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Abstract In this paper we use Noether symmetries of the
geodesic Lagrangian in Bianchi V spacetimes to study vari-
ous cosmological solutions of Einstein’s field equations. Our
first result is the identification of the subalgebras of Noether
symmetries of the equations of motion in such spacetimes
with dimension 4, 5, 6, 7, 9 or 10 of the maximal algebra
of Lie point symmetries of dimension 13. Second, we give a
physical interpretation of new cosmological solutions which
satisfy the positive energy condition and yield critical bounds
on the expansion coefficient α, in which the underlying non-
flat spacetimes have interesting physical properties. Specif-
ically the energy density behaves in one of the following
ways. (i) It is positive and constant for all time. (ii) It varies
with time and attains a global maximum after some time and
then asymptotically converges to zero. (iii) It increases for
all time and attains a maximum value at the asymptotic limit
t → ∞. In particular a non-flat spacetime is obtained that
mimics the expansion in a flat FRW universe dominated by
vacuum energy such that the expansion factor has the same
form in both. However, the energy density is dynamical in
the former.

1 Introduction

Finding exact solutions of the Einstein field equations (EFEs)
is one of the important and old problems in General Relativ-
ity (GR). The search for new solutions opens new avenues
to our understanding of the universe. These equations are
the result of Einstein’s revolutionary idea that the existence
of matter induces curvature in a spacetime. This is respon-
sible for an inward pull of all surrounding objects, thereby
completely changing the standard perspective of the gravita-
tional force [1,2]. Recent developments in astrophysics and
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cosmology reveal that our universe is mainly composed of
a mysterious form of matter (dark energy and dark matter),
which is the main cause of cosmic acceleration at a faster
pace today [3,4]. This astonishing observation laid the basis
of numerous phenomenological models and led to the depar-
ture from the standard solutions of EFEs in the thrust of new
exact solutions possessing revived geometrical and dynami-
cal properties. Our attempt in this direction is to exploit the
geometrical features in homogeneous cosmological solutions
of these equations, which mainly arise from Noether symme-
tries.

Suppose M is a 4-dimensional smooth manifold equipped
with a non-degenerate metric g of Lorentzian signature
(+,−,−,−). The EFEs of the universe, in standard grav-
itational units c = 1 = G, are a system of partial differ-
ential equations Gμν = Tμν (κ = 1), where Gμν is the
Einstein tensor, which contains all the basic geometric prop-
erties of the spacetimes, and Tμν is the stress-energy tensor,
which describes the density and flux of energy and momen-
tum in the spacetimes [2]. The exact solutions of EFEs either
arise from the geometrical consideration of spacetimes or by
studying the physical characteristics of matter or a combi-
nation of both. In cosmology, homogeneous spacetimes of
dimension 1 + 3 are characterized using the Bianchi classifi-
cation of real Lie algebras of dimension 3 which resulted into
nine classes I, II, …, IX [5]. The famous cosmological solu-
tions of EFEs known as Friedmann–Lemaître–Robertson–
Walker (FRW) metrics are both isotropic and homogeneous
and are particular cases of Bianchi types I, V, VII, and IX
[1]. Therefore it is important to investigate other Bianchi
homogeneous cosmologies with regard to their invariant geo-
metrical properties. Indeed the authors of [6] have done the
symmetry analysis of all Bianchi spacetimes in the pres-
ence of a dynamical field. In [7], the authors have classified
Bianchi V spacetimes using the symmetries of the curvature
and Weyl tensors known as curvature collineations (CC) and
Weyl collineations (WC), respectively.
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The concept of symmetries is closely related to the invari-
ance of geometrical quantities under a certain diffeomor-
phism on the manifold that could change the manifold; how-
ever, it keeps the underlying structure intact. This is a well-
known problem of equivalence of the two geometric objects
under diffeomorphisms [8,9]. The invariance of geometri-
cal quantities which are described by tensor fields on the
manifold under certain diffeomorphisms is ensured if the
Lie derivative vanishes along the vector field representing
a flow. Suppose T is a tensor field of any type on the mani-
fold M . The key to check the invariance of certain geomet-
rical quantities is to use the definition of Lie derivatives and
require that £XT = 0, where £X is the Lie derivative along
the vector fieldX [5]. In case of the metric tensor the symme-
tries are known as conformal Killing vectors (CKV) provided
£X gμν = 2�gμν , where �(xμ) is known as a conformal fac-
tor. If �,μν �= 0, then a CKV is said to be proper otherwise
it reduces to a special CKV if �,μν = 0 and �,μ �= 0. The
homotheties (HV) and Killing vectors (KV) arise if �,μ = 0
and � = 0, respectively. Furthermore the symmetries of the
curvature tensor are obtained by replacing the tensor field
with curvature tensor £X R

