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Greenhouse gas (GHG) generation is inherent in the production of aluminium
by a technology that uses carbon anodes. Most of those GHG are composed of
CO2 produced by redox reaction that occurs in the cell. However, a significant
fraction of the annual GHG production is composed of perfluorocarbons (PFC)
resulting from anode effects (AE). Multiple investigations have shown that
tetrafluoromethane (CF4) can be generated under low-voltage conditions in
the electrolysis cells, without global anode effect. The aim of this paper is to
find a quantitative relationship between monitored cell parameters and the
emissions of CF4. To achieve this goal, a predictive algorithm has been
developed using seven cell indicators. These indicators are based on the cell
voltage, the noise level and other parameters calculated from individual anode
current monitoring. The predictive algorithm is structured into three different
steps. The first two steps give qualitative information while the third one
quantitatively describes the expected CF4 concentration at the duct end of the
electrolysis cells. Validations after each step are presented and discussed.
Finally, a sensitivity analysis was performed to understand the effect of each
indicator on the onset of low-voltage PFC emissions. The standard deviation of
individual anode currents was found to be the dominant variable. Cell voltage,
noise level, and maximum individual anode current also showed a significant
correlation with the presence of CF4 in the output gas of an electrolysis cell.

INTRODUCTION

In primary aluminium reduction, continuous
efforts are taken by the industry to minimize the
tonnes of CO2 equivalent produced per ton of
aluminium. Perfluorocarbon (PFC) emissions, com-
posed essentially of tetrafluoromethane (CF4) and
hexafluoroethane (C2F6) are key elements to con-
sider in this process. The global warming potential
of these two gases is 6630 and 11,100 times greater
than CO2, respectively.1 They are generated during
an undesired event in the cell called an anode effect.
This event is usually associated with an important
increase in the cell voltage and is easily identifiable.
Hence, these ‘high-voltage PFC’ emissions are well
known in the industry and specific guidelines2 exist

to quantify the amount of gas generated during this
event. For this reason, smelters have optimised
their process worldwide over the years and the total
amount of PFC emissions from the aluminium
industry has been significantly reduced between
1990 and 2010.3 However, by lowering the AE
frequency and duration, another source of emissions
has become more apparent in recent years, charac-
terized as ‘low-voltage PFC’ emissions. This partic-
ular type of emission can occur for a significant
period of time with little or no indication of misbe-
haviour in the electrolytic cell, for instance, an
increase in cell the noise or voltage. For this reason,
low-voltage PFC are important to take into consid-
eration but, up to now, no available method other
than real-time PFC monitoring exists to account for
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these emissions.4 This paper investigates the corre-
lation between specific cell variables and the level of
CF4 emissions at the duct end of the electrolysis cell.

STATE OF THE ART

Numerous authors (see Table I) have previously
investigated the occurrence of low-voltage PFC.
There is general agreement in the scientific com-
munity that the basic mechanisms generating low-
voltage PFC are similar to the standard AE mech-
anism, which is very well documented. AE occurs
due to the privation of dissolved alumina in a
localized region of the bath. If it happens, transport
of the electric charges is no longer supported by the
standard electrolysis Reaction 1. This will lead to an
increase in the anodic overvoltage, and subsequent
Reactions 2–3 will occur in the cell, leading to the
electrolysis of the cryolite and the generation of
PFC; therefore, an AE.5

2Al2O3ðdissÞ þ 3CðsÞ ! 4Al lð Þ þ 3CO2ðgÞ

E0 ¼ �1:18 V
ð1Þ

4Na3AlF6ðlÞ þ 3CðsÞ ! 4AlðlÞ þ 3CF4ðgÞ þ 12NaFðdissÞ

E0 ¼ �2:58 V

ð2Þ

2Na3AlF6ðlÞ þ 2CðsÞ ! 2AlðlÞ þ C2F6ðgÞ þ 6NaFðdissÞ

E0 ¼ �2:80 V

ð3Þ

Once an AE occurs in the cell, the localised area
where PFC are produced usually becomes strongly
resistive to the passage of current (increase in ohmic
resistance) and the current will be redistributed
toward the other anodes in the cell. This redistri-
bution generally provokes the same problem else-
where and the AE propagates from one anode to the
other until terminated, meanwhile significantly
increasing the global cell voltage. The detection
limit of an AE varies from one smelter to another.
However, a generally accepted value is when the
cell voltage exceeds 8 V.6 For this reason, general-
ized AE, or high-voltage anode effects (HVAE), are
easily identifiable and are very well documented in
the literature.6–8

