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Abstract
Background: Mycoheterotrophic plants are considered to associate very specifically with fungi.
Mycoheterotrophic orchids are mostly associated with ectomycorrhizal fungi in temperate regions,
or with saprobes or parasites in tropical regions. Although most mycoheterotrophic orchids occur
in the tropics, few studies have been devoted to them, and the main conclusions about their
specificity have hitherto been drawn from their association with ectomycorrhizal fungi in temperate
regions.

Results: We investigated three Asiatic Neottieae species from ectomycorrhizal forests in
Thailand. We found that all were associated with ectomycorrhizal fungi, such as Thelephoraceae,
Russulaceae and Sebacinales. Based on 13C enrichment of their biomass, they probably received
their organic carbon from these fungi, as do mycoheterotrophic Neottieae from temperate
regions. Moreover, 13C enrichment suggested that some nearby green orchids received part of
their carbon from fungi too. Nevertheless, two of the three orchids presented a unique feature for
mycoheterotrophic plants: they were not specifically associated with a narrow clade of fungi. Some
orchid individuals were even associated with up to nine different fungi.

Conclusion: Our results demonstrate that some green and mycoheterotrophic orchids in tropical
regions can receive carbon from ectomycorrhizal fungi, and thus from trees. Our results reveal the
absence of specificity in two mycoheterotrophic orchid-fungus associations in tropical regions, in
contrast to most previous studies of mycoheterotrophic plants, which have been mainly focused
on temperate orchids.

Background
During the last decade, important advances have been
made in our understanding of nutrition of achlorophyl-
lous, heterotrophic plants [1]. Beyond the classical plant-

parasitic taxa, a strategy called mycoheterotrophy (MH)
has been shown in more than 400 species within several
plant clades, showing patterns of convergent evolution to
heterotrophy [2]. MH plants receive carbon from soil
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fungi colonising their roots, forming the so-called mycor-
rhizal symbiosis [3]. MH in adult (above-ground) life
phases has evolved repetitively among orchids [4]. Recent
advances were made in identifying mycorrhizal fungi of
MH plants by molecular methods, thus revealing their
ultimate carbon source, the photosynthesised carbon of
autotrophic plants associated with the same mycorrhizal
fungi in most cases.

PCR amplification and sequencing of the fungal ribos-
omal DNA from mycorrhizae allowed identification of
MH mycorrhizal fungi in more than a dozen MH orchid
species [5-9], as well as in several MH species among Eri-
caceae [10], Gentianaceae and Corsiaceae [11], and Bur-
manniaceae [12]. All these studies identified a very
specific association, that is, of each MH species with fungi
from a single genus or even a sub-clade within a genus.
Most fungi involved are mycorrhizal partners on other
autotrophic plants, forming arbuscular mycorrhizae (AM)
[11-13]. As exceptions, some tropical orchids associate
with saprobic fungi [14-17], but are often specific too.
Aside from these tropical exceptions, the fungal associates
of most MH plants suggest that a carbon flow from sur-
rounding autotrophic plants to the MH plants, via the
shared mycorrhizal fungus, is likely to occur.

For temperate MH plants, the stable isotope composition
of MH plants supports nutrition on ectomycorrhizal
(ECM) fungi. Natural abundances in 13C and 15N are
major tools in ecology to detect the food source of an
organism [18,19]. Most organisms have a 13C abundance
similar to their food source, and indeed MH plants have
similar or slightly higher 13C abundances than associated
fungi [20,21]. As an exception, however, ECM fungi are
richer in 13C than autotrophic plants [22]. Although the
reasons for this fractionation are unclear [23], it entails a
difference in 13C abundance between autotrophic and
MH plants [24]. 15N accumulates along food chains, due
to a fractionation at each trophic level [19], and its abun-
dance usually increases in the order autotrophic plants <
ECM fungi ≤ MH plants [20,24]. Moreover, 14C labelling
experiments have provided direct evidence that MH
orchid and Ericaceae receive assimilates from surrounding
trees through shared mycorrhizal fungi [25,26].

Current investigations are strongly biased toward MH
plants from temperate regions. For example, with the
exception of a recent study [16,17], few N and C isotopic
analyses have been performed on tropical MH plants. The
locations of the laboratories involved, and perhaps the
Convention on International Trade in Endangered Species
of Wild Fauna and Flora [27], may have limited research
on MH species in tropical regions. However, dense cover
in tropical forests, which select for light-independent
nutrition, provides a useful opportunity to study MH
plants. Indeed, among the ca. 200 MH orchids, more than

90% occur in tropical regions, including a diversity hot
spot in tropical Asia where 120 species grow [4,28]. There
have been recent investigations on mycorrhizae from
tropical orchids, but they exclusively focused on green,
epiphytic species (see, for example, [29,30]). They
revealed more or less specific associations with the fungal
clades found in autotrophic temperate orchids, the
'rhizoctonias' [31]. This group of otherwise parasitic and
saprobic fungi encompasses Ceratobasidiales, Tulasnella-
les and Sebacinales (from clade B sensu Weiss et al. [32]),
and is absent from MH species

Our aim was to investigate the identity of the fungal part-
ners and specificity of the association of tropical Asiatic
MH orchids, and to compare the putative origin of their
carbon with that of temperate MH orchids. In this study,
two important factors were taken into account. First, ECM
fungi are absent from some tropical forests [3]. We thus
focused on tropical Asiatic forests that are dominated by
ECM Fagaceae and Dipterocarpaceae tree species [3,33].
Here, as in temperate forests, AM, ECM, and various
saprobic fungi are available, as well as rhizoctonias asso-
ciated with green orchids [34]. Second, we focused on MH
species from a clade already studied in temperate regions
to control for differences resulting from the orchids' phy-
logenetic position. The Neottieae, in which MH species
arose several times [35,36], are well studied in temperate
regions, where they reveal specific associations with ECM
fungal clades: Thelephoraceae in Cephalanthera austinae
[37], Russulaceae in Limodorum abortivum [38], and Sebac-
inales in Neottia nidus-avis [25,39].

The tropical Asiatic Neottieae tribe encompasses 33 MH
species from the enigmatic genus Aphyllorchis [35], and
thus represents one of the most diversified MH genera.
The position of Aphyllorchis among the Neottieae is still
not supported by molecular data [35], and even its mono-
phyly is questioned [40]. In this study, we focused on
three MH species occurring in ECM forests from Thailand,
namely Aphyllorchis montana, A. caudata and Cephalanthera
exigua (Figure 1). Assuming phylogenetic conservatism for
the traits under study, and based on temperate species
already investigated, we expected them to be specifically
associated with narrow ECM clades, and to use tree pho-
tosynthates by way of shared ECM fungi. Our aims were,
within Thailand forests and for these three species, to test
these predictions, that is, (i) to confirm that Aphyllorchis
belongs to Neottieae; (ii) to identify fungal associates of
the three species; (iii) to infer their fungal specificity level;
and (iv) to investigate their isotopic content in 13C and
15N, to infer their carbon source.

