
J
H
E
P
0
2
(
2
0
1
5
)
1
7
8

Published for SISSA by Springer

Received: December 9, 2014

Revised: January 14, 2015

Accepted: February 9, 2015

Published: February 27, 2015

Conformal transformations and strings for an

accelerating quark-antiquark pair in AdS3

Shijong Ryang

Department of Physics, Kyoto Prefectural University of Medicine,

Inamori Memorial Hall, Shimogamo, Kyoto 606-0823, Japan

E-mail: ryang@koto.kpu-m.ac.jp

Abstract: From a simple moving open string solution dual to a moving heavy quark

with constant velocity in the Poincare AdS3 spacetime, we construct an accerlerating open

string solution dual to a heavy quark-antiquark pair accelerated in opposite directions by

performing the three mappings such as the SL(2, R)L×SL(2, R)R isometry transformation,

the special conformal transformation and the conformal SO(2,2) transformation. Using the

string sigma model action we construct two open string solutions staying in two different

regions whose dividing line is associated with the event horizon appeared on the string

worldsheet and obtain the accelerating open string solution by gluing two such solutions.

Keywords: AdS-CFT Correspondence, Bosonic Strings

ArXiv ePrint: 1412.2428

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP02(2015)178

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81616581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ryang@koto.kpu-m.ac.jp
http://arxiv.org/abs/1412.2428
http://dx.doi.org/10.1007/JHEP02(2015)178


J
H
E
P
0
2
(
2
0
1
5
)
1
7
8

Contents

1 Introduction 1

2 The accelerating string in the Nambu-Goto action 3

3 Conformal transformations 5

4 The accelerating string in the string sigma model action 10

5 Conclusion 14

1 Introduction

The AdS/CFT correspondence [1–3] has more and more revealed the strong coupling behav-

iors of the N = 4 super Yang-Mills (SYM) theory by using the string theory in AdS5 × S5

where various open and closed string solutions are studied.

By using the Nambu-Goto action there have been constructions of the moving open

string solutions with constant velocity in AdS5 black hole geometries [4, 5], where the

dynamics of quark moving in strongly coupled N = 4 SYM thermal plasma is investigated

by regarding the infinitely massive quark as the open string end at the boundary of the

AdS5-Schwarzschild spacetime [5] and the finitely massive quark as the open string end at

the D7-brane [6] in the AdS5-Schwarzschild spacetime [4].

Mikhailov has used the Nambu-Goto action in the Poincare AdS5 spacetime to present

an analytic generic solution for the open string dual to a single infinitely massive quark

moving on an arbitrary timelike trajectory in the N = 4 SYM theory and extract a rate

of the energy loss which agrees with the Lienard formula [7]. Based on the extension

of this generic solution to the finite quark mass case it has been shown that an event

horizon appears on the worldsheet whenever the single quark accelerates in any fashion [8].

The division of an open string through the horizon is associated with two contributions

to the energy-momentum of the string corresponding to the intrisic and radiated energy-

momentum of the quark [8–10].

An accelerating open string solution dual to a heavy quark-antiquark pair uniformly

accelerated in opposite directions has been found [11] by using the Nambu-Goto action in

the Poincare AdS5 spacetime. The event horizon has been shown to appear on the world-

sheet of the open string connecting a quark and an antiquark and separate the radiation

and the quark. It has been demonstrated that the rate of energy flow across the horizon

becomes the same as derived from the Lienard formula of ref. [7].
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The similar accelerating open string solution has been constructed by analyzing the

Nambu-Goto action in the Rindler spacetime which is given by a coordinate transformation

from the AdS spacetime [12]. It has been studied that the energy loss via the moving open

string in AdS5-Schwarzschild spacetime is related with the appearance of the worldsheet

horizon [13–15] and the worldsheet Hawking radiation generates the stochastic motion of

the quark [16, 17].

The accelerating string solution [11] associated with a uniformly accelerating quark-

antiquark pair has been constructed [18, 19] as a particular instance from the generic

string solution [7] dual to a single quark moving on an arbitrary trajectory. The generic

string solution has been indirectly shown [7] to extremize the action, and further has

been directly substituted into the string equation of motion and confirmed to solve it [20].

There have been various investigations of the thermal effects of the worldsheet horizon on

the accelerating string which are associated with the Unruh temperature [18, 21, 22].

Starting from the generic string solution in the Poincare AdS5 spacetime [7] and using

a suitable coordinate transformation, the accelerating open string solution dual to a single

accelerating quark in the global AdS5 spacetime has been constructed [23] (see also [24]).