However, if the AE phenomenon occurs only
locally in the cell without propagating to all the
other anodes, it can lead to a continuous generation
of PFC while the cell voltage still remains under the
AE detection limit. This makes the detection of low-
voltage emissions difficult without continuous mon-
itoring of the output gas composition. This event
can either self-terminate due to alumina or cur-
rent redistribution or, eventually, it can lead to a
HVAE. Historically, this phenomenon was called

‘‘background or non-AE PFC emissions’’. Recently,
the International Aluminum Institute (IAI) has
adopted the term ‘‘low-voltage AE’’ (LVAE).9 This
paper will use the latest terminology.

Some authors10–14 refer to Reactions 4–6 as the
dominant mechanism for the generation of PFC
under low-voltage conditions as these reactions can
occur without a significant increase in the anodic
overvoltage. Furthermore, it could also explain why
most of the LVAE measurements only indicate very
small traces of C2F6 above the detection limit of the
instrument. In contrast, during HVAE, the ratio of
C2F6 to CF4 can change with time and cell tech-
nologies but the typical value is approximately 0.1.

2AlF3ðdissÞ þ Al2O3ðdissÞ þ 3CðsÞ ! 4AlðlÞ þ 3COF2ðgÞ

E0 ¼ �1:88 V

ð4Þ

2COF2ðgÞ þ CðsÞ ! 2COðgÞ þ CF4ðgÞ

K ¼ 94:8
ð5Þ

3COF2ðgÞ þ2CðsÞ ! 3COðgÞ þC2F6ðgÞ

K ¼ 1:2�10�3
ð6Þ

Past researchers have demonstrated that multiple
parameters or events could be linked to the occur-
rence of low-voltage PFC emissions. Their conclu-
sions are summarized in Table I and the most
relevant points are discussed briefly afterward.

Most authors5,7,10–12,16–19 agree that alumina
concentration, anode current density and anodic
overvoltage have a significant impact on the onset of
low-voltage PFC emissions. All of these parameters
are interrelated and will dictate if the localised
overvoltage eventually exceeds the threshold neces-
sary to generate PFC. Similarly, LVAE related to
the feeding strategy have been observed at the end
of underfeeding periods. This observation confirms
that low alumina concentration in the bath is more
likely to generate CF4 even during normal cell
operation.

Some authors11,12,15,16 have explored the influ-
ence of bath temperature, bath chemistry and
superheat on the PFC generation. These variables
will have an influence on the maximum solubility of
the alumina in the bath as well as on the kinetics of
its dissolution. Hence, keeping these variables in an
appropriate range will minimize the alumina con-
centration gradients in the electrolytic bath.

The new, high-amperage cells that are becoming
more prevalent in the aluminium industry are
composed of a greater number of anodes with larger
surface areas in order to preserve anode current
density. For this reason, a local AE is less likely to
propagate towards the other anodes and thus
probably can last longer.7 Moreover, as each anode
are connected in parallel electrically, the effect of
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gas passivation under a single anode will be less
significant on the global cell voltage if the total
number of anodes increases.

PFC emissions are frequently observed up to
multiple hours after an anode change.12,16–19 This
is due to the redistribution of current towards anodes
that increases the current density locally. The non-
uniformity of the current distribution can be ampli-
fied if the anode–cathode distance is reduced in order
to operate with lower energy consumption. In such a
cell, a small imbalance in the anode setting will have
a greater impact on the anode current distribution,
thus increasing the risk of generating PFC.