Results
Phylogenetic position of Aphyllorchis spp. and C. exigua
Based on three markers (ITS, trnS-G and rbcL; GB acces-
sion numbers FJ454868–FJ454884, Additional file 1), the
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Neottieae tribe was monophyletic and included the two
Aphyllorchis under study (Figure 2). Thaia saprophytica, a
green species from Thailand, had a basal position, but two
markers (rbcL and trnS-G) were not obtained for this spe-
cies and this limited the support level. Identical topolo-
gies at genus level were found, although with lower
support levels, when using the three markers separately
(data not shown). The genera Epipactis, Listera and
Cephalanthera were monophyletic, but this, together with
their relative positions, remained weakly supported. The
position of C. exigua within the genus Cephalanthera was
well supported, and the two Aphyllorchis species clustered
together as a well-supported sister clade to the European
genus Limodorum.

Molecular identification of root fungi
Forty A. montana individuals (from seven populations,
that is, 288 root samples; Table 1[41] and Additional file
2) produced 220 simple PCR products, representing 135
restriction fragment length polymorphism (RFLP) types,
104 of which were successfully sequenced. In addition, we
successfully cloned eight multiple PCR products that pro-
duced 11 different sequences (Additional file 2). BLAST
identifications showed that 83% were putatively from
ECM fungi, 4% from rhizoctonias, 3% from endophytes
and 10% from saprobic fungi (Figure 3a and 3d; Addi-
tional file 2). ECM fungi belonged to diverse taxa, mainly
Russulaceae, Thelephoraceae and Clavulinaceae. Endo-
phytic fungi and Thanatephorus sp., a typical orchid myc-
orrhizal fungus, were found each from a single sample, on
individuals also displaying ECM fungi. Thirteen different
saprobes were identified, each occurring only on a single

sample, except Resinicium sp. and Malassezia sp. (two sam-
ples each). Saprobes were mainly basidiomycetes (69%)
and ascomycetes (23%). In all, 15% of orchid individuals
did not reveal any ECM fungus, 45% of the individuals
revealed a single ECM sequence (sometimes in addition
to saprobes and endophytes), and all remaining individu-
als associated with two to four ECM fungi (Figure 4),
sometimes on the same root (Figure 5). Thus, orchid indi-
viduals had diverse partners (up to nine putative ECM
species from five different genera in a single individual –
AMD7.1, Additional file 2, Figure 5). In seven samples,
two different sequences were detected by cloning. In five
individuals (12.5%) only, identical fungal sequences were
retrieved from different roots.

Nine A. caudata individuals (from two populations, that
is, 27 samples; Table 1 and Additional file 2) produced 23
simple PCR products that belonged to 12 RFLP types, nine
of which were successfully sequenced (Additional file 2).
Four multiple PCR products were cloned and produced
eight different sequences (Additional file 2). Apart from
an endophyte, found only once (Hypocrea sp.; Figure 3b
and 3d), all sequences were putatively ECM, and mainly
belonged to Russulaceae, Thelephoraceae and Sebacinales
(from the ECM-forming clade A, sensu Weiss et al. [32]).
Among all individuals, 55% displayed a single ECM fun-
gus, whereas 45% displayed two to three ECM fungi. As
for A. montana, no fungal taxon was shared by all individ-
uals.

Nine C. exigua individuals (72 samples) from one popu-
lation produced 63 simple PCR products belonging to 16
RFLP types that were all sequenced. Putative ECM fungi
dominated the fungal community (84%), with some
rhizoctonias (5%) and saprobes (11%; Figure 3c and 3d).
Thelephoraceae represented 65% of identified fungi, and
one (FJ454907) was even found in 16 samples arising
from seven individuals. Putative ECM Helotiales and Nau-
coria sp. were found in one sample each, as well as
saprobes including Trichoderma sp. (8% of all fungi) and
other ascomycetes (in one sample each). In all, six out of
nine individuals exclusively associated with Thelephora-
ceae, two displayed two different ECM fungi, with a dom-
inance of Thelephoraceae (+80% of the samples), and one
displayed only Helotiales. Thus, Thelephoraceae were the
preferred fungal associates of C. exigua.

Molecular identification of A. montana fungal pelotons
The identity of fungi colonising mycorrhizal cells was
assessed on peloton pools (pools of twelve pelotons from
a single root section) from two A. montana individuals at
Doi Suthep #2 (Table 1 and Additional file 2). On
AMD6.1, two pools revealed a Helotiales (FJ454973)
already found on the same individual, and four revealed a
Russulaceae (FJ454956) already found on other Doi

The three mycoheterotrophic orchid speciesFigure 1
The three mycoheterotrophic orchid species. The 
three mycoheterotrophic orchid species under study, A. mon-
tana (a), A. caudata (b), and C. exigua (c), with closer views 
of the underground parts of A. montana roots (d) and C. exi-
gua (e). Abbreviations: r, root; rh, rhizome.
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Suthep #2 individuals (Additional file 2). On AMD7.1,
two fungi already found on the same individual were
recovered, namely a Clavulinaceae (FJ454977; three
pools) and a Thelephoracae (FJ454979; one pool), while
cloning on another pool revealed a mix of the two previ-
ous fungi and a Russulaceae (FJ623066, close to R. illota
and some Russulaceae already found at Doi Suthep #2,
Additional file 2). On both individuals, four pools did not
amplify. These data corroborated that (i) several ECM
fungi were mycorrhizal on the same individual, even the
same root, and (ii) ECM asco- and basidiomycetes were
mycorrhizal on A. montana.

Analysis of the fungal community analysis
Russulaceae, by far the most represented on A. montana
and A. caudata (39.8% of the sequence found, in 33.6% of
typed samples), were phylogenetically over-dispersed
(Figure 6), further supporting the low specificity of myc-
orrhizal association. Even fungi identified from the same
individual did not cluster together (data not shown), and
different Russulaceae species sometimes colonised the

same root (Figure 5). Considerable internal transcribed
spacer (ITS) variations in Thelephoraceae (also very fre-
quent, 30.0% of the sequence found on Aphyllorchis spp.
and 63.2% on C. exigua) forbade phylogenetic analysis,
but sequences were not more similar within than between
orchid species (data not shown).