μ
νρσ = 0. In order to investigate

pure gravitational fields of spacetimes the Weyl tensor plays
a significant role as it is conformally invariant and its symme-
tries are obtained by the same condition that the Lie derivative
of the Weyl tensor Cμ

νρσ vanishes.
Noether symmetries play an essential role in finding con-

servation laws of the equations of motion with the use of the
Noether theorem [8,10]. Sometimes it is difficult to obtain
exact solutions of the equations of motion; however, the
dynamics can be reduced by investigating the invariant prop-
erties of the system provided the problem under considera-
tion is variational and there exists a Lagrangian. Noether’s
theorem provides an explicit formula of a conserved quan-
tity for each continuous symmetry transformation that leaves
the action invariant [11]. In addition Noether symmetry anal-
ysis reduces the problem by specifying the unknown func-
tions that appear in the Lagrangian. This line of approach
has been followed by several authors, notably in the pio-
neering works of Capozziello [12,13], Prince [14,15], and
Tsamparlis [16,17]. The connection between symmetries of
the underlying manifold and those of the differential equa-
tions was discussed in [18]. The classification of spherically
symmetric static spacetimes via Noether symmetries is done
in [19]. Besides, approximate Lie symmetries were used to
resolve the problem of energy in general relativity in [20,21].
In this paper our main interest is the classification of Bianchi
V spacetimes using Noether symmetries. These symmetries
provide crucial physical information as regards the conserved
quantities of a physical system.

We start our investigation by considering the geodesic
motion in Bianchi type V spacetimes. In such spacetimes
there are three arbitrary functions whose specifications arise

from the presence of Noether symmetries. We give a com-
plete classification of Noether algebras along with first inte-
grals for each case. It is found that Noether algebra of the
symmetries of the geodesic Lagrangian in such spacetimes
can have dimension 4–7, 9 or 10. The algebra of the Lie point
symmetries of the equations of motion is of dimension 5–8,
10, 12 or 13. The connection between Lie and Noether sym-
metries with symmetries of the spacetimes like HVs, projec-
tive collineations (PCs), and CCs has already been discussed
in [16,18]. We highlight the important features of new cos-
mological solutions in the light of the above results.

It is well known that there are three cosmological models
of our universe which are filled with vacuum energy, radia-
tion, and matter [1]. The large astrophysical data suggest the
widely accepted view that our universe is nearly flat. It would
be interesting to investigate as to what degree we can relax
the condition of flatness of the underlying manifold such that
the non-flat spacetime may still carry all the important fea-
tures of a realistic and viable cosmological model. It turns out
that using Noether symmetries we can specify certain non-
flat spacetimes which possess very nice physical properties.
In particular we determine a non-flat spacetime that mimics
the behavior of a flat spacetime filled with vacuum energy.
Interestingly the expansion factor in the non-flat and flat
spacetimes is the same (and so is the Hubble parameter). The
energy density is fixed in the flat model (field with vacuum
energy) and dynamical in the other case. Based on our find-
ing we further investigate non-flat spacetimes and compare
these with flat spacetimes dominated by matter (Einstein–de
Sitter universe) or radiation.