EXPERIMENTAL SETUP

Data used in this study were collected during two
measurement campaigns of gas emissions at Alu-
minerie Alouette from prebaked AP40LE cells using
point feeders and operating above 390 kA. They were
equipped with on-line monitoring of individual anode
currents using a measurement frequency of 1 Hz.
Cell current, voltage and pseudo-resistance were
measured by the cell control system with the same
frequency, and all the data were recorded. Therefore,
only one cell at a time was monitored, and there was
no dilution other than the gases entering the cell
through the hooding. Inspection of the hooding was
performed frequently to make sure it remained in
similar condition throughout the whole campaign.

During these periods, gas composition was mea-
sured with a GASMETTM DX-4000 Fourier trans-
formed infrared spectrometer (FTIR) using a Peltier
cooled mercury–cadmium–telluride detector (sam-
ple cell path: 9.8 m, volume: 0.5 L, resolution:
7.8 cm�1). A stainless steel sampling probe was
located at the duct end of the electrolysis cell and
gas was continuously fed to the analyzer at a
volumetric rate of 2.5 L min�1. The gas stream
was sent sequentially through a 15-l filter, a
desiccant, activated alumina, a 5-l filter and finally
a 2-l filter to remove dust, traces of water and
hydrogen fluoride for the protection of the measur-
ing equipment. The gas went through a line heated
at 120�C before entering the FTIR and concentra-
tion measurements were performed at a rate of 10
scans per second. Average values for 5-s periods
were recorded. The background spectrum was rede-
fined using high purity nitrogen every 24 h.

Gas composition was measured for a total of
2 weeks. The collected data were then classified into
15 scenarios. Thirteen of them were selected
because the CF4 concentration remained within
the range of interest for a significantly long period.
Two extra scenarios represent stable periods with-
out LVAE. CF4 emissions issued from HVAE were
not considered in this study. Additional information
on the preparation of the data has been published
previously.20 After the data selecting process,
22,000 data points remained. Half of them corre-
sponded to LVAE. This relatively high number of

points was sufficient to develop the six artificial
neural networks required for the predictive algo-
rithm described below, but a further increase in the
total number of data points could still improve its
performance.

DEVELOPMENT OF THE PREDICTIVE
ALGORITHM

A predictive algorithm was developed to predict
the CF4 concentration at the duct end of an
electrolysis cell using continuously measured
parameters. The range of interest of the CF4

concentration for this study is between 10 ppb and
2000 ppb. The lower limit was set according to the
threshold detection of the FTIR, and the upper limit
was determined by the highest CF4 concentration
that was measured under LVAE conditions. C2F6

was not considered as most of the data remained
under the detection limit of the FTIR (20 ppb).

The strategy of the algorithm, as well as the
choice of the input variables, was developed itera-
tively. Multiple combinations have been examined
including different strategies and/or different
inputs. It is important to mention that further
refinement is still possible but it would first require
additional measurement campaigns.

Seventy percent of the selected data were used for
the learning process to develop the artificial neural
networks and the remaining 30% was used for
validation to evaluate the accuracy of the predic-
tions. One of the main applications of this algorithm
is the sensitivity analysis that has been performed
subsequentially. This analysis clearly indicates the
variables with the strongest influence on the emis-
sions of LVAE as well as the expected variations
over the entire range of each entry variable.

Artificial neural networks (ANN) behind the
algorithm were developed using the data mining
package offered with STATISTICA 12�.

List of Indicators

The first selection of the potential indicators (input
variables) was based on the results of the literature
review indicating which parameters were most likely
to correlate with the presence of low-voltage CF4

emissions. To introduce an input to the algorithm, it
was necessary to have data collected with relatively
high frequency (0.2–1 Hz) for each respective input.
As alumina concentration could only be measured
intermittently, it was not included as an input. After
optimisation, seven variables were retained as inputs
for the predictive model. Most of these are related to
individual current monitoring as it offers local data
on the cell behaviour. More importantly, it supplies
indirect information regarding the alumina distribu-
tion21 and the influence of changing anodes. The list
of the seven indicators:

� Cell voltage (volts) Average cell voltage com-
puted for 5 consecutive seconds.
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� Noise (temporal stability) indicator (nanoohms)
The difference between the maximum and the
minimum pseudo-resistance measured for the
cell within the last 6 s.