Using a threshold of < 97% of ITS variation to delineate
species, 112 species were recorded in A. montana, 23 in A.
caudata and 31 in C. exigua. In all, 94% of these species
were represented by a single sequence. Only four species
occurred on more than one individual, and were all from
the same A. montana population (Additional file 2). Rare-
faction analyses provide similar trends when (i) consider-
ing either all fungi or ECM fungi only; (ii) making the
analysis at fungal family or species level; and (iii) pooling
all populations or separating them to calculate mean val-
ues for each species. In every case, curves for A. montana
and A. caudata were similar (Figure 7a), and higher than
for C. exigua, so that the low fungal diversity in this species
was not a sampling artefact. In detrended component
analysis (DCA), no differences in ECM fungal community
were found between A. montana populations (data not
shown) or between the two Aphyllorchis species (Figure
7b). In contrast, the C. exigua ECM fungal community dif-
fered from two Aphyllorchis species (P < 0.01 for both tests;
Figure 7b). Neither the forest type nor the geographical
origin had a significant effect (P > 0.05; data not shown).
Results were unchanged when considering all fungi. Thus,
C. exigua strongly differed in fungal community structure
from the two Aphyllorchis species, both quantitatively and
qualitatively.

Stable isotope analyses
We tested by analyses of natural content in stable isotopes
and C/N ratio whether ECM fungi were potential C
sources for the MH orchids. At Doi Suthep #2 (Figure 8a),
significant differences for both δ13C and δ15N occurred in
the order autotrophic Boesenbergia rotunda < other
autotrophic plants <A. montana ≤ ECM fungi (including
taxa found on A. montana roots, Russulaceae and Thele-
phoraceae). C/N ratio values were higher for autotrophs
than for fungi (12.1 ± 1.2 – mean ± SD) and A. montana
(11.9 ± 1.2; Figure 9a): the latter two were not signifi-
cantly different (Mann-Whitney test, P = 0.81), but signif-
icantly lower than autotrophs (22.6 ± 3.0 on average, P <
0.001; B. rotunda did not differ from other autotrophs in
this respect; Figure 9a). δ13C values and variations in δ15N
and C/N ratio were congruent with a food chain from
autotrophs to ECM fungi and A. montana.

At Doi Suthep #3, δ13C was higher for A. caudata than for
autotrophic plants but (not significantly) lower than for
saprobic fungi. A. caudata had δ15N intermediate between
the different saprobic fungal species, but higher than
autotrophs (among them, the orchid Ludisia discolor had

Phylogenetic tree of the Neottieae tribeFigure 2
Phylogenetic tree of the Neottieae tribe. Phylogenetic 
tree of the Neottieae tribe showing positions of A. montana, 
A. caudata and C. exigua; Mycoheterotroph species are in 
bold. Phylogeny based on a concatenation of ITS, trnS-G and 
rbcL, using the maximum likelihood method (general time 
reversible model). Numbers on branches indicate bootstrap 
values above 70% (over 1,000 replicates).
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significantly higher δ15N). Unfortunately, no ECM fungi
were found, but since they are expected to have lower δ13C
and higher δ15N than saprobes [22], they may well be the
orchid's C and N source. Most samples had similar C/N
ratio values (Figure 9b). The A. caudata ratio (15.5 ± 2.2)
did not significantly differ from that of saprobic fungi
(15.4 ± 6.9 on average, P = 0.65) and was (not signifi-
cantly) higher than that of autotrophs (18.9 ± 3.2 on aver-
age, P = 0.38). These results did not reject the hypothesis
of a food chain from autotrophs to ECM fungi and A. cau-
data.

At Doi Pee Pan Nam, significant differences for δ13C
occurred in the order autotrophic non-orchid plants <

ECM fungi plus the orchids Cheirostylis montana <C. exigua
(Figure 8c). C. exigua and the fungal species had signifi-
cantly higher δ15N than all autotrophic non-orchid plants,
and Cheirostylis montana showed an intermediate (signifi-
cantly different) value between these two groups. C. exigua
C/N ratio (9.8 ± 0.9) did not differ from that of Cheirostylis
montana (8.3 ± 0.3) and one ECM fungal species (Laccaria
laccata, P = 0.08; Figure 8c), but these values were signifi-
cantly lower than for other ECM fungi (11.66 ± 1.23, P =
0.01), which, in turn, had a significantly lower C/N ratio
than non-orchid autotrophic plants (22.2 ± 1.5, P =
0.002). These results suggested that (i) C. exigua could
receive C and N from ECM fungi, and also that (ii) Chei-
rostylis montana may receive part of its C from fungi.

Table 1: Description and location of sampling sites.

Species and sampling site Geocodes and elevation Type of forest and dominant treesα No. of orchids sampled

Aphyllorchis montana
Doi Suthep #1 18°48'39" N

98°55'00" E
1053 m

Evergreen forest: Castanopsis acuminatissima (F), 
Castanopsis diversifolia (F), Dipterocarpus costatus (D), 
Manglietia garretti (Magnoliaceae), Carallia brachiata 
(Rhizophoraceae).

11

Doi Suthep #2 18°48'24" N
98°55'19" E
950 m

Evergreen forest: Dipterocarpus costatus (D), Castanopsis 
diversifolia (F).

11
(+ isotopes samples) β

Queen Sirikit Botanical Garden #1 18°54'24" N
98°51'48" E
811 m

Dry dipterocarpacean forest: Dipterocarpus costatus (D), 
Shorea roxburghii (D), Castanopsis argyrophylla (F), 
Castanopsis tribuloides (F), Lithocarpus thomsonii (F), 
Diospyros variegate (Ebenaceae), Phoebe lanceolata 
(Lauraceae), Protium serratum (Burseraceae).

8

Queen Sirikit Botanical Garden #2 18°53'36" N
98°51'27" E
729 m

Oak forest: Lithocarpus sootepensis (F), Dipterocarpus 
costatus (D), Shorea roxburghii (D).

2

Nam Nao 16°93'48" N
101°33'39" E
700 m

Bamboo forest: Castanopsis diversifolia (F), Lithocarpus sp 
(F).

1

Khao Chamao 12°58'41" N
101°42'05" E
800 m

Dipterocarpacean forest: Dipterocarpus dyeri (D). 4

Klong Pla Kaeng 12°56'08" N
101°44'09" E
700 m

Dipterocarpacean forest: Dipterocarpus dyeri (D). 2

Aphyllorchis caudata
Doi Suthep #3 18°48'39" N

98°55'00" E
1050 m

Evergreen forest: Dipterocarpus costatus (D), Castanopsis 
diversifolia (F).