Recently it has been conjectured that the entanglement of the general quantum

Einstein-Podolsky-Rosen (EPR) pair is intimately related with the Einstein-Rosen bridge

or the non-traversable wormhole [25]. Associated with the existence of horizon on the world-

sheet of the accelerating open string dual to a uniformly accelerating quark-antiquark pair,

there have been several studies where the quark-antiquark pair is concretely regarded as

a color singlet EPR pair in the N = 4 SYM theory and its entanglement is encoded in a

non-traversable wormhole on the worldsheet of the flux tube connecting the pair [26–29].

The entanglement entropy of the quark-antiquark pair has been investigated [26, 30, 31]

and the relation between the entanglement entropy and the string surface describing gluon

scattering in position space has been studied [32].

We will use the Nambu-Goto action in the static gauge for the open string in the

Poincare AdS3 spacetime and make an ansatz for the string profile expressed by three

parameters to reconstruct the two string solutions associated with the one-cusp Wilson

loop [33] and the accelerating string solution dual to an accelerating quark-antiquark

pair [11].

We will consider the SL(2, R)L × SL(2, R)R isometry group of the AdS3 space-

time [34, 35] and make this isometry transformation for a simple moving string solution

dual to a moving quark with constant velocity to construct the accelerating string solution

dual to a uniformly accelerating quark-antiquark pair. This isomery transformation will

be applied further to the accelerating string solution. For the moving string solution with

constant velocity and the accelerating string solution we will perform the special conformal

transformation in the Poincare coordinates and the conformal SO(2,2) transformation in

the embedding coordinates to see what kinds of string solutions appear.

Based on the string sigma model action we will make a special ansatz for the string

profile in the factorized form and construct the accelerating string solution on which the

event horizon appears.
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2 The accelerating string in the Nambu-Goto action

Based on the Nambu-Goto action we consider an open string in AdS3 with the Poincare

metric

ds2 =
dz2 − dt2 + dx2

z2
, (2.1)

where we have set the AdS radius R to unity. We use the static gauge

t = τ, z = σ (2.2)

to express the string action in the Lorentzian worldsheet coordinates

S = −
√
λ

2π

∫

dτdσ

√
D

σ2
(2.3)

with D = 1− (∂τx)
2 + (∂σx)

2. In the equation of motion for x

∂τ

(

∂τx

σ2
√
D

)

= ∂σ

(

∂σx

σ2
√
D

)

(2.4)

we make an ansatz

x = ±
√

Aτ2 +B − Cσ2 (2.5)

to have

A∂τ

(

τ

σ2
√
F

)

= −C∂σ

(

1

σ
√
F

)

(2.6)

with F = A(1−A)τ2 +B − C(1− C)σ2.

For B 6= 0 there is one solution specified by A = C = 1 which yields the string

configuration expressed in terms of B ≡ b2 as

x = ±
√

t2 + b2 − z2. (2.7)

This string solution was found in ref. [11] where the infinitely massive quark and antiquark

are located on the hyperbolic trajectories x = ±
√
t2 + b2 at the AdS boundary z = 0 such

that the plus/minus sign of (2.7) represents the right and left half of the accelerating string.

The quark and antiquark first approach to each other in decelerating and stop to return

back in accelerating away from each other with proper acceleration 1/b.

Putting the probe D7-branes at z = zm we introduce the finite mass of quark and

antiquark as m =
√
λ/2πzm, where the quark and antiquark are two ends of an open string

at z = zm. After the replacement b2 → b2 + z2m for (2.7) [9, 10, 18] we have

x = ±
√

t2 + b2 + z2m − z2, (2.8)

from which the hyperbolic trajectories of the finitely massive quark and antiquark at z = zm
are also given by x = ±

√
t2 + b2. The quark and antiquark are accelerated by turning on

the constant electric field E on the D7-branes. The electric field E is related with the

proper acceleration 1/b as
1

b
=

E
√

m2 − λE2/4π2m2
, (2.9)
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whose inversion is given by

E =
m

√

b2 + λ/4π2m2
. (2.10)

For B = 0 there are two solutions which are provided by A 6= 0, 1 with C = 0 and

C 6= 0, 1 with A = 1. The former gives a simple solution

x = ±
√
At, (2.11)

while the latter is complementary to (2.7) and leads to a string solution

x = ±
√

2C

(

t2 − z2

2

)

, (2.12)

whose C is fixed as C = A/2 = 1/2. The latter string configuration is described by

z =
√

2(t2 − x2), (2.13)

which is the one-cusp Wilson loop solution of [33], where the open string surface ends on

two semi infinite lightlike lines. This solution yields pure imaginary Lagrangian so that the

amplitude shows the exponential suppression. The planar four-gluon scattering amplitude

was computed by using the four-cusp Wilson loop solution in the T-dual AdS spacetime

which was obtained from the one-cusp Wilson loop solution by perfoming the conformal

SO(2,4) transformation [36].