� Maximum current driven through individual
anodes (amps) The highest current value that
has been observed among the individual anodes.

� Standard deviation between individual anode
currents (amps) For every second, the standard
deviation was calculated using individual anode
current measurements from the entire cell.

� Absolute difference between upstream and down-
stream current averages (amps) the average
current value is calculated for both halves of
the cell and the absolute difference between the
two sides is calculated.

� Absolute difference between tap hole and duct
end side current averages (amps) Same as the
previous variable but the division of the cell was
performed across the other axis.

� Range of measured individual currents (amps)
Difference between the maximum and the min-
imum individual anode currents measured.

Description of the Algorithm Strategy

The algorithm is divided into three steps as shown
in Fig. 1. The first step is performed by an ANN
designed to indicate if the conditions are met for the
generation of CF4 in the electrolysis cell. The output
from this ANN can either be positive or negative. A

positive output indicates that CF4 emission is
expected at the duct end of the electrolysis cell
under those conditions. In contrast, a negative
output indicates that the measured CF4 concentra-
tion would be below the limit of detection. Negative
outputs are considered as 0 ppb concentration.
During the learning phase of the ANN, it was
necessary to use weighting factors to favor the
predictions of ‘‘no emissions’’. This minimizes the
risk of amplifying the error caused by a wrong
prediction in the following steps, which could lead to
divergent predictions. Therefore, weighting factors
of 2:1 were used in favor of the negative predictions.

The second step of the algorithm is performed by
another ANN that aims to classify its output in
specific concentration ranges that are to be expected
without assigning a quantitative value. A correction
algorithm is applied after this ANN to minimise the
risk of wrong classification. This correction consid-
ers the previous temporal prediction to assure
consistency. The resulting output can be divided
into four different categories:

A. 10 ppb–49.99 ppb
B. 50 ppb–199.99 ppb
C. 200 ppb–499.99 ppb
D. 500 ppb–2000 ppb

The last step of the algorithm assigns a quantitative
CF4 concentration to the specific entry conditions. It
uses four artificial networks working in parallel

Fig. 1. The predictive algorithm strategy.
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depending on the respective category that was
assigned in the previous steps. Once each value
has been defined, a post-treatment is applied to the
prediction to take into account the evolution of the
CF4 concentration over time. In this case, the post-
treatment is a mobile moving average over a 5-min
period.

RESULTS AND DISCUSSION

Validation of the Algorithm

Thirty percent of the collected data was used
exclusively for the validation of the model. These
data were fed into the model and the results were
examined after each step of the algorithm to
evaluate its performance.

Figure 2a clearly indicates the ability of the
model to predict the presence or absence of CF4

based on the input variables. The percentage of
correct predictions after step #1 rises above 83%.
Moreover, the effect of the weights discussed previ-
ously is clearly visible in the incorrect predictions
column. Hence, when no CF4 is present in the
output gas composition, the model rarely predicts
otherwise, which increases the performance in the
following steps of the algorithm. Figure 2b indicates
that 69% of the data is correctly classified after the
second step. The results indicate that most incorrect
predictions are offset only by 1 category. Further
investigation revealed that the majority of incorrect
classifications are due to concentrations that are
near the limits of each category (i.e. 10 ppb, 50 ppb,
200 ppb and 500 ppb). This is more important for
classifications from the category A, where the
percentage of misclassifications exceeds the number
of correct predictions. However, more than 80% of
these incorrect predictions were within the range of
10 ppb–15 ppb. Therefore, it might be relevant to
reconsider the lower limit of prediction of the model
in the future to avoid being too close to the detection
limit of the FTIR. For this reason, it is unclear
whether the errors came from the noise of the FTIR

or if the variations within cell variables are just too
small in this range of concentration to be detected
above the normal noise level of each respective
variable.

