1
m1,m̄1

Φj2
m2,m̄2

=
1

256π2

∫

− 1
2
+iR

dj3

〈
3∏

i=1

Φji

mi,m̄i

〉′
1

Rj3
m3,m̄3

Φj3
−m3,−m̄3

, (4.7)

where we use the notation
〈∏3

i=1 Φji

mi,m̄i

〉
= δ(2)(m1 + m2 + m3)

〈∏3
i=1 Φji

mi,m̄i

〉′
.

The invariance of the three-point function (4.5) under permutations of the indices is

not manifest, but can be checked using linear relations between the gab such as eq. (3.8). It

seems that a reasonably simple, manifestly permutation-symmetric expression exists only

in the case mi, m̄i ∈ ηi + Z with ηi ∈ {0, 1
2}, which corresponds to functions on SL(2, R).

In this case, we can use the invariants g0, g
1
2 (3.20), and we find

〈
3∏

i=1

Φji

mi,m̄i

〉
= −

1

2π5
C(j1, j2, j3) δP

mi,0δ
P

m̄i,0
γ(1 + j3

12)γ(1 + j1
23)γ(1 + j2

31)∏3
i=1 s(ji + ηi)

×
∑

ǫ∈{0, 1
2
}

s(1
2j123 + ǫ)

s(1
2j3

12 + η3 + ǫ)s(1
2j1

23 + η1 + ǫ)s(1
2j2

31 + η2 + ǫ)
gǫḡǫ , (4.8)

where we use γ(x) ≡ Γ(x)
Γ(1−x) . From this, we can reconstruct the t-basis three-point function

〈
3∏

i=1

Φji,ηi

tLi ,tRi

〉
=

22j123

2π4
C(j1, j2, j3)

3∏

i=1

c(ji − ηi) ×

∣∣tL12tR12
∣∣j3

12
∣∣tL23tR23

∣∣j1
23
∣∣tL31tR31

∣∣j2
31 eiπ[η3(signtL12+signtR12)+η1(signtL23+signtR23)+η2(signtL31+signtR31)]×

∑

ǫ∈{0, 1
2
}

s

(
1

2
j123−ǫ

)
c

(
1

2
j3
12+η3+ǫ

)
c

(
1

2
j1
23+η1+ǫ

)
c

(
1

2
j2
31+η2+ǫ

) (
signtL12t

R
12t

L
23t

R
23t

L
31t

R
31

)2ǫ
.

(4.9)

Comparing this formula to the H+
3 three-point function in the x-basis eq. (4.3), we obtain

a confirmation of the lack of a simple relation between the x-basis in H+
3 and the t-basis

in SL(2, R) or AdS3.

In the more general case of functions on AdS3, the three-point function can still be

expressed in terms of the invariants g0 and g
1
2 , but the formula is more complicated than

eq. (4.8) and in particular the “mixed” terms g0ḡ
1
2 and g

1
2 ḡ0 are present. Their absence in

the case of SL(2, R) can be attributed to the exterior automorphism ω of SL(2, R), namely

ω(g) =
(

1 0
0 −1

)
g
(

1 0
0 −1

)
, which is such that Φj,η

tL,tR
(ω(g)) = (−1)2ηΦj,η

−tL,−tR
(g). In the case

of AdS3 this action still exists and can be expressed as ω(ρ, θ, τ) = (ρ,−θ,−τ). But it does

not act simply on the function Φj,α
tL,tR

(G).1

1Let us give the behaviour of certain objects of section 2.2: N(ω(G)|t) = −N(G|− t), [ω(G)] = −[G]− 1

and n(ω(G)|tL, tR) = −n(G| − tL,−tR).
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4.2 Products of functions on AdS3