The paper is subsequently divided into three main parts.
The Noether symmetry analysis is presented in the next sec-
tion where we give preliminaries to the symmetry approach.
In the third section we investigate the physical characteristics
of such spacetimes and examine the implications of positive
energy condition on the solutions. To confront our results
with other extended theories of gravity we consider a partic-
ular Bianchi V spacetime which meets the positive energy
condition and we modify our results in f (R)-gravity. It is
found that f (R) ∝ R3/2, for a dust cloud in an anisotropic
Bianchi V spacetime. Lastly we summarize our results in the
last section.

2 Noether symmetry analysis

The Bianchi type V spacetimes have the form

ds2 = dt2 − A(t)2dx2 − eαx (B(t)2dy2 + C(t)2dz2), (1)

where A, B,C, are three non-zero arbitrary functions of the
cosmic time t . The expansion factor, α, is a non-zero constant
which has the units of inverse length. The above spacetimes
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represent specially homogeneous and anisotropic cosmolo-
gies as the coefficients depend on the time variable t . These
are non-static spacetimes and thus do not admit a time-like
Killing vector field. All Binachi V spacetimes admit a 3-
dimensional Lie algebra of spacelike KVs (corresponding to
the isometry group G3, which acts transitively on the space-
like hypersurfaces) [5]

X1 = ∂

∂y
, X2 = ∂

∂z
, X3 = 2

∂

∂x
− αy

∂

∂y
− αz

∂

∂z
.

Subsequently we identify this algebra with K3 = {X1, X2,

X3}, corresponding to the basic isometry algebra of the
underlying Bianchi V spacetime.

The action A = ∫
L ds of the geodesic motion possesses

the Lagrangian L = L(s, xμ, ẋμ), in the background of
Bianchi V spacetimes, equivalently

L = ṫ2 − A2 ẋ2 − eαx (B2 ẏ2 + C2 ż2), (2)

where an overdot represents the derivative with respect to the
geodetic parameter s. A Noether symmetry is a vector field1

X = ξ
∂

∂s
+ η0 ∂

∂t
+ η1 ∂

∂x
+ η2 ∂

∂y
+ η3 ∂

∂z
, (3)

which leaves the action invariant such that it satisfies the
condition

X (1)L + L(Dsξ) = DsG, (4)

where ξ = ξ(s, xμ), ημ = ημ(s, xμ) (μ = 0, .., 3), and
G(s, xμ) is an unknown function of the corresponding sym-
metry. The first integrals of the equations of motion are
determined by the famous Noether theorem which gives the
explicit formula [11]

I = ξL + (ημ − ẋμξ)
∂L

∂ ẋμ
− G, (5)

where xμ = (t, x, y, z) and ημ = (η0, η1, η2, η3) denote the
coefficients of the Noether symmetry (3). Note that Ds I = 0,
upon using the equations of motion, where

Ds = ∂

∂s
+ ṫ

∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ ż

∂

∂z
. (6)

The equations of motion (geodesic equations) for the
geodesic Lagrangian in Bianchi V spacetimes are comprised

1 Note that the action of the underlying Lie group is extended to the
product manifold M×R, which is (4+1)-dimensional so as to bring the
dynamical symmetries (Lie and Noether) and geometrical symmetries
(CKV, CC, PC, etc.) on an equal footing. The action naturally includes
the parametrization with respect to the geodetic parameter s, where this
line of approach was followed in [14].

of a system of four second-order ordinary differential equa-
tions in the field variables

ẗ + eαx (BB ′ ẏ2 + CC ′ ż2) + AA′ ẋ2 = 0,

ẍ + 2A′

A
ẋ ṫ − αeαx (B2 ẏ2 + C2 ż2)

2A2 = 0,

ÿ +
(

2B ′

B
ṫ + α ẋ

)

ẏ = 0,

z̈ +
(

2C ′

C
ṫ + α ẋ

)