11
(+ isotopes samples) β

Doi Inthanon 18°35'25" N
98°29'09" E
1000 m

Evergreen forest: Castanopsis acuminatissima (F), 
Lithocarpus sp. (F), Quercus sp. (F), Schima wallichii 
(Theaceae).

2

Cephalanthera exigua
Doi Pee Pan Nam 19°06'05" N

99°20°84"E
2015 m

Evergreen forest: Castanopsis acuminatissima (F), 
Castanopsis sp. (F), Gironniera sp. (Ulmaceae), Lithocarpus 
sp. (F), Michelia floribunda (Magnoliaceae), Myrica esculenta 
(Myricaceae), Neolitsea sp. (Lauraceae), Camellia oleifera 
(Theaceae), Schima wallishii (Theaceae), Syzygium angkae, 
Syzygium sp. (Myrtaceae).

9
(+ isotopes samples) β

α F: Fagaceae; D: Dipterocarpaceae.
β For species sampled for isotopic studies, see Figure 6.
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Discussion
We show for the first time that (i) at least some Aphyllor-
chis belong to the Neottieae tribe; (ii) tropical (Thailand)
Neottieae associate with ECM fungi; and (iii) that they are
likely to use their ECM fungi (and thus nearby trees) as a
C source. This is congruent with what is known from tem-
perate Neottieae species [5,20,21,37], but we provide here
the first isotopic evidence that tropical MH orchids associ-
ate with ECM fungi. Furthermore, in sharp contrast to the

high specificity hitherto found in all investigated MH spe-
cies [1], and especially MH orchids [9], mycorrhizal asso-
ciations in the two Aphyllorchis species studied here
revealed a very low specificity, while C. exigua proved to
be more specific.

Tropical MH Neottieae associate with ECM fungi
In temperate regions, ECM fungi consistently associate
with roots of Neottieae, both green [36,41-44] and MH

Description of the community of fungi identified in the three mycoheterotrophic species rootsFigure 3
Description of the community of fungi identified in the three mycoheterotrophic species roots. Frequency of 
occurrence of fungal taxa identified in each investigated orchid species grouped on a family/order basis for A. montana (a), A. 
caudata (b), and C. exigua (c), or grouped by ecology ((d) AM: A. montana; AC: A. caudata; CE: C. exigua; ectomycorrhizal taxa 
are represented by black lines, rhizoctonias by white dots on black background, endophytes by black dots on white back-
ground, and saprophytes in white).
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[5,25,37,39]. Here, we found that most root fungi had a
putative ECM ecology. Although endophytes, saprobes
and some rhizoctonias were also found, peloton analysis
in A. montana only recovered ECM fungi. The mycorrhizal
status of putative endophytes and saprobes remains ques-
tionable, as in previous studies on Cephalanthera spp.
[36,41]. ECM fungi are common in Dipterocarpaceae
and/or Fagaceae forests of South-East Asia [45,46], and
especially of Thailand [47]. The most frequent taxa in this
study (Russulaceae, Thelephoraceae) are also the most
abundant under Dipterocarpaceae [45,47], where Cla-
vulinaceae and Sebacinales clade A are also known [48].
While temperate Neottieae often associate with taxa form-
ing hypogeous fruit bodies (such as Tuber or Hyme-
nogaster; [49]), little evidence for this trend was found
here (with the possible exception of sequence FJ454490
on C. exigua, closely related to the hypogeous Arcange-
liella, Figure 6). Relatively wet conditions in the investi-
gated forests may explain this, since hypogeous taxa have
been shown to be adapted to dry environments [3]. Yet,
hypogeous taxa such as Sclerodermataceae exist in Thai-
land [47]. Moreover, the absence of hypogeous taxa
remains difficult to confirm (i) from sequencing data
only, and (ii) in a context where the fungal diversity
remains poorly explored.

A. montana and A. caudata harboured a highly diverse
ECM community (Additional file 2, Figure 5, Figure 6),
very similar for the two species (Figure 6, Figure 7b), dom-
inated by Russulaceae and Thelephoraceae, the latter also

dominating on C. exigua. Russulaceae are specific associ-
ates of the Mediterranean Limodorum abortivum [38], a sis-
ter species to the genus Aphyllorchis (Figure 2); however,
the species found here were unrelated to the R. delica clade
mycorrhizal on L. abortivum (Figure 7). C. exigua specifi-
cally associated with Thelephoraceae, which are specific
associates of the related North American MH C. austiniae
and colonise, although not exclusively, green European
and Asiatic Cephalanthera spp. [38,41,42,44,50]. The exist-
ence of some phylogenetic inertia in fungal preference
within Neottieae (or even within the genus Cephalanthera)
is an appealing possibility that deserves further study,
including more species and a more robust phylogeny of
this tribe. With the possible reversion of some Epipactis sp.
[36,42], we confirm here that the Neottieae lost associa-
tion with the rhizoctonias (the plesiomorphic mycor-
rhizal feature among orchids) and became associated with
ECM fungi irrespective of their global localisation (a
Cephalanthera longifolia individual from a Myanmar forest
also revealed ECM fungi, including Russulaceae – GB
accession numbers FJ454917–FJ454919, see Figure 6).

Tropical MH orchids offer considerable diversity in ecol-
ogy of associated fungi. ECM fungi have already been
found in some tropical MH orchids, such as Lyophyllum
shimeji (in Erythrorchis ochobiensis [51]) or ECM Ceratoba-
sidiaceae (in Chamaegastrodia sikokiana [52]). Most species
associate with non-ECM fungi, that is, parasites [53] or
saprobes [14-17,54,55], a fungal ecology never found in
temperate MH orchids. This fungal diversity is reflected in
the fact the MH Gastrodia nana and Epipogium roseum, both
mycorrhizal with saprobic fungi [14,16,17], also occur in
the Thailand forests where this study was carried out
(Watthana and Roy, personal observations). In this frame-
work, it is tempting to speculate that other factors, such as
contingency or phylogenetic inertia, contribute to the
ecology of the fungus in tropical orchids. For Neottieae,
the previously mentioned shift from rhizoctonias to ECM
fungi [36,42] allowed diversification in ECM forests, not
only in temperate regions where such forest dominates,
but also in tropical forest harbouring ECM trees. The anal-
ysis of mycorrhizal partners in the few Neottieae occurring
in tropical America and Africa, as well as in some of the
other 33 Aphyllorchis species in tropical Asia [35], is now
pending, to allow the construction of a global phylogeo-
graphic scenario for the Neottieae.

