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1. Introduction

Let a real AR process be given by

x(n) = a1x(n− 1) + · · · + apx
(
n− p

)
+ ε(n), (1)

where p is the order of the process, a1, . . . , ap are the
real coefficients of the process, and ε(n) is an independent
and identically distributed (i.i.d.) random process with zero
mean and variance σ2

ε . The process ε(n) is the input process
to the AR model. It is assumed that x(·) is mean and
covariance ergodic; so the poles of the AR model are inside
the unit circle.

Suppose that x(1), . . . , x(N) are consecutive samples of
a sample function of the AR process x(·) given by (1). In
addition, suppose that an arbitrary nonnegative integer q is
considered as the true process order. The usual estimator for
a nonrandom set of parameters is the maximum likelihood
estimator (MLE) [1]. However, the exact solution of the MLE
for the parameters of an AR(q) process is difficult to obtain
[1]. If N � q, each of the AR estimation methods Least-
Squares-Forward (LSF), Least-Squares-Forward-Backward
(LSFB), and Burg and Yule-Walker [1–3] is an approximation

of the MLE. In this paper, we use the LSF method to estimate
a model as

x(n) = â1x(n− 1) + · · · + âqx
(
n− q

)
+ ε̂(n), (2)

where âi’s are the LSF estimates of the AR parameters.
Residual variance, denoted by S2(q), is a measure of the
fitness of the above model to the data that have been used
for estimating the parameters. It is defined as

S2(q
) = 1

N − q

N∑

n=q+1

⎡

⎣x(n)−
q∑

i=1

âix(n− i)

⎤

⎦

2

. (3)

In the literature, two different kinds of predictions under
model (1) are considered. For independent-realization pre-
dictions, the aim is to predict the future of another indepen-
dent series which has exactly the same probabilistic structure
as the observed one. One special feature of this type of
prediction is that its mathematical analysis is relatively easy.
The independent-realization prediction error is defined as
follows:

PE
(
q
) = Ey

⎧
⎪⎨

⎪⎩

⎡

⎣y(n)−
q∑

i=1

âi y(n− i)

⎤

⎦

2

| x(1), . . . , x(N)

⎫
⎪⎬

⎪⎭
,

(4)
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where y(·) is another independent series which has exactly
the same probabilistic structure as x(·), and Ey{·} is the
expectation operator over this independent series. However,
for the practitioner, the emphasis is usually placed on same-
realization predictions, that is, on the prediction of x(N +h),
h ≥ 1 given x(1), . . . , x(N). The same-realization prediction
error is defined as follows:

PE
(
q
)

= E

⎧
⎪⎨

⎪⎩

⎡

⎣x(N + h)−
q∑

i=1

âix(N + h− i)

⎤

⎦

2

| x(1), . . . , x(N)

⎫
⎪⎬

⎪⎭
.

(5)

In (4) and (5), âi’s are the LSF estimates of ai’s using
x(1), . . . , x(N). Note that in the expectation in (4) y(n)
is independent of the âi’s, but in the expectation in (5),
x(N + h) depends on the âi’s. This difference causes the
prediction errors in (4) and (5) to be different. Almost
all existing AR order selection criteria have been derived
for independent-realization data. The independency is not
a natural property for time series data, because when
new observations of a time series become available, they
are usually dependent on the previous data. So far, few
time series model selection theories have been established
without this unnatural assumption. In addition, the use of
most of these model order selection criteria has not been
justified for the same-realization case. Akaike information
criterion (AIC) [4], final prediction error (FPE) criterion [5],
Bayes information criterion (BIC) [6], minimum description
length (MDL) criterion [7], Kullback information criterion
(KIC) [8], corrected AIC (AICC) [9], and corrected KIC
(KICC) [10] are examples of the criteria that have been
derived for the large sample and independent-realization
case. In [11, 12], Ing and Wei justified the use of FPE
and AIC as AR order selection criteria in the large sample
and same-realization case. Ing and Wei [11] presented a
theoretical verification that AIC and FPE are asymptotically
efficient (in the sense of the mean square prediction error)
for same-realization predictions. When the underlying AR
model is known to be stationary and of infinite order, Ing
and Wei [11] showed that the values of the expectations of
the squared prediction error for independent- and same-
realization cases, with the order selected by FPE or AIC, have
the same asymptotic expressions. Recently, Ing [12] removed
the infinite-order assumption and verified the asymptotic
efficiency of several information criteria, including FPE
and AIC, for both finite- and infinite-order stationary AR
models.