ż = 0, (7)

where ′ represents the derivative with respect to t . It is well
known that Noether algebra is a subalgebra of the Lie alge-
bra of the point symmetries of the differential equations [8],
therefore our study yields a classification of the Noether alge-
bras of the equations of motion for the geodesic Lagrangian
in Bianchi V spacetimes. In order to find Lie point symme-
tries of the differential equations we extend the vector field
(3) to the jet space of second order where we require that

X [2]E = 0 mod E ≡ 0, (8)

where E is a given system of differential equations and X [2]
is the second-order prolongation, which is defined by

X [2] = X +
[1]
η μ ∂

∂ ẋμ
+

[2]
η μ ∂

∂ ẍμ
, (9)

where
[1]
η μ and

[2]
η μ are determined from the formulas

[1]
η μ = dημ

ds
− ẋμ dξ

ds
, (10)

[2]
η μ = d

[1]
η μ

ds
− ẍμ dξ

ds
. (11)

The Lie symmetries are obtained by applying the operator (9)
on the geodesic equations while replacing the second-order
derivative terms in the last equation from the equations of
motion (7).

Since all Bianchi V spacetimes admit K3, therefore, the
minimum dimension of the Noether algebra of the geodesic
Lagrangian can be obtained easily. Indeed it is easy to prove
that the minimal Noether algebra is N4 = K3 ⊕ {∂s}, which
is of dimension four.

Theorem 1 The minimum dimension of the Lie algebra of
Noether symmetries of the geodesic Lagrangian (2) that
leaves the action invariant in Bianchi V spacetimes is 4.

Proof The Lie algebra of isometries, K3, leaves the action
invariant; therefore all KVs are Noether symmetries of the
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Lagrangian (2). It is easy to see that the global action of the
full isometry group G3 on the Lagrangian (2) is

L(s, t, x, y, z)

−→ L(s, t, x + 2ε3, e
−αε3 y + ε1, e

−αε3 z + ε2),

which clearly leaves the action invariant. Therefore all KVs
are Noether symmetries of the Lagrangian (2). Finally the
Lagrangian (2) does not explicitly depend on s; therefore
invariance under s-translation is trivial, i.e., L(s, t, x, y, z)
−→ L(s + ε4, t, x, y, z).

Theorem 2 The minimum dimension of the algebra of Lie
point symmetries of the geodesic equations (7) in Bianchi V
spacetimes is 5.

Proof Since the Noether algebra is a subalgebra of the Lie
symmetry algebra, N4 is a Lie subalgebra. Besides the equa-
tions of motion (7) are invariant under the scaling symmetry
s∂s , therefore for all Bianchi V spacetimes the minimum
dimension of the Lie algebra is 5, which is identified as
N4 ⊕ {s∂s}.

In order to identify Bianchi V spacetimes that possess
minimal Noether algebra N4 of dimension 4 and the other
algebras we solve the determining equations for the Noether
symmetries which are obtained by splitting Eq. (4) in mono-
mials and obtain a set of 19 linear partial differential equa-
tions,

ξt = 0, ξx = 0, ξy = 0, ξz = 0, ξs − 2η0t = 0,

η0x − A2η1t = 0, η0y − eαx B2η2t = 0,

η0z − C2eαxη3t = 0,

A2η1y + B2eαxη2x = 0, B2η2z + C2η3y =0,

A2η1z + C2eαxη3x = 0

2η0A
′ + A(2η1x − ξs) = 0,

2η0B
′ + B(αη1 − ξs + 2η2y) = 0,

2η0C
′ + C(αη1 − ξs + 2η3z) = 0,

Gs = 0, Gt − 2η0s = 0,

Gx + 2A2η1s = 0, Gy + 2B2eαxη2s = 0,

Gz + 2C2eαxη3s = 0.

The above system can be integrated for various forms of the
arbitrary functions. We use CAS (Maple) to categorize all
the cases using the command ‘rifsimp’. It is interesting to
see that in most cases the function A(t) turns out to be an
affine function. Therefore the above system of PDEs uniquely
characterizes the affine form of A(t), which specifies the
forms of the other arbitrary functions. We denote the Noether
algebra with Ni , where i refers to its dimensions and the
distinction of subcases is made through another subscript.