Functions Φj
m,m̄ on AdS3 are obtained from the corresponding functions on H+

3 by per-

forming the Wick rotation τ → iτ and continuing p = m + m̄ from iR to R. If we do not

modify the value of the spin j ∈ −1
2 + iR, this yields functions transforming in the continu-

ous representations of AdS3 ×AdS3, namely Φj
m,m̄ ∈ Cj,α ⊗Cj,α where m, m̄ ∈ α + Z. We

may in addition obtain functions transforming in the discrete representation by continuing

j to real values such that m, m̄ ∈ ±j ± Z. More precisely, functions Φj
m,m̄ ∈ Dj,± ⊗ Dj,±

correspond to

j ∈

(
−

1

2
,∞

)
and m, m̄ ∈ ±(j + 1 + N) ⇔ −j − 1 −

1

2
|n| ±

1

2
p ∈ N , (4.10)

or j ∈

(
−∞,−

1

2

)
and m, m̄ ∈ ±(−j + N) ⇔ j −

1

2
|n| ±

1

2
p ∈ N . (4.11)

These two possibilities are related by the reflection j → −j − 1 and they are equivalent.

We will only consider the first possibility, because our invariants gab (3.6) are well-defined

for ℜj ≥ −1
2 . We will see that the set of these discrete and continuous functions is closed

under products, consistently with the fact that they generate the space of functions on

AdS3 as we saw in section 2.4.

We now derive the products of functions on AdS3 by continuing the products of func-

tions on H+
3 (4.7) to the relevant values of spins j and momenta p. We will examine various

cases, according to the nature — discrete or continuous — of the fields Φj1
m1,m̄1

and Φj2
m2,m̄2

.

For example, the case when j1 ∈ −1
2 + iR and m2, m̄2 ∈ j2 +1+Z will be denoted C ×D+.

We will check that the terms which appear in a given product are those which are allowed

by the well-known tensor product laws for sℓ(2, R) representations (3.2).

Case C×C. We should continue p1, p2, p3 from imaginary to real values in eq. (4.7). This

is problematic only when the integrand, viewed as a function of j3, has poles which cross the

integration line. Such pi-dependent poles of the integrand may come from either of its three

factors. The poles coming from the second factor 1

R
j3
m3,m̄3

are easily seen from eq. (2.20), and

the poles from the other factors are obtained from these by the reflection2 j3 → −j3−1. (see

figure 2). When p3 moves from imaginairy to real values, let us consider the poles from the

left which may cross the integration line and end up on the right with j3 ∈ (−1
2 ,∞). Such

poles belong to the (possibly empty) sets j3 ∈ −1− 1
2 |n3| ±

1
2p3 −N∩ (−1

2 ,∞). Therefore,

according to eq. (4.10), they correspond to functions Φj3
m3,m̄3

in the Dj3,± representations.

2It is also possible to study the m-dependent poles of
D

Q3
i=1 Φji

mi,m̄i

E

directly from the formula (4.5).

For example, ḡ32 has poles at j2 + m̄2 ∈ N. But the coefficient of ḡ32 is a combination of g13 and g23 of

the type s(2j2)g
23 + s(j2

13)g
13 = s(j3−m3)

s(j1−m1)
s(j2 + m2)g

32, where we used j2 + m2 ∈ Z (which follows from

j2 + m̄2 ∈ N) and eq. (3.8). This vanishes, unless g32 itself has a pole. This shows that
D

Q3
i=1 Φji

mi,m̄i

E

has

simple poles when both m2, m̄2 belong to −j2 + N, but not when only m̄2 does.

– 15 –
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j3 ∈ −1
2 + iR

bc

1
2
(|n3| + p3)

bc

−1 − 1
2
(|n3| + p3)

bc

1
2
(|n3| − p3)

bc

−1 − 1
2
(|n3| − p3)

(4.12)

Figure 2. Poles of the integrand of eq. (4.7) in the j3 complex plane, assuming p3 ∈ iR. The two

half-lines on the left correspond to the poles of 1

R
j3
m3,m̄3

.