The order selection criteria obtained in the large sample
and independent-realization case are not dependent on the
method of estimation of the AR parameters. In other words,
these criteria are identical for all AR parameter estimation
methods. However, it is well known that, in the finite sample
and independent-realization case, the performance of the
order selection criteria depends on the parameter estimation
method and it is necessary to derive different order selection
criteria for each parameter estimation method [13–18].

In this paper, we derive a new estimate of the same-
realization prediction error in the finite sample case and for
the LSF parameter estimation method. We will use this new
estimate to derive same-realization versions of FPE (FPEF)
and AIC (AICF) in the finite sample case.

The remainder of this paper is organized as follows. In
Section 2, a new theoretical approximation is derived for the
expectation of same-realization prediction error in the case
that the LSF method is used. Based on this approximation,
the FPEF criterion is introduced. In Section 3, the AICF
criterion is introduced. In Section 4, simulated data are
used for comparing the performance of the proposed
order selection criteria with that of the existing criteria. In
Section 5, the conclusions of this paper are discussed.

2. Estimation of the Same-Realization
Prediction Error

Suppose that we have N observation data of the AR
model defined by (1) as x(1), x(2), . . . , x(N). We define the
following vectors and matrices for the case that the candidate
order q is greater than or equal to the true order (q ≥ p), and
T stands for a transposed operation:

βA =
[
a1, a2, . . . , ap, 0, . . . , 0

]T

q×1
, (6)

xi =
[
x(i), x(i + 1), . . . , x

(
N − q + i− 1

)]T , (7)

x(i) = [
x(i), x(i− 1), . . . , x

(
i− q + 1

)]T , (8)

XA =
[
xq xq−1 · · · x1

]
, (9)

εq+1 =
[
ε
(
q + 1

)
, . . . , ε(N)

]T , (10)

x = [x(1), . . . , x(N)]. (11)

It follows from (1), (6), (7), (9), and (10) that

xq+1 = XAβA + εq+1; q ≥ p. (12)

We use the LSF method to obtain the least-squares estimate
of βA as follows:

bA =
[
â1, â2, . . . , âq

]T =
(
XT
AXA

)−1
XT
Axq+1. (13)

The one-step same-realization prediction error is given by

PE
(
q
) = E

{[
x(N + 1)− x̂q(N + 1)

]2 | x
}

, (14)

where x̂q(N + 1) is the linear predictor of x(N + 1) given
x(1), . . . , x(N), that is,

x̂q(N + 1) =
q∑

i=1

âix(N + 1− i) = xT(N)bA. (15)

It follows from (1), (6), and (8) that

x(N + 1) = xT(N)βA + ε(N + 1). (16)
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Substituting (15) and (16) into (14), we can rewrite (14) as

PE
(
q
) = E

{[
xT(N)βA + ε(N + 1)− xT(N)bA

]2 | x
}
. (17)

Using (12) and (13), xT(N)bA can be written as

xT(N)bA = xT(N)
(
XT
AXA

)−1
XT
Axq+1

= xT(N)
(
XT
AXA

)−1
XT
AXAβA

+ xT(N)
(
XT
AXA

)−1
XT
Aεq+1

= xT(N)βA + xT(N)
(
XT
AXA

)−1
XT
Aεq+1; q ≥ p.