In [37] the following two-cusp Wilson loop solution was constructed by applying the

conformal SO(2,4) transformation to the one-cusp Wilson loop solution

z2 = t2 − x2 ±
√

2(t2 + x2)− 1, (2.14)

whose surface ends on four lines t = x ± 1, t = −x ± 1 which meet at two cusps (t, x) =

(0,±1) for the plus sign and two cusps (t, x) = (±1, 0) for the minus sign. The appropriate

square of (2.14) yields an equation for x in the fourth order whose solution is given by

x2 = t2 + 1− z2 ±
√

4t2 − 2z2. (2.15)

As the string solution in the Poincare coodinates can be rescaled as xµ = (t, x) →
xµ/b, z → z/b, the expression (2.15) becomes

x = ±
(

t2 + b2 − z2 ± 2b

√

t2 − z2

2

)1/2

, (2.16)

which shows a suggestive expression that contains two polynomials t2+b2−z2 and t2−z2/2

of (2.7) and (2.12). The expression (2.16) as a convolution of two square roots is confirmed

indeed to solve the string equation of motion (2.4) through D = −b2σ2/4x2(τ2 − σ2/2).
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3 Conformal transformations

We use w± ≡ x± t to rewrite the Poincare metric (2.1) as ds2 = (dz2+ dw+dw−)/z2. The

SL(2, R)L×SL(2, R)R isometry group for this AdS3 metric was investigated in ref. [34] (see

also [38]). The SL(2, R)L transformation is given by

w+ → w+′
=

αw+ + β

γw+ + δ
, w− → w−′

= w− +
γz2

γw+ + δ
,

z → z′ =
z

γw+ + δ
(3.1)

with real α, β, γ, δ obeying αδ − βγ = 1, while the SL(2, R)R transformation is

w+ → w+′
= w+ +

γz2

γw− + δ
, w− → w−′

=
αw− + β

γw− + δ
,

z → z′ =
z

γw− + δ
. (3.2)

In view of (3.1) and (3.2) α and δ have no dimension whereas β and 1/γ have the same

dimension as w±. Both transformations map the AdS3 boundary to itself and act on

the boundary as the usual conformal transformations of (1+1)-dimensional Minkowski

spacetime.

Let us consider a string configuration which extends straight from the AdS boundary

at z = 0 to the Poincare horizon at z = ∞ in the z direction and moves with constant

velocity v in the x direction

x = vt, t = τ, z = σ, (3.3)

which simply satisfies the string equation (2.4) as is seen in (2.11), and is dual to an isolated

infinitely-massive quark moving with constant velocity v. We perform the SL(2, R)L trans-

formation with γ 6= 0 for the straight moving string solution to obtain an accelerating string

configuration associated with proper acceleration γ
√

(1 + v)/(1− v) of a quark-antiquark

pair in the following form

x′ − 1

2γ

(

α+
1− v

1 + v
δ

)

= ±
[

(

t′ − 1

2γ

(

α− 1− v

1 + v
δ

))2

+
1− v

1 + v

1

γ2
− z′

2

]1/2

, (3.4)

where there are some constant shifts in x′ and t′ compared with (2.7). By making the

replacement (1−v)/(1+v)γ2 → (1−v)/(1+v)γ2+ z2m for (3.4) we obtain the accelerating

string solution associated with the finitely massive quark and antiquark and here write

down explicitly the electric field E exerted on the quark and antiquark from (2.10) as

E =
m

(1− v)/(1 + v)γ2 + λ/4π2m2
. (3.5)

Under a particular SL(2, R)L transformation with γ = 0 the string solutioin becomes

x′ = v′t′ +
(1− v)αβ

(1 + v)α2 + 1− v
. (3.6)
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with v′ = ((1 + v)α2 − (1 − v))/((1 + v)α2 + 1 − v). The transformed string solution

shows a straight moving string with the different velocity v′. The particular SL(2, R)L
transformation (3.1) with γ = 0 is expressed as

(

t′

x′

)

=
1

2

(

α2 + 1 α2 − 1

α2 − 1 α2 + 1

)(

t

x

)

+
αβ

2
, z′ = αz. (3.7)

Through the scaling t′ = αt”, x′ = αx”, z′ = αz” this transformation becomes
(

t”

x”

)

=
1

2α

(

α2 + 1 α2 − 1

α2 − 1 α2 + 1

)(

t

x

)

+
β

2
, z” = z, (3.8)

which shows a combination of a Lorentz transformation and a translation in (1+1)-

dimensional Minkowski spacetime at the AdS boundary.