We deduce the formula for the products of two “continuous” functions on AdS3:

Φj1
m1,m̄1

Φj2
m2,m̄2

=
1

256π2

∫

− 1
2
+iR

dj3

〈
3∏

i=1

Φji

mi,m̄i

〉′
1

Rj3
m3,m̄3

Φj3
−m3,−m̄3

+
2

256π2

∑

j3∈−1− 1
2
|n3|±

1
2
p3−N∩(− 1

2
,∞)

〈
3∏

i=1

Φji
mi,m̄i

〉′

2πiRes
1

Rj3
m3,m̄3

Φj3
−m3,−m̄3

, (4.13)

where the factor 2 in the discrete term is due to the contribution of the poles with

j3 ∈ (−∞,−1
2 ). Notice that the general expression (4.5) for the three-point function〈∏3

i=1 Φji

mi,m̄i

〉′
simplifies in the case j3 ∈ −1− 1

2 |n3| ±
1
2p3 −N∩ (−1

2 ,∞) due to formulas

of the type of eqs. (3.9) and (3.10). Examples of simplified expressions are:

〈
3∏

i=1

Φji

mi,m̄i

〉′

=
Dj3,+

−C(j1, j2, j3)K
2s(j3

12)s(j
1
23)s(j

2
31)s(j123) g21ḡ13 , (4.14)

g21ḡ13 = ḡ21g13 = g12ḡ23 = ḡ12g23 ,
〈

3∏

i=1

Φji
mi,m̄i

〉′

=
Dj3,−

−C(j1, j2, j3)K
2s(j3

12)s(j
1
23)s(j

2
31)s(j123) g12ḡ31 , (4.15)

g12ḡ31 = ḡ12g31 = g21ḡ32 = ḡ21g32 .

Case D+ × C. After moving pi to real values as in the previous case C × C, we should

move j1 to −1 − 1
2 |n1| + 1

2p1 − N ∩ (−1
2 ,∞). Let us show that no further poles cross

the integration line in eq. (4.13) during this operation. We are looking for possible j1-

dependent poles in
〈∏3

i=1 Φji
mi,m̄i

〉′
, viewed as a function of j3. We use formulas of the

type of eq. (3.10) to obtain

〈
3∏

i=1

Φji
mi,m̄i

〉′

=
Dj1,+

C(j1, j2, j3)K
2s(j3

12)s(j
1
23)s(j

2
31)s(j123)

s(j1
23)

s(2j1)
g23ḡ32 . (4.16)

– 16 –
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Potential poles come from factors Γ(1 + j1
23) in K (4.6) and Γ(−1 − j123)Γ(−j3

12)Γ(−j2
31)

in C(j1, j2, j3) (4.4), but they are all cancelled by appropriate sin factors. On the other

hand, the poles from the factors Γ(1 + j3
12)Γ(1 + j2

31) in K, from the factor Γ(−j1
23) in

C(j1, j2, j3), and the poles of Γ(−j1
23) which come from g23 and ḡ32, cannot be reached

because ℜj1 ≥ −1
2 .

This shows that the formula (4.13) still holds for products of functions in D+ × C.

Of course, simplified expressions for
〈∏3

i=1 Φji
mi,m̄i

〉′
can be used for both continuous and

discrete values of j3. We can moreover check that terms corresponding to Dj3,+ actually

vanish. This is due to
〈

3∏

i=1

Φji

mi,m̄i

〉′

=
Dj1,+,Dj3,+

0 , (4.17)

which follows from eq. (4.14) if we notice that g21 = g23 = 0 in this case due to eq. (3.10).

This equation holds for generic values of j2, in particular the values j2 ∈ −1
2 + iR which

correspond to Cj2.

Case D+ ×D+. The formula (4.13) for the product of functions still holds, but the con-

tinuous term
∫
− 1

2
+iR

dj3 · · · vanishes due to eq. (4.17). Terms corresponding to Dj3,+ repre-

sentations also vanish by the same argument, but the equation
〈∏3

i=1 Φji
mi,m̄i

〉′
=

Dj1,+,Dj2,+
0

may fail if a Dj3,− representation is present, due to poles from the factor K2 in eq. (4.5).