(18)

Combining (17) and (18), we have

PE
(
q
) = E

{[
ε(N + 1)− xT(N)

(
XT
AXA

)−1
XT
Aεq+1

]2

| x
}

= E
{[

ε(N + 1)2 | x
]}

+ E

{[
xT(N)

(
XT
AXA

)−1
XT
Aεq+1

]2

| x
}

− 2E
{[

ε(N + 1)xT(N)
(
XT
AXA

)−1
XT
Aεq+1 | x

]}
;

q ≥ p.
(19)

The value of the first term in the right-hand side of (19) is
given as

E
{[

ε(N + 1)2 | x
]}
= E

{
ε(N + 1)2

}
= σ2

ε . (20)

In (19), we know that ε(N + 1) is independent of
the past samples of x(1), x(2), . . . , x(N), and ε(1), ε(2),
. . . , ε(N) for the AR process. In addition, the expres-
sion xT(N)(XT

AXA)−1XT
Aεq+1 is a combination of x(1), x(2),

. . . , x(N), ε(1), ε(2), . . . , ε(N). So, ε(N + 1) is independent of
xT(N)(XT

AXA)−1XT
Aεq+1, and the third term of the right-hand

side of (19) is equal to zero:

E
{[

ε(N + 1)xT(N)
(
XT
AXA

)−1
XT
Aεq+1 | x

]}
= 0. (21)

It follows from (12) that the value of the second term of the
right-hand side of (19) is equal to

xT(N)
(
XT
AXA

)−1
XT
Aεq+1

= xT(N)
(
XT
AXA

)−1
XT
A

(
xq+1 −XAβA

)
; q ≥ p.

(22)

The expression xT(N)(XT
AXA)−1XT

A(xq+1 − XAβA) is a com-
bination of x(1), x(2), . . . , x(N). So, it follows from (22) that

the expectation of xT(N)(XT
AXA)−1XT

Aεq+1 given x is equal to
xT(N)(XT

AXA)−1XT
Aεq+1, that is,

E

{[
xT(N)

(
XT
AXA

)−1
XT
Aεq+1

]2

| x
}

=
[
xT(N)

(
XT
AXA

)−1
XT
Aεq+1

]2

; q ≥ p.

(23)

Therefore, using (20), (21), and (23), we can rewrite (19) as

PE
(
q
) = σ2

ε +
[
xT(N)

(
XT
AXA

)−1
XT
Aεq+1

]2

. (24)

Taking the expectation of PE(q) over the vector x, it follows
from (24) that

Ex
[
PE
(
q
)] = σ2

ε + Ex

{[
xT(N)

(
XT
AXA

)−1
XT
Aεq+1

]2
}

. (25)

It can be seen from (7)–(10) that

XT
Aεq+1 =

[
xq xq−1 · · · x1

]T
εq+1

=
[
x
(
q
)

x
(
q + 1

) · · · x(N − 1)
]
εq+1

=
N−1∑

i=q
x(i)ε(i + 1).

(26)

Substituting (26) into (25), we obtain

Ex
[
PE
(
q
)]=σ2

ε +Ex

⎧
⎪⎨

⎪⎩

⎡

⎣xT(N)
(
XT
AXA

)−1
N−1∑

i=q
x(i)ε(i+1)

⎤

⎦

2
⎫
⎪⎬

⎪⎭
.

(27)

It is assumed that x(·) is a zero mean and covariance
ergodic process. So, we define the covariance matrix R and
its estimate R̂ in the following way:

R = E
[
x(i)xT(i)

]
, (28)

R̂ =
(
XT
AXA

)

(
N − q

) . (29)

Using (29) and (27), we have

Ex
[
PE
(
q
)]

= σ2
ε +

1
(
N − q

)2 Ex

⎧
⎪⎨

⎪⎩

⎡

⎣xT(N)R̂−1
N−1∑

i=q
x(i)ε(i + 1)

⎤

⎦

2
⎫
⎪⎬

⎪⎭
.

(30)

To obtain a value for (30), we make the assumption that for
sufficiently large (N − q): |R̂R−1 − Iq| < 1, where |A| is the
Euclidean norm of matrix A. Under this assumption, it is
shown in [19] that

1
(
N − q

)2 Ex

⎧
⎪⎨

⎪⎩

⎡

⎣xT(N)R̂−1
N−1∑

i=q
x(i)ε(i + 1)

⎤

⎦

2
⎫
⎪⎬

⎪⎭

= q
(
N − q

)σ2
ε + O

[
1

(
N − q

)3/2

]

; q ≥ p,

(31)



4 EURASIP Journal on Advances in Signal Processing

where βn = O(αn) means that for some positive number M,
|βn| ≤M|αn| for every n.