We observe that the following cases arise and in each case
we also obtain the first integrals of the equations of motion
(7) using the Noether theorem (5).

Case 1 (4-dimensional algebra)

It is identified asN4, which arises for the geodesic Lagrangian
in Bianchi V spacetimes where the evolutionary functions
are arbitrary and not among those that arise in the subse-
quent cases. The four independent invariants of the equa-
tions of motion corresponding to N4 include three invariants
for algebra K3 and a fourth invariant is for ∂s , which is the
Lagrangian itself, or equivalently

I1 = B2eαx ẏ, I2 = C2eαx ż,

I3 = 2A2 ẋ − αeαx (B2y ẏ + C2zż), I4 = L . (12)

The Lie algebra of the point symmetries of the geodesic equa-
tions includes all Noether symmetries and an additional scal-
ing symmetry L1 = s∂s , which is not a Noether symmetry.
Here we use L to denote a Lie symmetry which is not a
Noether symmetry with respect to a geodesic Lagrangian.
Therefore, the Lie algebra isN4⊕{L1} and is of dimension 5.

Case 2 (5-dimensional algebra)

There are three cases of 5-dimensional Noether algebras
which are possessed by the Lagrangian in Bianchi V space-
times with

2a. A(t) = c1t, B(t) = c2t
m, C(t) = c3t

n, m �= n,

2b. C(t) = c1B(t), B(t) �= A(t), C(t) �= const.

2c. A(t) = c1, B(t) = c2e
βt , C(t) = c3e

γ t , β �= γ,

where ci , ∀ i are non-zero constants. In the first case both
powers m and n cannot be equal to zero or one simultane-
ously. Similarly the powers β and γ cannot be zero simulta-
neously in case 2c. In the first case we obtain two Noether
algebras,

N5,a = N4 ⊕ {2αs∂s+αt∂t+2(1 − m)∂x+α(m − n)z∂z},
(13)

N5,a = N4 ⊕ {2αs∂s+αt∂t+2(1 − n)∂x−α(m − n)y∂y},
(14)

N5,b = N4 ⊕ {c2
1z∂y − y∂z}, (15)

N5,c = N4 ⊕ {∂t − βy∂y − γ z∂z}. (16)

Besides the invariants I1–I4, an additional invariant for each
case is

I5,a = −eαx (((m − n)z − sż)c2
3 żt

2n − c2
2s ẏ

2t2m)

+ 2(m − 1)

α
c2

1t
2 ẋ + t ṫ − 1 + s(c2

1t
2 ẋ2 − ṫ2), (17)
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I5,a = eαx (((m − n)y + s ẏ)c2
2 ẏt

2m + c2
3sż

2t2n)

+ 2(n − 1)

α
c2

1t
2 ẋ + t ṫ − 1

+ s(c2
1t

2 ẋ2 + ṫ2), (18)

however, for the other two cases the invariants include

I5,b = B2c2
1e

αx (yż − z ẏ), (19)

I5,c = ṫ + c2
2βy ẏe

αx+2βt + c2
3γ zże

αx+2γ t . (20)

The algebra of the Lie point symmetries is 6-dimensional
in all cases where the identification is N5,I ⊕ {L1 = s∂s},
where I ∈ {a, b, c}.
Case 3 (6-dimensional algebra)

We obtain two cases in which the geodesic Lagrangian admits
a 6-dimensional Noether algebra. These are identified as

N6,a = N5,b ⊕ {2αs∂s + αt∂t + 2(1 − n)∂x }, (21)

N6,b = N5,b ⊕ {2c1αs∂s + α(c1t + c2)∂t + 2c1∂x }, (22)

up to a redefinition of constant in case 2, which are possessed
by the Lagrangians in Bianchi V spacetimes,

3a. A(t) = c1t, B(t) = c2t
n, C(t) = c3t

n, n �= 1.