To analyze this matter it is convenient to start with the identity
〈

3∏

i=1

Φji

mi,m̄i

〉′

=
Dj2,+,Dj3,−

−C(j1, j2, j3)K
2 s(j3

12)
2s(j2

31)
2s(j1

23)s(j123)

s(2j2)s(2j3)
g13ḡ13 . (4.18)

We then send j1 to values corresponding to discrete representations Dj1,+. Due to momen-

tum conservation we must have j1 ∈ j2 − j3 + Z. If j1 ∈ j2 − j3 − 1−N then a double pole

from K2 cancels the double zero from s(j2
13)

2 and the result is finite. If j1 ∈ j2−j3+N then

the simple pole from C(j1, j2, j3) does not cancel the double zero, and the result vanishes.

The formula (4.13) therefore reduces to

Φj1
m1,m̄1

Φj2
m2,m̄2

=
2

256π2

∑

j3∈j1+j2+1+N

〈
3∏

i=1

Φji
mi,m̄i

〉′

2πiRes
1

Rj3
m3,m̄3

Φj3
−m3,−m̄3

. (4.19)

Case D+ × D−. The formula (4.13) for the product of functions still holds, and the

analysis of eq. (4.18) in the previous case determines which terms may vanish. Nonvanishing

Dj3,+ terms occur for j3 ∈ j2 − j1 − 1 − N ∩ (−1
2 ,∞) and nonvanishing Dj3,− terms occur

for j3 ∈ j1 − j2 − 1 − N ∩ (−1
2 ,∞). Depending on the values of j1, j2 we can have either

Dj3,+ terms, or Dj3,− terms, or no discrete terms at all in the case |j1 − j2| ≤
1
2 .

5 Conclusion

At the level of symmetry algebras, the Wick rotation from H+
3 to AdS3 amounts to a map

from sℓ(2, C) to sℓ(2, R) × sℓ(2, R), which can be viewed as two different real forms of

– 17 –
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the same algebra sℓ(2, C)C = sℓ(2, C) × sℓ(2, C). In particular, the Wick rotation maps

the continuous representation Cj of sℓ(2, C) to the representation
∫ 1
0 dα Cj,α ⊗ Cj,α of

sℓ(2, R)×sℓ(2, R). The fact that such an irreducible representation is mapped to a reducible

one implies that the symmetry constraints are weaker in AdS3 than in H+
3 . Namely, the

H+
3 three-point function should be

〈∏3
i=1 Φji

mi,m̄i

〉
= C(j1, j2, j3)H(ji,mi, m̄i) where H

is determined by sℓ(2, C) symmetry; while the AdS3 three-point function can in principle

be
〈∏3

i=1 Φji

mi,m̄i

〉
= C ′(j1, j2, j3|α1, α2, α3)H

′(ji,mi, m̄i) with mi, m̄i ∈ αi + Z, where the

sℓ(2, R) × sℓ(2, R) symmetry determines H ′ but not the αi-dependence.

For the full H+
3 and AdS3 WZNW models (and not just their minisuperspace limits),

the assumption that these models are related by Wick rotation therefore determines part

of the AdS3 structure constants (analogs of C ′) in terms of the H+
3 conformal blocks

(analogs of H). This assumption is therefore rather nontrivial and it should be carefully

justified. The best justification may come a posteriori, if an ansatz for the AdS3 three-

point function derived by Wick rotation can be shown to obey crossing symmetry. Such

questions did not arise in the minisuperspace limit, as the bases of functions Φj
m,m̄ on H+

3

and AdS3 are related by Wick rotation by definition, and crossing symmetry amounts to the

associativity of the product of functions on these spaces. But proving crossing symmetry

— or equivalently the associativity of the operator product expansion — certainly is the

most important and difficult task in solving the AdS3 WZNW model.
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