Tropical MH Neottieae likely receive C from nearby ECM 
trees
Since ECM fungi almost exclusively receive C from host
trees [3], the investigated MH species may indirectly
exploit the nearby trees, by way of mycelial links. This was
described for temperate species [5,39,56], and corrobo-
rated by the high, fungal-like 13C and 15N in MH plants
[20,24]. Here, our isotopic analyses show similar patterns,

Differences in ectomycorrhizal taxa between orchid individu-als from a given populationFigure 4
Differences in ectomycorrhizal taxa between orchid 
individuals from a given population. Diversity and abun-
dance of ectomycorrhizal taxa identified in 10 individuals 
(AMQ1 to 10) from an A. montana population (Queen Sirikit 
Botanical Garden #1).
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congruent with C transfer from trees to MH species, via
ECM fungi, for tropical sites.

As in temperate ecosystems, δ13C were higher for fungi
than for autotrophs [57]; unfortunately, the sampling did
not allow comparison between saprobic and ECM fungi
on each site. Values of δ13C tended to be equal or higher
for MH orchids as compared with ECM fungi at Doi
Suthep #2 (-25.1‰ vs -27.6‰) and Doi Pee Pan Nam (-
23.1‰ vs -26.2‰). At Doi Suthep #3, where no ECM
fungi were available, saprobic fungi were higher in δ13C.
Since saprobes usually tend to have higher δ13C than ECM
fungi [22,57], this site may not contradict the common
trend at the two others. Although it is often assumed that
δ13C are identical in ECM fungi and MH plants [20], some
ECM fungi from the same site can be 1 to 2‰ lower in

δ13C than MH plants [21]. Whether the differences
observed here are specific to these tropical models or the
result of ECM sampling unrepresentative of the mycor-
rhizal species is an open question. However, the differ-
ence in δ13C between MH and autotrophic plants (ranging
from 6.8‰ to 9.9‰) was in the range observed in tem-
perate ecosystems (+6.9 ± 1.5‰ [24]), whereas more
diverse values were found for MH orchids associated with
saprobic fungi (up to +12‰ [16,17]).

Investigated MH orchids tended to have higher δ15N and
equal to lower C/N ratio values than ECM fungi, as
expected between two consecutive levels in a food chain,
respectively due to isotopic fractionation for 15N [18,20]
and the loss of respiratory C [41]. In all, the isotopic data
are congruent with a C flow from autotrophs to MH plants
by way of shared fungi. Since they do not exclude other
scenarios, only a direct labelling of tree photosynthates
would definitively assess whether mycelial links between
trees and orchids allow a flow to MH plants. In this regard,
the putative scenario and C and N data obtained here do
not differ from those observed in temperate MH orchids.
The existence and roles of common mycorrhizal networks
have often been speculated in tropical ecosystems [58],
but rigorous demonstration is still lacking: inter-plant C
transfers are striking indirect evidence of their existence
[26].

Mixotrophy in tropical orchids
In temperate regions, green plants phylogenetically
related to MH plants recover part of their C from their
mycorrhizal fungi, especially among orchids
[21,38,42,46]. This photosynthetic and partially MH
nutrition, also called mixotrophy, is considered as an
adaptation to understorey conditions, with low light lev-
els. It can thus be expected in dense tropical forests, but
has not yet been demonstrated [2]. Mixotrophy entails
13C and 15N natural abundances intermediate between
those of fully autotrophic and MH plants [21,41,59].
Here, Cheirostylis montana at Doi Pee Pan Nam had 13C
abundance significantly differing from autotrophs and
closer to that in ECM fungi and A. caudata. Since the 13C
content (-27.1 ± 1.5‰) is too low for a C4 photosynthetic
metabolism [18], mixotrophy is likely to occur. A linear
two-sources mixing model [60], with mean δ13C values of
autotrophs and MH plants as references, suggests that
82% of its C was of fungal origin (significantly different
from zero based on 95% confidence intervals).

Mycorrhizal partners of Cheirostylis montana have not been
investigated yet, but deserve further attention. Indeed,
most research on tropical orchid mycorrhizae deals with
epiphytic species, and only a few terrestrial species have
been studied, using in vitro isolation techniques that
revealed only rhizoctonia fungi [61]. However, several

Distribution of identified fungi on the root system of A. mon-tanaFigure 5
Distribution of identified fungi on the root system of 
A. montana. Diagram of fungal colonisation on two A. mon-
tana root systems, on Q1 (a) and on D7.1 (b). Numbers 
correspond to putative species identified (see Additional file 
2). Slashed areas display two different fungi, identified on the 
same 1 to 2 mm-thick root section.
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ECM fungi are difficult or impossible to isolate [6], and
therefore molecular approaches are strongly recom-
mended in future attempts to identify fungi of tropical ter-
restrial orchids. Using such approaches, tropical
ecosystems may provide model systems for the examina-
tion of mixotrophy in diverse species beyond orchids.

Absence of mycorrhizal specificity in Aphyllorchis spp
The lack of mycorrhizal specificity in A. montana and A.
caudata is unexpected for MH species. Such a low specifi-
city, observed both at population and individual levels
(Figure 4), is very unusual among orchids [31], but has
been found in some mixotrophic Neottieae in the genera
Cephalanthera and Epipactis [36,41-44]. Aphyllorchis spe-
cies associated with various ECM fungi at the population,
individual, root and cell levels (Figure 5), and no obligate
or constant partner was identified. In contrast, C. exigua
associated quite specifically with Thelephoraceae, and
suggested that our design did allow detection of specifi-
city. Moreover, rarefaction curves confirmed that for what-
ever sampling effort, C. exigua presented a lower diversity
(Figure 7a). Since Aphyllorchis fungal communities look
like ECM communities from tropical regions [46,62], they
may even reflect a random sampling of available ECM
fungi by orchids' roots. However, given our limited
knowledge of ECM diversity in Thailand forests, we do not
know whether there is over- or underrepresentation of
ECM fungal taxa colonising nearby trees. Interestingly,
Sclerodermataceae, which are common in Thailand dipte-
rocarpacean forests [47], were absent in orchid roots. We
thus cannot exclude some limited mycorrhizal preference
in Aphyllorchis spp. An intriguing consideration is that spe-
cificity in green or MH orchids, like C. exigua (Figure 1),
correlates with short roots (less than 10 cm in length, or
even absent; Roy, personal observation), whereas non-
specific species, such as Aphyllorchis spp., have long roots
(up to 50 cm; Figure 1).