(23)

3b. A(t) = c1t + c2, B(t) = c3, C(t) = c4, (24)

respectively. The invariants I1–I5 are the same as before with
an extra invariant,

I6,a = 2(n − 1)c2
1t

2 ẋ

α
+ (t ṫ − 1 + s(c2

1t
2 ẋ2 − ṫ2))

+ seαx t2n(c2
2 ẏ

2 + c2
3 ż

2), (25)

I6,b = αc2 ṫ + c1(α(s(c2
2 ẋ

2 − ṫ2) + t ṫ − 1) − 2c2
2 ẋ)

+ c2
1t (2c2 ẋ + c1t ẋ)(sα ẋ − 2) (26)

+ c1αs(c3 ẏ
2 + c2

4 ż
2)eαx . (27)

We find that there are seven Lie symmetries for the geodesic
equations where we get a decomposition of the extra vector
fields obtained in each case. In particular, the vector field
2αs∂s +αt∂t + 2(1 − n)∂x divides into two independent Lie
symmetries,

L1,a = s
∂

∂s
, L2,a = αt

∂

∂t
+ 2(1 − n)

∂

∂x
, (28)

such that there the linear combination is a Noether symme-
try but independently these are not Noether symmetries. It
is easy to check that the algebra N5,b ⊕ {L1,a,L2,a} is a
7-dimensional Lie algebra of the point symmetries for the

equations of motion in case 3a. For the other case, 3b, the
Lie algebra of the point symmetries is N5,b ⊕ {L1,b,L2,b},
where

L1,b = s
∂

∂s
, L2,b = (c1t + c2)

∂

∂t
+ 2c1

α

∂

∂x
. (29)

Case 4 (7-dimensional algebra)

The geodesic Lagrangian with all evolutionary functions
equal,

A(t) = B(t) = C(t) �= c1t + c2, (30)

admits the N5,b algebra along with two additional symme-
tries,

X6 = z
∂

∂x
− αyz

2

∂

∂y
+ 1

4α
(4e−αx + α2(y2 − z2))

∂

∂z
,

X7 = y
∂

∂x
+ 1

4α
(4e−αx − α2(y2 − z2))

∂

∂y
− αyz

2

∂

∂z
,

therefore N7 = N5,b⊕{X6, X7}. The two new invariants are

I6 = A2(4ż + 4αzẋ + α2eαx ((y2 − z2)ż − 2yz ẏ)), (31)

I7 = A2(4ẏ + 4αyẋ − α2eαx ((y2 − z2)ż − 2yzż)). (32)

The Lie algebra of the point symmetries is N7 ⊕{L1 = s∂s},
which has dimension 8.

Case 5 (9-dimensional algebra)

In this case there appear three subcases in which all evolu-
tionary functions are specified. In the first two subcases, N7

is a subalgebra of N9; however, in the last subcase only N5,b

is a subalgebra.
5a. It is identified as N9,a = N7 ⊕ {X8, X9}, where the

evolutionary functions are specified by

A(t) = c1, B(t) = c2, C(t) = c3. (33)

Additional symmetries include

X8 = ∂

∂t
, X9 = s

∂

∂t
,

where the function G is constant in all cases except for X9,
which is obtained withG = 2t . The corresponding conserved
quantities are

I8 = ṫ, I9 = sṫ − t. (34)

The Lie symmetry algebra of the corresponding geodesic
equations is 12-dimensional, which is identified as N7 ⊕
{X8, X9} ⊕ {AL

3 }, where AL
3 is
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L1 = s
∂

∂s
, L2 = t

∂

∂t
, L3 = t

∂

∂s
. (35)

5b. The subalgebra is N9,b = N7 ⊕ {X8, X9}, for

A(t) = c1t + c2, B(t) = c2A(t), C(t) = c3A(t). (36)

The additional symmetries include

X8 = s2 ∂

∂s
+ s(c1t + c2)

c1

∂

∂t
, G = c1t2 + 2c2t

2c1
,

X9 = 2s
∂

∂s
+ c1t + c2

c1

∂

∂t
, G = C1,

with the invariants

I8 = c1s
2(c1t+c2)