Now we apply the SL(2, R)L transformation to the accelerating string solution (2.7)

which is figured out by the expanding semicircle x2 + z2 = t2 + b2 for 0 ≤ z in the (x, z)

plane. The first relation in (3.1) gives x+t expressed in terms of x′+t′, which is substituted

into the third relation in (3.1) to obtain z expressed in terms of x′+ t′ and z′. We combine

x− t = (b2−z2)/(x+ t) with the second relation in (3.1) to derive the third-order equation

for x′. The third-order equation becomes a product of a first-order one and a second-order

one so that we have two curves

x′ = −t′ +
α

γ
, (3.9)

(

x′ +
b2γ − β

2δ

)2

=

(

t′ − b2γ + β

2δ

)2

+
b2

δ2
− z′

2
. (3.10)

The former (3.9) corresponds to (2.11) with A = 1. Since A is not allowed to be

equated with 0, 1, it does not satisfy the string equation. The latter (3.10) shows the

expanding string where the acceleration of a quark-antiquark pair changes from 1/b to δ/b.

In a particular γ = 0 case the transformed string configuration becomes a second-order

equation for x′ which is also given by (3.10) with γ = 0. In a particular δ = 0 case the

accelerating string solution is transformed to a product of two curves which represent a

moving string solution with constant velocity

x′ =
β2 − b2

β2 + b2
t′ − b2αβ

β2 + b2
(3.11)

and the expression (3.9) which does not obey the string equation.

When the SL(2, R)R transformation (3.2) is applied to the moving string with constant

velocity (3.3) and the expanding string (2.7), the generally mapped string configurations

are described by (3.4) with t′, v replaced by −t′,−v and (3.9), (3.10) with t′ replaced by

−t′ respectively.

Here we consider the special conformal transformation of the Poincare AdS3 spacetime

coordinates z, xµ = (t, x)

xµ′ =
xµ + aµ(z2 + x2)

1 + 2a · x+ a2(z2 + x2)
, z′ =

z

1 + 2a · x+ a2(z2 + x2)
, (3.12)

– 6 –
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which was studied for the circular Wilson loop [39]. We can analyze the special conformal

transformation in the Poincare AdS5 spacetime which is specified by (3.12) with µ =

0, 1, 2, 3, but for simplicity we restrict ourselves to the AdS3 spacetime. The two cases

with aµ = (−a, a) and aµ = (a, a) coincide with the particular SL(2, R)L and SL(2, R)R
transformations with α = 1, β = 0, γ = 2a, δ = 1 respectively.

Let us make a special conformal transformation with aµ = (a0, a1) for the straight

string moving with constant velocity v (3.3) to have

t′ =
t+ a0(z2 − t2 + v2t2)

P
, x′ =

vt+ a1(z2 − t2 + v2t2)

P
, z′ =

z

P
(3.13)

with

P = 1 + 2(−a0 + a1v)t+ (−(a0)2 + (a1)2)(z2 − t2 + v2t2). (3.14)

The first and second relations in (3.13) lead to a1t− a0vt = (a1t′ − a0x′)P which gives

t =
(a1t′ − a0x′)P

a1 − a0v
. (3.15)

Substitution of (3.15) into (3.14) generates a second-order equation for P

(−(a0)2 + (a1)2)Q1P
2 + (Q2 − 1)P + 1 = 0 (3.16)

with

Q1 = z′
2 − (1− v2)

(

a1t′ − a0x′

a1 − a0v

)2

,

Q2 = 2
a1v − a0

a1 − a0v
(a1t′ − a0x′). (3.17)

We substitute (3.15), z = Pz′ and the solution of (3.16) into the second relation in (3.13)

to obtain

x′ =
1

2(a1 − a0v)
±
√

(

t′ − v

2(a1 − a0v)

)2

+
1− v2

4(a1 − a0v)2
− z′2 (3.18)

for a1 6= a0v. Thus we have the expanding string solution with acceleration 2|a1 −
a0v|/

√
1− v2. In a particular a1 = a0v case from the equation (3.15) the transformed

string configuration is expressed as x′ = (a1/a0)t′ = vt′ which is the moving string with

the same velocity as the starting string.