Aphyllorchis species contrast with the highly specific tem-
perate MH Neottieae studied so far, such as Neottia nidus-
avis (with Sebacinales [5]) and C. austinae (with Thele-
phoraceae [37]). Ironically, Aphyllorchis' closest phyloge-
netic relative, the mixotrophic Limodorum abortivum
(Figure 2), specifically associates with the Russulaceae
[38]. A strong trend toward specificity is reported in nearly
all MH plants [1,6]: individuals are associated with a nar-
row fungal clade of fungus, and specificity results in local
specialisation or even specialisation toward distinct geno-
types within populations [7,63]. To the best of our knowl-
edge, the only reported exceptions are (i) two taxa of AM
fungi in MH African Burmannia congesta and Sciaphila led-
ermannii [64]; (ii) saprobic Basidiomycetes in the Carib-
bean MH Wullschlaegelia aphylla [17], an orchid distantly
related to Neottieae; and (iii) the case of another MH
orchid, Erythrorchis cassythoides [65]. Other tropical MH

orchids are specific (for example, [14,52]). Thus, tropical
MH orchids exhibit different specificity levels, as reported
for tropical green epiphytic orchids [66,67].

There are two caveats to the conclusion of non-specificity.
Firstly, we do not know whether all or only some of these
fungi are providing C: functional specificity cannot be
ruled out. Nevertheless, no constant partner was identi-
fied, suggesting that several different fungi can provide C.
Secondly, MH nutrition is also taking place at germina-
tion and early seedling development in orchids, since
seeds have very few reserves: we do not know whether
seedlings exhibit fungal specificity. In Cephalanthera spp.,
only a subset of fungi present in adult plants are efficient
at this stage [44], and some orchids change or diversify
their partners over their lifespan [6]. Indeed, if seedlings
also have a large host spectrum, Aphyllorchis spp. may not
be limited by availability of fungal partners. They are
widespread but remain rare, with loose populations (indi-
viduals are often separated by a few meters [28], Roy and
Watthana, personal observations). Thus, a different spe-
cificity in early life stages cannot be excluded in Aphyllor-
chis, and requires further investigation. Several
observations of the association during in situ germination
were obtained in temperate regions, after sowing seeds in
mesh bags [31], but this remains to be applied in tropical
ecosystems.

Why is fungal specificity low in tropical MH orchids?
Interestingly, the few non-specific MH plants reported so
far occur all in tropical ecosystems [17,64,65]. Although
this may be pure coincidence, it may suggest some partic-
ular features of MH plants and/or fungal communities in
tropical ecosystems. Specificity in biological interactions
reveals variable latitudinal patterns, ranging from higher
specificity in the tropics (for example, for plant endo-
phytic fungi [68]) to similar or lower specificity (for exam-
ple, for phytophageous and pollinating insects [69]).
Difference between latitudes thus relates more to the func-
tioning of each interaction. However, the raison d'être of
MH specificity remains poorly understood in temperate
MH species. Two non-excluding models were proposed,
namely functional co-adaptation and parasitic co-evolu-
tion [70]. Functional co-adaptation states that the mecha-
nism reversing the C flow (which goes from plant to
fungus in common mycorrhizae [71]) requires fine plant
adaptations to fungal physiology, and that specific adap-
tations are better than universal ones (functioning with
any fungus). However, the many shifts of fungal partners
during the evolution of MH lineages [8,10] are not pre-
dicted by this model. Parasitic co-evolution assumes that
MH plants parasitise their mycorrhizal fungus (and thus
'epiparasitise' on green plants [1]), although there is no
direct evidence of detrimental effects [39,70]. In this case,
specificity would evolve within an arms race between the
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Over-dispersion of Russulaceae isolated from A. montana and A. caudataFigure 6
Over-dispersion of Russulaceae isolated from A. montana and A. caudata. Unrooted phylogenetic tree placing the 
Russulaceae identified from Aphyllorchis montana (AM) and A. caudata (AC). This phylogeny is based on internal transcribed 
spacer sequences, using maximum likelihood (general time reversible model). Numbers on nodes indicated bootstrap values 
above 70% (over 10,000 replicates).
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fungus and the MH plant: first, epiparasitic plants can
only associate with exploitable fungi that are somehow
resistant to epiparasitism (non-resistant fungi may not
support epiparasites and the association could not be
maintained), then both partners may select for adapta-
tions reducing the cost of this association, and such adap-
tations makes the association more and more specific. As
a result, few co-evolved plant-fungus combinations are
successful, and evidence for local adaptation in MH pop-
ulations [10] and co-evolution with fungi [12,63] support
this. Our study and a few others [18,64,65] suggest that
these mechanisms at least do not apply to tropical MH
plants.

We propose a common reason to explain non-specificity
in (i) any mixotrophic plants, and (ii) tropical MH

orchids. In both cases, the C demand would not be very
costly for the fungus. We respectively assume that (i) mix-
otrophic plants have limited C requirements, because of
their photosynthesis, and (ii) due to better tree photosyn-
thesis (higher primary production) in the tropics, tropical
ECM fungi receive a greater C flow. In both cases, the C
uptake would be relatively negligible, as compared with
the C demand of MH plants on temperate ECM fungi.
Thus, functional co-adaptation and/or parasitic co-evolu-
tion would not apply in tropical regions since avoidance
mechanisms are selected only if the cost of avoidance is
lower than the cost of interaction [72]. This statement
remains speculative, since we know little about the C
budget in individual mycelia, and comparative fungal
physiology in tropical versus temperate regions. More
studies of orchid-fungal diversity in tropical ecosystems
are required to support it. Making this assumption, spe-
cific MH plants and also some specific temperate mix-
otrophic plants (such as Limodorum abortivum [38]) would
simply go beyond a threshold in terms of C loss for the
fungus, thus entering the co-adaptation and/or parasitic
co-evolution process leading to specificity. Alternative
explanations remain possible: heterogeneous environ-
ments make generalists fitter than specialists [73,74].
Unfortunately, we do not know the structure and spatial
heterogeneity of ECM at our sampling sites, and there is
even some evidence that tropical ECM communities are
less diverse than temperate ones (K Nara, personal com-
munication).