2(c2
3 ẏ

2+c2
4 ż

2)eαx+c2
1ts

2 ẋ2(c1t+2c2)

+ 2c2(sṫ − t)+ (37)

+ c1((c
2
2 ẋ

2 − ṫ2)s2 + 2st ṫ − t2), (38)

I9 = c1s(c1t + c2)
2(c2

3 ẏ
2 + c2

4 ż
2)eαx + c2

1ts ẋ
2(c1t + 2c2)

+ c1((c
2
2 ẋ

2 − ṫ2)s + t ṫ) + c2 ṫ . (39)

Now in this case the algebra of Lie point symmetries is only
10-dimensional, unlike the previous case (5a), where an extra
symmetry generator arises from the decomposition of X9, i.e.

L1 = s
∂

∂s
, L2 = (c1t + c2)

∂

∂t
. (40)

The Lie algebra N7 ⊕{X8}⊕ {L1,L2} is closed, which is of
dimension 10.

5c. It is identified as N9,c = N5,b ⊕ AN
4 , for

A(t) = c1, B(t) = c2e
βt , C(t) = c3e

βt , β �= ± α

2c1
(41)

where AN
4 refers to the four additional Noether symmetries

X6 = ∂

∂t
− βy

∂

∂y
− βz

∂

∂z
,

X7 = αs

2β

∂

∂t
− s

∂

∂x
, G = x + αt

2βc2
1

,

X8 = −2c2
1βy

α

∂

∂t

+ y
∂

∂x
+ 1

4αc2
2

((α2 − 4c2
1β

2)(c2
3z

2 − c2
2 y

2)

+ 4c2
1e

−αx−2βt )
∂

∂y
− yz(α2 − 4c2

1β
2)

2α

∂

∂z
,

X9 = −2c2
1βz

α

∂

∂t

+ z
∂

∂x
+ 1

4αc2
2

((α2 − 4c2
1β

2)(c2
3z

2 − c2
2 y

2)

+ 4c2
1e

−αx−2βt )
∂

∂z
− yz(α2 − 4c2

1β
2)

2α

∂

∂y
.

The corresponding invariants of the geodesic motion are

I6 = ṫ + βeαx+2βt (c2
2 y ẏ + c2

3zż), (42)

I7 = 2βc2
1(sẋ − x) + α(sṫ − t), (43)

I8 = (4c2
1β

2 − α2)(c2
2 y

2 ẏ + c2
3z(2yż − z ẏ))eαx+2βt

+ 4c2
1(y(α ẋ + 2β ṫ) + ẏ), (44)

I9 = (4c2
1β

2 − α2)(c2
3z

2 ż + c2
2 y(2z ẏ − yż))eαx+2βt

+ 4c2
1(y(α ẋ + 2β ṫ) + ż). (45)

In this case we again obtain a 12-dimensional Lie algebra
of the geodesic equations, which is N5,b ⊕ {X8, X9} ⊕ AL

5 ,
where AL

5 is

L1 = s
∂

∂s
, L2 =

(

x + αt

2c2
1β

)
∂

∂s
, L3 = ∂

∂t
− 2β

α

∂

∂x
,

L4 = sL3, L5 =
(

x+ αt

2c2
1β

)
∂

∂t
− 2β

α

(

x+ αt

2c2
1β

)
∂

∂x
.

Case 6 (10-dimensional algebra)

There are two subcases of the 10-dimensional algebras of
the Noether symmetries corresponding to α = 2c1β and
α = −2c1β, respectively.
6a. It is identified as N9,c ⊕ AN

1 , with

A(t) = c1, B(t) = c2e
βt , C(t) = c3e

βt , β = α

2c1
(46)

where N9 is the same as in case 5c by substituting the value
α = 2c1β. An additional symmetry AN

1 that arises is

X10 = 2s
∂

∂s
+ (t − c1x)

∂

∂t
− t − c1x

c1

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
,

with corresponding invariant

I10 = (c1 ẋ + ṫ)(c1(sẋ − x) + (t − sṫ))

+ c2
1

(
s(c2

2 ẏ
2 + c2

3 ż
2) − c2

2 y ẏ − c2
3zż

)
e2β(t+c1x).