Substituting (31) into (30), we get

Ex
[
PE
(
q
)] = σ2

ε +
q

(
N − q

)σ2
ε + O

[
1

(
N − q

)3/2

]

; q ≥ p.

(32)

When N−q tends to infinity, the third term in the right-hand
side of (32) tends towards zero faster than the other terms.
So, for large enough values of N − q

Ex
[
PE
(
q
)] ≈

[

1 +
q

N − q

]

σ2
ε ; q ≥ p. (33)

It is shown in [16, 17] that

Ex
[
S2(q

)] ≈
[

1− q

N − q

]

σ2
ε ; q ≥ p. (34)

Combining (33) and (34), we obtain

E
[
PE
(
q
)] ≈

[
1 + q/

(
N − q

)

1− q/
(
N − q

)

]

E
[
S2(q

)]
; q ≥ p. (35)

The above relation can be used for estimating PE(q) in the
following way:

PÊ
(
q
) =

[
1 + q/

(
N − q

)

1− q/
(
N − q

)

]

S2(q
)
; q ≥ p. (36)

It is reasonable to choose the integer q that minimizes this
estimate of prediction error as the appropriate order for the
AR process. So, we propose the finite sample FPE (FPEF)
criterion as

FPEF
(
q
) =

[
1 + q/

(
N − q

)

1− q/
(
N − q

)

]

S2(q
)
. (37)

The FPE criterion, which is an asymptotic estimate of the
independent-realization prediction error, is defined in the
following way [5]:

FPE
(
q
) = N + q

N − q
S2(q

) =
[

1 + q/N

1− q/N

]

S2(q
)
. (38)

As we mentioned earlier, the criterion defined by (38) is also
used in the independent-realization case. When N � q, the
FPE criterion given by (38) is an approximation of FPEF.
In the asymptotic case N → ∞ the criteria FPE and FPEF
become identical.

3. AICF Criterion

We now give a mathematical derivation for finite sample AIC
(AICF) criterion in the same-realization case starting from
Kullback-Leibler (K-L) information. The K-L information
is a measure of the distance between the true and the
approximating pdfs for the data generated by the true pdf.

The K-L information for the approximating model g(x′ | θ)
is given by [20]

I
[
f , g(· | θ)

] =
∫

f (x′) ln

[
f (x′)

g(x′ | θ)

]

dx′, (39)

where x′ is a vector of data generated by the true pdf f . We
look for a uniqe value of parameter vector θ, denoted by θ0,
that minimizes the K-L information. So, θ0 is the solution to
the following optimization problem [20]:

min
θ∈Θ

{
I
[
f , g(· | θ)

]} =
∫

f (x′) ln

[
f (x′)

g(x′ | θ0)

]

dx′, (40)

where Θ is the parameter space. In fact, we have to find the
model order and the parameter values that minimize (39).

The expression in the right-hand side of (39) is not
dependent on the observed data and f is unknown. So, we
cannot compute (39) for different values of θ and determine
the value θ0 that minimizes the K-L information. Therefore,
we rewrite the K-L information in the following way:

I
[
f , g(· | θ)

]

=
∫

f (x′) ln
[
f (x′)

]
dx′ −

∫

f (x′) ln
[
g(x′ | θ)

]
dx′

= constant− Ex′
[
ln
[
g(x′ | θ)

]]
.