Conclusion
All Neottieae examined to date in both temperate and,
now, tropical ecosystems have been found to associate
with ECM fungi. In most cases, they receive C from ECM
mycelial networks linking them to nearby trees, as shown
by their isotopic content. During Neottieae evolution,
specificity arose repeatedly, but unexpectedly this turns
out to be unrelated to full MH nutrition; in spite of several
shifts in fungal partners, some phylogenetic inertia may
have occurred. The lack of specificity is encountered for a
few other tropical MH plants, suggesting that MH and
fungal organisms from tropical ecosystems may differ
functionally from their temperate analogues. This and the
observation of mixotrophy in green orchids calls for more
focus on mycorrhizal associations of terrestrial herba-
ceous plants in the tropics, to know more on the taxo-
nomic position of their fungi and functional diversity
(especially in terms of C flow) of their mycorrhizal associ-
ation.

Methods
Model species and sampling sites
Aphyllorchis montana Rchb.f., A. caudata Rolfe ex Downie
and Cephalanthera exigua Seidenf. are MH orchids (Figure
1) from South-East Asia that grow in low to high moun-

Differences between the three mycoheterotrophic orchid fungal communitiesFigure 7
Differences between the three mycoheterotrophic 
orchid fungal communities. Comparison of the fungal 
communities found on the three orchid species (AM, A. mon-
tana, AC, A. caudata and CE, C. exigua). (a) Rarefaction 
curves for ectomycorrhizal fungal species. (b) Detrended 
component analysis of orchid individuals plotted in two 
dimensions, based on ectomycorrhizal fungal communities 
(fungal taxa grouped by families; note that most points are 
superimposed). White circles: A. montana individuals; grey 
circles: A. caudata; black triangles: C. exigua. Large symbols 
represent means for each species, with standard deviations.
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Isotopic signature of the three mycoheterotrophs studied and other green orchidsFigure 8
Isotopic signature of the three mycoheterotrophs studied and other green orchids. Carbon versus nitrogen stable 
isotope values (‰) of green plants, mycoheterotrophic plants (names bold) and fungi (names underlined) at (a) Doi Suthep #2 
(including A. montana and various ectomycorrhizal (ECM) fungi), (b) Doi Suthep #3 (including A. caudata and various saprobic 
fungi), (c) Doi Pee Pan Nam (including C. exigua, two ECM fungi and a saprobic Marasmius). Letters in brackets denote signifi-
cant differences between species for both δ13C (first letter) and δ15N (second letter), according to pairwise Mann-Whitney 
tests (P < 0.01 at least); bars indicate standard deviations.
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C/N ratio values of the three mycoheterotrophic orchids and other green orchidsFigure 9
C/N ratio values of the three mycoheterotrophic orchids and other green orchids C/N ratio values of green plants, 
(white bars), mycoheterotrophic plants (grey bars) and fungi (black bars) from three sites: Doi Suthep #2 ((a), including A. mon-
tana and various ectomycorrhizal (ECM) fungi), Doi Suthep #3 ((b), including A. caudata, various saprobic fungi), Doi Pee Pan 
Nam ((c), including C. exigua, two ECM fungi and a saprobic Marasmius). Letters denote significant differences between species, 
according to pairwise Mann-Whitney tests (P < 0.01 at minimum); bars indicate the standard deviation.

0

5

10

15

20

25

30

35

A
ca

nt
ha

ce
ae

C
om

m
el

in
a

co
m

m
un

is

L
as

ia
nt

hu
s

ku
rs

ii

M
ac

ar
an

ga
ku

rs
ii

L
ud

is
ia

di
sc

ol
or

A
ph

yl
lo

rc
hi

s
ca

ud
at

a

St
er

eu
m

 s
p.

C
ol

ly
bi

a 
sp

.

Sa
pr

op
hy

te

0

5

10

15

20

25

30

Im
pa

tie
ns

su
lta

ni

A
sp

id
is

ta
el

at
io

r

Sm
ila

x 
sp

.

St
ro

bi
le

nt
he

s
dy

er
in

au
s

C
he

ir
os

ty
lis

m
on

ta
na

C
ep

ha
la

nt
he

ra
ex

ig
ua

Th
el

ep
ho

ra
 s

p.

La
cc

ar
ia

 s
p.

M
ar

as
m

iu
s 

sp
.

C/N

C/N

C/N

a

b

a

b
b

a a a
a a a

a a a a

a, b, c

a

b b

c

a
a

a
a

b b c c
b

0

5

10

15

20

25

30

35

Sm
ila

x 
sp

.

B
os

en
be

rg
ia

ro
tu

nd
a

C
as

ta
no

ps
is

ac
um

in
at

is
si

m
a

C
an

th
iu

m
in

er
m

e

A
ph

yl
lo

rc
hi

s
m

on
ta

na

La
ct

ar
iu

s 
sp

.

La
ct

ar
iu

s
au

tr
oz

on
ar

iu
s

C
or

tin
ar

iu
s 

sp
.

La
ct

ar
iu

s
ge

ra
rd

ii

To
m

en
te

lla
 s

p.
 

Th
el

ep
ho

ra
 s

p.
 

a

b

c



BMC Biology 2009, 7:51 http://www.biomedcentral.com/1741-7007/7/51
tain forests [28]. C. exigua blooms during the dry season
(April), whereas the two Aphyllorchis spp. bloom during
the rainy season (July to August). All roots were harvested
from large populations at the beginning of their flowering
period in 2006 and 2007, with the authorisation of the
National Council for Research of Thailand. Samples were
collected from 10 different sampling sites, separated by
500 m to 1000 km in diverse parts of Thailand (North-
West, Central and South-East) with different forest types
(evergreen, pine-oak or dry dipterocarpacean forest) – see
details and site names in Table 1.

Sampling for molecular analysis
We harvested three to six independent root fragments (>
3 cm in length) using a protocol that allows plant survival
(careful approach to plant roots by digging from one side
and, after sampling, refilling of the hole with the same soil
without direct rhizome disturbance [8]). We discarded
roots specialised in starch accumulation (often occurring
in Neottieae [31]) and roots showing infections or symp-
toms of decay. Within 2 h after harvesting, the remaining
roots were carefully washed with water to eliminate soil
particles, surface-sterilised using a solution of sodium
hypochloride (2% v/v) and Tween 80 (5% w/v) for 10 s,
and rinsed three times in sterile distilled water. Roots were
then enveloped in paper and stored in silica gel. Next, 1
mm-long sections were sampled every centimetre on the
roots, and their colonisation was checked under the
microscope using the neighbouring root section (3 to 15
colonised samples were recovered per plant). To identify
directly the fungi forming pelotons (intracellular hyphal
coils produced by orchid mycorrhizal fungi), pelotons
were isolated under a microscope according to Rasmussen
[31] on A. montana individuals AMD6.1 and AMD7.1
from Doi Suthep #2 (Table 1 and Additional file 2). For
10 root sections per individual, 12 pelotons were recov-
ered and pooled per section (2 × 10 = 20 peloton pools in
all).