Final validation was performed by calculating the
overall mass of CF4 emitted during each specific
period based on the measurements and comparing it
to the overall mass obtained using the predicted
values for the same periods. The mass of CF4 was
calculated using integration according to the trape-
zoid rule for each respective scenario and by mul-
tiplying the resulting (ppb*s) by the flow rate at the
duct end of the cell as well as by the CF4 density for
the corresponding temperature and pressure. Illus-
trative results for all scenarios are presented in
Fig. 3.

In most cases, the overall behaviour of the CF4

prediction is in good accordance with the corre-
sponding measurements, including the cases where
no emissions are present (Fig. 3-14 and 15). It
indicates the consistent behaviour of the algorithm
to quantitatively predict the concentration of CF4

from an electrolysis cell based exclusively on some
of the cell parameters. The results in Fig. 4 are also
consistent with this statement as they indicate that
the model correctly predicts the total mass of CF4

within a ±25% error margin in two-thirds of the
cases. If we consider that to our knowledge, no other
predictive model to account for low-voltage PFC
emissions has been developed in the open literature,
added to the fact that the average error for the
entire set of data is 8%, the algorithm’s performance
can be considered as good. Henceforth, it is possible
to proceed with a sensitivity analysis representative
of the inputs’ effect.

Sensitivity Analysis: Individual Effect of the
Indicators on the Low-Voltage Emissions of
CF4

A sensitivity analysis was performed based on a
seven-level full factorial design22 including all the
seven indicators. Henceforth, it was possible to

Fig. 2. (a) Percentages of correct and incorrect predictions after Step #1. (b) Percentages of correct predictions along with the different offsets in
incorrect predictions after Step #2.
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Fig. 3. Comparison between predicted CF4 concentrations (filled circles) and measured concentration (open circles).
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examine the effect of each input variables on the
resulting predictions obtained with the algorithm.
For the purpose of identifying the dominant input
variables, most of the useful information is available
after the first step of the algorithm. Therefore, only
these results are presented, as they are more
relevant.

The exploration limits of each variable were
defined using their respective data distribution
collected during the measurement campaign. The
corresponding lower and upper limits for each
variable were defined as the 1st and the 99th
centiles in order to eliminate the atypical values.
The impact of the cross-effects between the different
parameters was investigated but no significant
interaction was observed, hence it is not presented
in this study.

An investigation regarding the probability of CF4

emissions as a function of cell parameters was
performed. For each individual variable, the total
number of predicted emissions has been normalized
for easier interpretation. The reference (0%) indi-
cates the point where the variable has no influence.

Hence, a positive value indicates that the presence
of CF4 is more likely. In contrast, a negative value
indicates that CF4 emission is predicted by the
model less frequently. Moreover, a threshold value
has been added to each figure. This threshold is
based on the actual measurements and represents
the transition point where the probability of occur-
rence of CF4 emissions gets higher than the prob-
ability of having no emissions. Figure 5 illustrates
the change in CF4 emissions with respect to each
input variable resulting from the sensitivity analy-
sis. A clear correlation can be observed between a
variable and the CF4 emissions if the slope is steep
and the trend is uniform along most of the range
studied.

A positive correlation was observed between an
increasing cell voltage and the occurrence of CF4

emissions. It is important to consider that the
voltage values from Fig. 5a are representative of a
specific cell technology. However, the upper range of
values can be representative of the variation that
occurs after an anode change or when higher noise
is observed in the pot. Interestingly, as the cell

Fig. 4. Radar chart illustrating the absolute value of the error percentages for all 15 scenarios.
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Fig. 5. Influence level of each indicator on the frequency of predictions of CF4 based on a full factorial design sensitivity analysis. The vertical line
represents the measured threshold value for each variable.
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voltage decreases below the threshold value, the
slope of influence is steeper. This indicates that
variations in this range have a greater effect on CF4

emissions. It can be interpreted as a range of
variation, which is more plausibly associated with
an increase in overvoltage. In contrast, a higher
increase in voltage is more likely associated with a
change in the total resistance of the cell.