(41)

The first term in the right-hand side of (41) is not dependent
on θ. So, instead of minimizing (41), we can minimize the
following term:

−Ex′
[
ln
[
g(x′ | θ)

]]
. (42)

Note that the expression (42) is not dependent on x′, but it
depends on θ. The parameter vector θ is unknown. So, in
order to obtain an estimate of (42) we can replace θ by its
estimate. Suppose that N observations x(1), x(2), . . . , x(N)
are available. Thus, for each model order, it is reasonable
to replace θ by its maximum likelihood estimate θ̂ which

is a function of the observed data. As θ̂ is the maximum
likelihood estimate of θ, this replacement minimizes (42) for
each value of the model order. Now, in a slightly simplified
notation, minimizing the K-L information changes to mini-
mizing the Kullback-Leibler index given by

Δ = Ex′
{
−2 ln g

[
x′ | θ̂(x′′), x′′

]}
, (43)

where θ̂ is the maximum likelihood estimator of θ given
the observed data vector x′′, and g[x′ | θ] is the likelihood
function. Usually, instead of using the exact maximum
likelihood estimator of θ, an approximation of it is used as
θ̂ in (43).

Now, we solve our AR model order selection problem in
the same-realization case by minimizing the Kullback-Leibler
index Δ given by (43). We assume that the input process ε(n)
to the AR model is white Gaussian noise (WGN). In our
problem, θ̂ (the approximation of the maximum likelihood
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estimator of the AR parameter vector θ), x′ (the future data
of the AR model that depends on the observed data), and x′′

(vector of the observed data of the AR model) are defined as
follows:

θ̂ =
(
bTA, σ̂2

ε

)T
, (44)

x′ = x(N + 1), (45)

x′′ = [x(1), x(2), . . . , x(N)] = x. (46)

Substituting (44)–(46) into likelihood function g(x′ | θ̂, x′′),
we obtain

g
(
x′ | θ̂, x′′

)
= g

[
x(N + 1) | bA, σ̂2

ε , x
]
. (47)

When the input process ε(n) to the AR model is white
Gaussian noise (WGN), g[x(N+1) | bA, σ̂2

ε , x] can be written
as

g
[
x(N+1) |bA, σ̂2

ε , x
]=

exp
{
−[x(N+1)−xT(N)bA

]2
/2σ̂2

ε

}

√
2πσ̂ε

.

(48)

Taking logarithm from both sides of (48), we get

ln g
(
x′ | θ̂, x′′

)
= ln g

[
x(N + 1) | bA, σ̂2

ε , x
]

= − ln
(√

2π
)
− ln(σ̂ε)

−
[
x(N + 1)− xT(N)bA

]2

2σ̂2
ε

.

(49)

Substituting (45) and (49) into (43), we have

Δ = −Ex(N+1)
{

2 ln g
[
x(N + 1) | bA, σ̂2

ε , x
]}

= 2Ex(N+1)

{

ln
(√

2π
)

+ ln(σ̂ε)

+

[
x(N + 1)− xT(N)bA

]2

2σ̂2
ε

| bA, σ̂2
ε , x

}

= 2 ln
(√

2π
)

+ 2 ln(σ̂ε).

+
Ex(N+1)

{[
x(N + 1)− xT(N)bA

]2 | bA, x
}

σ̂2
ε

.

(50)

The parameter σ̂2
ε in (50) can be replaced by the residual

variance S2(q) given by (3). Thus, combining (14), (15), and
(50), we obtain

Δ = ln(2π) + ln
[
S2(q

)]
+

PE
(
q
)

S2
(
q
) . (51)

The prediction error PE(q) is unknown; so we replace it by
its estimate given by (36) to obtain

Δ ≈ ln(2π) + ln
[
S2(q

)]
+

[
1 + q/

(
N − q

)

1− q/
(
N − q

)

]

; q ≥ p. (52)

The order q that minimizes (52) can be selected as the best
AR model order. So, omitting the constant ln(2π) from (52),
we obtain the finite sample AIC (AICF) criterion for AR
model order selection in the same-realization case as

AICF
(
q
) = ln

[
S2(q

)]
+

[
1 + q/

(
N − q

)

1− q/
(
N − q

)

]

. (53)

The AIC criterion, which was derived for the independent-
realization case, is defined in the following way [4]:

AIC
(
q
) = ln

[
S2(q

)]
+

2q
N

. (54)