Molecular investigations
DNA extraction and PCR amplification of fungal ITS of
ribosomal DNA were performed as in Selosse et al. [5] on
root fragments and peloton pools. Whenever PCR failed,
we tentatively amplified (i) the large mitochondrial ribos-
omal subunit gene (LrDNA) as in Roy et al. [8], and (ii)
the 5' part of the 28S rDNA, using the primers Lr0r and Lr5
as in Roy et al. [8]. Some PCR products with multiple
bands were cloned as in Roy et al. [8], and at least five
clones per individual were recovered. Before sequencing,
RFLP, using EcoRI+SacI and HindIII, as in Selosse et al. [5]
was investigated to avoid repetitive sequencing of the
same ITS. To investigate the phylogenetic position of the
investigated orchid species, we amplified (conditions in
Selosse et al. [5]) and sequenced (i) the plant ITS, using
the plant-specific primer ITS1P; (ii) rbcL using primer

rbcL1F (5'-ATGTCACCACAAACAGAAAC-3') and rbcL
1367R (5'-CTTCCAAATTTCACAAGCAGCA-3'); and (iii)
trnS-G using a primer on trnS (5'-GCCGCTTTAGTCCACT-
CAGC-3') and the other on trnG (5'-GAACGAAT-
CACACTTTTACCAC-3'). These loci were also amplified in
other Neottieae, such as Cephalanthera exigua, C. damaso-
nium Druce, C. longifolia (L.) Fritsch, C. rubra (L.) Rich.,
Epipactis helleborine (L.) Crantz, E. muelleri Godfery, E.
fageticola (C.E.Hermos.) Devillers-Tersch. & Devillers, E.
fibri Scappat. & Robatsch, E. palustris Crantz, E. flava Sei-
denf., E. microphylla Sieber. ex Nyman, Neottia ovata Bluff
& Fingerh., N. nidus-avis (L.) Rich., Limodorum abortivum
(L.) Sw., and Thaia saprophytica Seidenf. (Additional file
1). Tropidia curculigoides Lindl. was sequenced as an out-
group. Sequencing and sequence editing was performed
as in Roy et al. [8] and corrected sequences (or consensus
sequences for similar clones) were deposited in GenBank
[75].

Fungal identification and phylogenetic analyses
In order to identify fungi, a BLAST search for similar fun-
gal sequences was conducted [76] using GenBank [75].
Two phylogenetic analyses were conducted, in order to (i)
study the phylogenetic position of Aphyllorchis spp. using
a concatenation of ITS, rbcL and trnS-G sequences, and (ii)
to refine the phylogenetic positions of the many Russu-
laceae found in this study using ITS sequences (alignment
and analysis were not possible for Thelephoraceae,
because of too much variation in their ITS). Sequences of
Neottieae and Russulaceae available in GenBank were
downloaded and aligned together with ours using Clus-
talW [77], and then corrected by eye. Considering the high
number of species of Russulaceae in GenBank, we used
only species recorded from Thailand and species recov-
ered when using BLAST for our sequences; the Russu-
laceae tree was not rooted. For Neottieae, Tropidia
polystachya, Nervilia shinensis and Vanilla planifolia were
chosen as outgroups. The phylogeny was computed by
maximum likelihood with PhyML v2.4.4 [78]. For this
analysis, a general time-reversible (GTR) model of DNA
substitution was used [79,80], involving unequal base fre-
quencies and six types of substitution. This model of DNA
substitution was chosen using a series of hierarchical like-
lihood-ratio tests in Modeltest 3.7 [81]. Base frequencies
were estimated, and 10,000 bootstrap replicates were per-
formed. Phylogenetic trees were visualised using Figtree
1.1.2 [82].

Isotopic sampling and analysis
Sampling for isotopic studies was conducted at three dif-
ferent sites (Doi Suthep #2, Doi Suthep #3 and Doi Pee
Pan Nam; Table 1). At each site, we harvested n = 5 sam-
ples for aerial parts of MH orchids, leaves of four
autotrophic species, and fruitbodies of up to six basidio-
mycetes species fruiting at sampling time (prioritising
Page 14 of 17
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ECM species). All leaves were collected in close vicinity, at
the same apparent light level and the same distance from
the ground (less than 0.5 m) as orchids. When available,
other terrestrial green orchids were collected (Ludisia dis-
color at Doi Suthep #3 and Cheirostylis montana at Doi Pee
Pan Nam). Samples were dried at 65°C for 72 h and han-
dled as in Tedersoo et al. [21] to measure total N, C/N
ratio and abundances of 13C and 15N. Isotope abundances
are expressed in δ13C and δ15N values in parts per thou-
sand relative to international standards V-PDB and atmos-
pheric N2: δ13C or δ15N = (Rsample/Rstandard - 1) × 1000
(‰), where R is the molar ratio, that is, 13C/12C or 15N/
14N. The standard deviation of the replicated standard
samples (n = 13) was 0.031‰ for 13C and 0.237‰ for
15N. Total N, C/N ratio, δ13C and δ15N values were com-
pared independently between species at each site by pair-
wise Mann-Whitney tests using Minitab™. Thus, groups of
species were delimited for each variable and the Kruskal-
Wallis test was performed, using these groups as a factor
in order to study the validity of these groups more pre-
cisely.

Fungal community analysis
To infer species from ITS sequences, we applied a thresh-
old of 97.0% sequence identity over the whole ITS region;
although there is no universally applicable threshold [83],
this is in agreement with our previous studies [8,21].
Sequences were aligned using Bioedit and a similarity
matrix was calculated. The frequency (pi) of each putative
ECM species among individuals and within populations
was calculated to establish a Shannon diversity index and
a Simpson diversity index. Indices were compared
between individuals by the pairwise Mann-Whitney test.
To account for our variable sampling effort among orchid
species, rarefaction curves were simulated 5,000 times
using analytic rarefaction 1.3 [84] on two datasets: one
pooling all populations for each species, and the other
separating each population and calculating a mean value
for each species. For a more qualitative analysis, fungal
communities at the individual level were compared
within and between species by building similarity
matrixes with Primer 5.2.9 [85] using the Bray-Curtis sim-
ilarity index. Two matrixes were computed by grouping
fungal species into families (because no species or
sequence was common between orchid populations or
species, see below). DCA was performed with these
matrixes, using population, forest type, geographical ori-
gin and species as factors.
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