For the expanding string (2.7) with acceleration 1/b we perform a special conformal

transformation with aµ = (a0, a1) to obtain

t′ =
t+ a0b2

P
, x′ =

x+ a1b2

P
, z′ =

z

P
(3.19)

with

P = 1 + 2(−a0t+ a1x) + (−(a0)2 + (a1)2)b2. (3.20)

– 7 –
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Combining the first and second relations in (3.19) with (3.20) we have

P =
1 + ((a0)2 − (a1)2)b2

1 + 2(a0t′ − a1x′)
. (3.21)

Substituting three relations in (3.19) into (2.7) we have a second-order equation for P

(z′
2 − t′

2
+ x′

2
)P 2 + 2(a0t′ − a1x′)b2P + b4(−(a0)2 + (a1)2)− b2 = 0. (3.22)

Equating (3.21) with the solution of (3.22) leads to

(

x′ +
a1b2

1 + ((a0)2 − (a1)2)b2

)2

=

(

t′ +
a0b2

1 + ((a0)2 − (a1)2)b2

)2

+
b2

[1 + ((a0)2 − (a1)2)b2]2
− z′

2
(3.23)

for 1 + ((a0)2 − (a1)2)b2 6= 0. Thus the magnitude of acceleration changes from 1/b to

|1 + ((a0)2 − (a1)2)b2|/b. In a particular case 1 + ((a0)2 − (a1)2)b2 = 0 with (a1)2 >

(a0)2 6= 0 the expanding string turns back to a moving string with constant velocity

x′ = (a0/a1)t′ + 1/2a1,which is derived from (3.21). Further in the aµ = (0,±1/b) cases

the expansion string becomes a static straight string located at x′ = ±b/2 stretching from

the AdS boundary to the Poincare horizon, which is dual to a static isolated quark.

Here we restore the AdS radius R to express the following relations between the

Poincare coordinates in AdS3 and the embedding coordinates XM (M = −1, 0, 1, 2) on

which the conformal SO(2,2) transformation is acting linearly

Xµ =
xµ

z
R, (µ = 0, 1),

X−1 =
R2 + z2 + xµx

µ

2z
, X2 =

R2 − z2 − xµx
µ

2z
,

−R2 = −(X−1)2 − (X0)2 + (X1)2 + (X2)2. (3.24)

Although we can analyze the conformal SO(2,4) transformation acting on the embedding

coordinates XM (M = −1, 0, 1, 2, 3, 4) for AdS5, for simplicity we consider the conformal

SO(2,2) transformation.

For the moving string with constant velocity v, which is described by X1 = vX0, we

perform one conformal SO(2,2) transformation

X−1′ = −X0, X0′ = X−1, X1′ = X1, X2′ = X2, (3.25)

which interchanges X−1 and X0. The transformed configuration is specified by X1′ =

−vX−1′ that is expressed in terms of the Poincare coordinates as

(

x′ +
R

v

)2

= t′
2
+

1− v2

v2
R2 − z′

2
, (3.26)

which represents the expanding string with acceleration v/R
√
1− v2.

– 8 –
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The other conformal SO(2,2) transformation defined as the interchange between X1

and X2

X−1′ = X−1, X0′ = X0, X1′ = −X2, X2′ = X1 (3.27)

produces X2′ = vX0′ which becomes

x′
2
= (t′ − vR)2 + (1− v2)R2 − z′

2
. (3.28)

Thus the expanding string solution with acceleration 1/R
√
1− v2 is constructed.

Now performing the conformal SO(2,2) transformation (3.25) for the expanding

string (2.7) which is expressed as

(X0)2 − (X1)2 = R2 − b2

R2
(X−1 +X2)2 (3.29)

we obtain a curve

(X−1′)2 − (X1′)2 = R2 − b2

R2
(X0′ +X2′)2. (3.30)

The mapped expression is a polynomial of x′ in the fourth order which is compared with the

second-order plynomial of x in (3.29). It, however, is expressed in terms of y ≡ x′2+ z′2 as

(

1 +
b2

R2

)

y2 − 2

(

t′
2
+R2 +

b2

R2
(t′ +R)2

)

y

+ (t′
2 −R2)2 +

b2

R2
(t′ +R)4 = 0 (3.31)

so that we have two curves

x′
2
= (t′ +R)2 − z′

2
, (3.32)

x′
2
=

(

t′ +
b2 −R2

b2 +R2
R

)2

+
4b2R4

(b2 +R2)2
− z′

2
. (3.33)

The former (3.32) corresponds to (2.7) with b = 0. Since B is not allowed to be 0, it

does not solve the string equation. The latter (3.33) is the expanding string solution with

acceleration (b2 +R2)/2bR2.