4. Simulation Results

To investigate the effectiveness of the proposed criteria FPEF
and AICF, we consider the problem of autoregressive model
order selection for simulated data. The simulated data have
been produced by AR(0), AR(1), AR(2), AR(3), and AR(7)
processes defined as follows:

x[n] = ε(n),

x[n] = .95x[n− 1] + ε(n),

x[n] = −1.4x[n− 1]− .5x[n− 2] + ε(n),

x[n] =−1.08x[n−1]−0.37x[n−2]−0.042x[n−3]+ε(n),

x[n] = 2.8x[n− 1]− 3.22x[n− 2] + 1.96x[n− 3]

− .68x[n− 4] + .13x[n− 5]− .013x[n− 6]

+ .0005x[n− 7] + ε(n),
(55)

where ε(n) is WGN with zero mean and variance σ2
ε = 1. We

can define the SNR parameter for each AR model as the ratio
of the average output power of the AR model to σ2

ε in dB. The
SNRs of AR(0), AR(1), AR(2), AR(3), and AR(7) models are
0 dB, 10 dB, 10.13 dB, 5.11 dB, and 23 dB, respectively.

For each of the four models given by (55), 5000 inde-
pendent simulation runs of 20 consecutive samples of the
AR process were generated. In each simulation run, the first
nineteen samples were used for estimating the coefficients of
the AR model, and the last sample was used for computing
the prediction error. Candidate orders were considered from
0 to 8. For each candidate order, the prediction error has been
approximated by averaging over 5000 simulation runs. This
true prediction error and the estimated prediction errors
given by FPE and FPEF are shown for AR(0), AR(1), AR(2),
AR(3), and AR(7) models in Figures 1, 2, 3, 4, and 5,
respectively. These figures illustrate that when q/N is not
small, the FPEF gives an estimate of the prediction error that
is much better than FPE.

Table 1 gives the mean of the prediction error for the
AR order selection criteria FPE, FPEF, AIC, and AICF. The
mean of the prediction error is computed for each AR order
selection criterion by averaging the prediction error over
5000 intervals of simulated data for the orders that the AR
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Figure 1: Estimation of prediction error for simulated AR(0)
sequence with N = 19.
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Figure 2: Estimation of prediction error for simulated AR(1)
sequence with N = 19.

Table 1: Mean of prediction error for several order selection
criteria.

Criterion

MPE FPE FPEF AIC AICF

order

AR(0) .31 3.35 2.02 3.17 1.02

AR(1) .48 3.92 2.78 3.99 1.32

AR(2) .51 4.42 2.87 4.55 1.39

AR(3) .43 3.89 2.39 3.97 1.69

AR(7) .48 6.18 4.50 6.24 1.88
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Figure 3: Estimation of prediction error for simulated AR(2)
sequence with N = 19.
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Figure 4: Estimation of prediction error for simulated AR(3)
sequence with N = 19.

order selection criterion has selected. The maximum and
minimum candidate orders are qmax = 8 and qmin = 0,
respectively, and the number of generated samples in each
simulation run is 20 (the first nineteen samples are used
for estimating the coefficients of the AR model and the last
sample is used for computing the prediction error). The
mean of the minimum prediction errors (MPE) that are
possible in each run is also computed. It can be seen from
Table 1 that the performance of AICF is better than the other
criteria.
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Figure 5: Estimation of prediction error for simulated AR(7)
sequence with N = 19.

5. Conclusion

So far, few time series model selection theories have been
established for same-realization prediction. In this paper, a
new theoretical approximation was derived for the expecta-
tion of same-realization prediction error by using the LSF
method for estimation of the AR parameters. Using this
approximation and the approximation given in [16, 17] for
the expectation of residual variance, the FPE and AIC criteria
for AR order selection in the same-realization case were
modified. The modified FPE and AIC criteria were called
FPEF and AICF, respectively. Simulation results show that the
bias in the estimates that FPEF gives for the prediction error
is less than that of FPE. The performance of FPEF and AICF
in AR model order selection was compared with FPE and
AIC in the finite sample case. The results of this performance
comparison showed that the performance of FPEF is better
than FPE, and the performance of AICF is better than all
other criteria. In the large sample case, the performance of
FPEF and AICF is approximately identical to those of FPE
and AIC, respectively.
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