The noise level (Fig. 5b) has a positive correlation
with the occurrence of CF4 emissions. However, an
important variation in the stability of the cell will
only generate a small increase in the probability of
CF4 emissions.

The maximum current measured among the
anodes (Fig. 5c) appears to have a positive influence
on the generation of CF4 emissions up to 35 kA
(�1.75 times the normal level). Up to a certain
point, it can be representative of the current
redistribution following an anode change or when
excessive gas passivates the anodes. Consequently,
higher current locally consumes the alumina more
rapidly which eventually leads to PFC generation in
that region of the cell. Further investigations are
required to see if those conditions are maintained
for the same anodes or if the current jumps from one
anode to the another over time. Moreover, very high
current in a single anode, maintained for a long
period, can only be explained by a short-circuit
generating other negative impacts for the cell. This
phenomenon explains the drop in the CF4 occur-
rence when the maximum current in an anode
reaches more than 40 kA.

The results from Fig. 5d indicate a clear and
strong relationship between the standard deviation
among individual anode currents and the predic-
tion of CF4 emissions. These results are consistent
with the literature as well as with the mechanism
of PFC emissions. Therefore, when a disruption of
the current uniformity starts generating LVAE,
the local resistivity is expected to increase under
specific anodes. It will lower the current from these
anodes and redistribute a part of the current
toward other anodes, hence amplifying the current
non-uniformity in the cell. The behaviour appears
to be linear up to a certain limit (7.5 kA).
Afterward, there is no more significant increase
of the influence of this variable on the emissions of
CF4.

Figure 5e shows a negative correlation but this
effect is mainly due to a permanent offset of
approximately 1.75 kA between the average indi-
vidual anode currents from the upstream and
downstream side under normal operation. Hence-
forth, it has no real correlation with LVAE.

No significant correlation can be observed on
Fig. 5f and g between the occurrence of CF4 emis-
sions and those variables. However, even if these
variables are not as useful in predicting the occur-
rence of LVAE, they are relevant in the subsequent
steps of the algorithm to predict the level of these
emissions when these are detected.

CONCLUSION

A study has been performed to determine whether
certain measurable indicators permit the prediction
of low-voltage PFC emissions from aluminum elec-
trolysis cells. Inspired by a literature review and a
good understanding of the mechanisms, seven indi-
cators were selected and used to develop a predic-
tive algorithm based on measurements carried out
on selected aluminium electrolysis cells. The model
is able to successfully predict the emissions of CF4

at the duct end of an electrolysis cell using only
those seven inputs. A sensitivity analysis was
performed using the algorithm to understand the
effect of each variable on the occurrence of low-
voltage CF4 emissions.

The sensitivity analysis clearly demonstrated
that inhomogeneity among individual anode cur-
rents is the best indicator to predict low-voltage CF4

emissions. Cell voltage and maximal anode current
show also a significant and positive correlation with
the emissions. The noise level has a positive, but not
significant, correlation. No other measurable cell
variable was found to have a direct and significant
correlation with the occurrence of low-voltage PFC
emissions.

The model described in this paper shows promis-
ing results as a predictive method, but further
improvements are still required before it can be
used as a robust quantitative tool integrated into
the cell control system. Moreover, due to the variety
of the reduction technologies and the limited acces-
sibility of individual anode current monitoring
across smelters worldwide, the proposed algorithm
cannot be easily applied outside of the cell technol-
ogy from which it was developed. However, the
investigation and results described in this paper can
lead to refinements that would be applicable
throughout the entire aluminium industry.

Finally, the primary objective of this study was
reached, namely, a new tool was developed, using
certain key indicators to predict the generation of
CF4 under low-voltage conditions.
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