The other conformal SO(2,2) transformation (3.27) applied to the expanding string

solution (3.29) produces a curve

(X0′)2 − (X2′)2 = R2 − b2

R2
(X−1′ −X1′)2, (3.34)

which is similarly expressed in terms of y ≡ t′2 − z′2 as

(

1− b2

R2

)

y2 − 2

(

x′
2
+R2 − b2

R2
(x′ −R)2

)

y

+ (x′
2 −R2)2 − b2

R2
(x′ −R)4 = 0. (3.35)
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For R 6= b two curves are obtained by

t′
2 − z′

2
= (x′ −R)2, (3.36)

t′
2 − z′

2
=

1

1− b2/R2

(

(x′ +R)2 − b2

R2
(x′ −R)2

)

. (3.37)

The former (3.36) also does not obey the string equation, while the latter (3.37) yields the

expanding string solution with acceleratioin |b2 −R2|/2bR2 as shown by

(

x′ − b2 +R2

b2 −R2
R

)2

= t′
2
+

4b2R4

(b2 −R2)2
− z′

2
. (3.38)

In a particular R = b case the equation (3.35) leads to

x′
(

(x′ −R)2 − (t′
2 − z′

2
)
)

= 0, (3.39)

which gives two curves x′ = 0 and x′ = R±
√

t′2 − z′2. The former shows the static string

solution, while the latter does not satisfy the string equation.

4 The accelerating string in the string sigma model action

Let us consider a time-dependent open string configuration in AdS3 with the Poincare

metric by analyzing the string sigma model action in the Lorentzian worldsheet coordinates

with a = 0, 1

S = −
√
λ

4π

∫

dτdσ
1

z2
(−∂at∂

at+ ∂ax∂
ax+ ∂az∂

az). (4.1)

The off-diagonal Virasoro constraint gives

− ṫt′ + ẋx′ + żz′ = 0. (4.2)

In this section we use the dot and prime as the derivatives with respect to τ and σ respec-

tively.

Here we choose the following ansatz in the factorized form

t = tτ (τ)f(σ), x = xτ (τ)f(σ), z = z(σ). (4.3)

The off-diagonal Virasoro constraint (4.2) reads

− ṫτ tτ + ẋτxτ = 0, (4.4)

which is solved by

x2τ − t2τ = ±N2 (4.5)

with an integration constant N .

First we consider the plus case to parameterize xτ and tτ in terms of a positive pa-

rameter p as

xτ = N cosh pτ, tτ = N sinh pτ (4.6)

– 10 –
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with −∞ < τ < ∞. The integration constant N is absorbed into f(σ) so that N can be

set to unity.

The diagonal Virasoro constraint gives

f ′2 − p2f2 + z′
2
= 0. (4.7)

Substituting the ansatz (4.3) with (4.6) into the equations of motion for t and x

∂τ

(

ṫ

z2

)

− ∂σ

(

t′

z2

)

= 0, ∂τ

(

ẋ

z2

)

− ∂σ

(

x′

z2

)

= 0 (4.8)

we have an identical equation

f ′′ =
2z′

z
f ′ + p2f. (4.9)

The equation of motion for z

∂τ

(

ż

z2

)

− ∂σ

(

z′

z2

)

=
1

z3
(

(∂az)
2 − (∂at)

2 + (∂ax)
2
)

(4.10)

turns out to be

zz′′ = z′
2 − f ′2 − p2f2. (4.11)

We sum (4.11) and (4.9) multiplied by f to derive a differential equation

∂2
σ(z

2 + f2) =
2z′

z
∂σ(z

2 + f2). (4.12)

Here we consider a simple solution

z2 + f2 = b2 (4.13)

with a constant positive parameter b, which implies 0 ≤ z ≤ b. We substitute f =

±
√
b2 − z2 of (4.13) into (4.7) to obtain an equation for z

b2z′
2 − p2(b2 − z2)2 = 0. (4.14)

Owing to 0 ≤ z ≤ b the solution of (4.14) is expressed as

z = b tanh pσ, (4.15)

where we take the range of σ as 0 ≤ σ < ∞. In the region 0 ≤ z ≤ b we have a string

profile expressed by (4.15) and

x = ±b cosh pτ

cosh pσ
, t = ±b sinh pτ

cosh pσ
. (4.16)

Hereafter the plus and minus solutions are called by the I and II solutions respectively.

These I and II solutions are confirmed to satisfy the string equations (4.8) and (4.10).

Eliminating the dependences of the worldsheet coordinates we reproduce the accelerating

string solution (2.7) for the region 0 ≤ z ≤ b.

– 11 –



J
H
E
P
0
2
(
2
0
1
5
)
1
7
8

Alternatively we replace σ by z through (4.15) to have

x = ±
√

b2 − z2 cosh pτ, t = ±
√

b2 − z2 sinh pτ. (4.17)

If we choose p = 1/b, then in the AdS boundary z = 0, that is, σ = 0 the solutions (4.17)

become x = ±b cosh τ/b and t = ±b sinh τ/b, which yield x = ±
√
t2 + b2 and represent

the accelerating quark and antiquark trajectories for plus and minus signs respectively

with proper time τ and proper acceleration 1/b. The expressions of (4.15) and (4.17)

with p = 1/b agree with ones in ref. [11] which are described as a static solution in the

generalized Rindler spacetime that is derived from the AdS spacetime by a coordinate

transformation. The string in the generalized Rindler spacetime was analyzed in [18, 22]

where the thermodynamics associated with the worldsheet horizon which has the Unruh

temperature is further studied.

For fixed σ, that is, fixed z in the I solution the limit τ = −∞ leads to t = −∞, x = ∞
and τ = 0 gives t = 0, x = b/ cosh(σ/b) =

√
b2 − z2 that is the position of the string bit

at depth z and at time t = 0. The limit τ = ∞ leads to t = ∞, x = ∞, and there is a

restriction |t| < x for each τ through t/x = tanh τ/b. On the other hand in the II solution,

τ = ∞ corresponds to t = −∞, x = −∞, τ = 0 to t = 0, x = −
√
b2 − z2 and τ = −∞ to

t = ∞, x = −∞, which imply x < −|t| for each τ .

For fixed t the I string extends from the quark location (x, z) = (
√
t2 + b2, 0) specified

by σ = 0 to (x, z) = (|t|, b) in an arc, while the II string extends from the antiquark location

(x, z) = (−
√
t2 + b2, 0) to (x, z) = (−|t|, b) similarly.

Here let us consider the minus case for (4.5) with N = 1 and represent xτ and tτ as

xτ = sinh pτ, tτ = cosh pτ. (4.18)

The diagonal Virasoro constraint yields

− f ′2 + p2f2 + z′
2
= 0. (4.19)

In this case the equations of motion for t and x lead to the same equation as (4.9), however,

the equation of motion for z gives

zz′′ = z′
2
+ f ′2 + p2f2. (4.20)

Combining together we derive

∂2
σ(z

2 − f2) =
2z′

z
∂σ(z

2 − f2), (4.21)

which has two simple solutions z2 − f2 = ±b2, where the upper sign case has a restriction

b ≤ z. The equation (4.19) with f2 = z2 ∓ b2 can be expressed as

∓ b2z′2

z2 ∓ b2
+ p2(z2 ∓ b2) = 0. (4.22)

This equation of z for the lower sign has no real solution, while for the upper sign it has

the following solution

z =
b

tanh pσ
, (4.23)

– 12 –



J
H
E
P
0
2
(
2
0
1
5
)
1
7
8

which yields

x = ±b sinh pτ

sinh pσ
, t = ±b cosh pτ

sinh pσ
(4.24)

with 0 ≤ σ < ∞, −∞ < τ < ∞. To the plus and minus solutions we call the III and IV

solutions. These solutions are expressed as

x = ±
√

z2 − b2 sinh pτ, t = ±
√

z2 − b2 cosh pτ, (4.25)

which also reproduce the accelerating string solution (2.7) through the elimination of τ for

the region b ≤ z ≤
√
t2 + b2.

In the IV solution of (4.24) and (4.25) with p = 1/b for fixed τ , t is negative and

changes from t = −∞ at σ = 0 to t = 0 at σ = ∞, where the roles of τ and σ are

exchanged in comparison with the I and II solutions. Owing to x/t = tanh τ/b, x varies

such that x = t = −|t| at τ = ∞, x = 0 at τ = 0 and x = −t = |t| at τ = −∞. At fixed

t < 0 the IV string extends from (x, z) = (−|t|, b) to (x, z) = (|t|, b) in an arc and shrinks

to zero at t = 0

On the other hand in the III solution for fixed τ , t is positive and changes from t = 0

at σ = ∞ to t = ∞ at σ = 0. Owing to x/t = tanh τ/b, x varies such that x = −t

at τ = −∞, x = 0 at τ = 0 and x = t at τ = ∞. At fixed t, z is described by

z = b(1 + t2/(b cosh τ/b)2)1/2 so that z becomes z = b at τ = ±∞ that implies σ = ∞ for

t to be fixed, and z =
√
t2 + b2 at τ = 0. Thus at t = 0 the III string starts as a point

at (x, z) = (0, b) and at fixed t > 0 extends from (x, z) = (−t, b) to (x, z) = (t, b) through

(x, z) = (0,
√
t2 + b2) = (0, b/ tanhσ/b).

Now we calculate the induced metric on the string surface, (4.15) and (4.16) in the

region 0 ≤ z ≤ b to obtain a conformally flat expression

ds2ws =
1

b2 sinh2(σ/b)
(−dτ2 + dσ2), (4.26)

which has a horizon at σ = ∞ on the worldsheet that yields z = b as a dividing line in the

bulk spacetime. The induced metric on the string surface, (4.23) and (4.24) in the region

b ≤ z is described by a different expression

ds2ws =
1

b2 cosh2(σ/b)
(dτ2 − dσ2), (4.27)

which has also a horizon at σ = ∞ on the worldsheet that corresponds to z = b.

If we make a coordinate transformation from σ to z using (4.15) and (4.23) to

rewrite (4.26) and (4.27) in terms of τ and z respectively, we obtain a single expression

ds2ws =
1

z2

(

−
(

1− z2

b2

)

dτ2 +
dz2

1− z2/b2

)

, (4.28)

where there is a horizon at z = b. In the interior region b ≤ z the roles of τ and z are

exchanged such that τ becomes a spacelike coordinate and z becomes a timelike coordinate,

which corresponds to the exchange of the roles of τ and σ between (4.26) and (4.27).
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Combining the above discussed behaviors of the string solutions I, II, III and IV derived

from the string sigma model action, we have the following picture. In the early time

specified by t < 0, the right string I and the left string II staying in the exterior region 0 ≤
z ≤ b are decelerated and connected at z = b by the middle string IV staying in the interior

region b ≤ z ≤
√
t2 + b2. The connected string shape is expressed as x2 = t2 + b2 − z2. At

t = 0 the interior string IV shrinks to zero and the two exterior strings I and II stop and

directly touch at z = b where the connected string shape is expressed as x2 = b2 − z2. In

the late time t > 0, the exterior strings I and II return back and are accelerated in opposite

directions, where the two exterior strings are connected by the interior string III. Thus in

the early time t < 0 the string IV is interpreted as a wormhole connecting two separated

exterior regions, while in the late time t > 0 the wormhole is represented by the string III.

5 Conclusion

For the open string in the Poincare AdS3 spacetime we have used the Nambu-Goto action

in the static gauge to make an ansatz in a square root expression characterized by three

parameters for the string profile. We have observed that if three parameters are appropri-

ately chosen, there appear two open string solutions in a complementary pair, the string

solution associated with the one-cusp Wilson loop [33] and the expanding string solution

associated with a uniformly accelerating quark-antiquark pair [11].

We have constructed the expanding string solution by applying the SL(2, R)L ×
SL(2, R)R isometry transfomations, the special conformal transformations and the con-

formal SO(2,2) transformations to a simple moving string solution dual to a moving quark

with constant velocity. We have demonstrated that under the three kinds of transforma-

tions the expanding string solution is usually mapped to the same expanding string with

the different acceleration. It has been observed that some particular transformations make

the expanding string solution change back to the moving string solution with constant

velocity or the static string solution.

Based on the string sigma model action we have made an ansatz for the open string

profile in the factorized form and constructed two kinds of string solutions, the exteror

strings and the interior strings that stay in the two different bulk spacetime regions. We

have observed that on each string worldsheet there appear the horizon which is associated

with the dividing line which separates the two different bulk spacetime regions. We have

demonstrated that the expanding string solution is constructed by connecting two separated

exterior strings with one interior string.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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