(47)

In this case we obtain a 13-dimensional Lie algebra of the
geodesic equations, which is N5,b ⊕{X8, X9}⊕AL

6,a , where

AL
6,a is
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L1 = s
∂

∂s
, L2 =

(

x + t

c1

)
∂

∂s
, L3 = ∂

∂t
− 1

c1

∂

∂x
,

L4 = sL8, L5 = t
∂

∂t
+ 1 − 2βt

2c1β

∂

∂x
,

L6 = x
∂

∂t
− 1 + 2c1βt

2c2
1β

∂

∂x
.

6b. It is identified as N9,c ⊕ AN
1 , with

A(t) = c1, B(t) = c2e
βt , C(t) = c3e

βt , β = − α

2c1
(48)

where N9 is the same as in case 5c by substituting the value
α = −2c1β. An additional symmetry AN

1 that arises is

X10 = 2s
∂

∂s
+ (t + c1x)

∂

∂t
+ t − c1x

c1

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
,

with the corresponding invariant

I10 = (c1 ẋ − ṫ)(c1(sẋ − x) − (t − sṫ))

+ c2
1(s(ẏ

2 + ż2) − y ẏ − zż)e2β(t−c1x). (49)

In this case we again obtain a 13-dimensional Lie algebra
of the geodesic equations which is N5,b ⊕ {X8, X9} ⊕AL

6,b,

where AL
6,b is

L1 = s
∂

∂s
, L2 =

(

x − t

c1

)
∂

∂s
, L3 = ∂

∂t
− 1

c1

∂

∂x
,

L4 = sL8, L5 = t
∂

∂t
− 1 − 2βt

2c1β

∂

∂x
,

L6 = x
∂

∂t
− 1 − 2c1βt

2c2
1β

∂

∂x
.

This completes the classification of the Noether symme-
tries of the geodesic Lagrangian in Bianchi V spacetimes. The
equations of motion (7) inherit a 12-dimensional Lie alge-
bra of Lie point symmetries for the simplest case, in which
all three scale factors are constant, which is not the max-
imal algebra as one would expect for the simplest model.
That the simplest Bianchi V model does not attain a max-
imal algebra of dimension 13 does not come as a surprise
because the underlying Riemannian manifold is not flat but
contains flat sections. The algebra of Lie symmetries of the
equations of motion in a flat space is unique and corresponds
to sl(n+2, R) [16]. In our analysis, Bianchi V spacetimes are
not flat in general (except when α = 0); the maximum dimen-
sion of the Lie algebra of Lie point symmetries is 13. The
Noether symmetry classification of the geodesic Lagrangian
in Bianchi V spacetimes reveals that there are six Noether

Table 1 Dimensions of Noether and Lie algebras of the point
symmetries

Cases Noether
algebra N

d(N ) Lie algebra L d(L)

1 N4 4 N4 ⊕ {L1} 5

2a N5,a 5 N5,a ⊕ {L1} 6

2b N5,b 5 N5,b ⊕ {L1} 6

2c N5,c 5 N5,c ⊕ {L1} 6

3a N6,a 6 N5,b ⊕ {L1,a,L2,a} 7

3b N6,b 6 N5,b ⊕ {L1,b,L2,b} 7

4 N7 7 N7 ⊕ {L1} 8

5a N9,a 9 N7 ⊕ {X8, X9} ⊕ AL
3 12

5b N9,b 9 N7 ⊕ {X8} ⊕ {L1,L2} 10

5c N9,c 9 N5,b ⊕ {X8, X9} ⊕ AL
5 12

6a N10,a 10 N5,b ⊕ {X8, X9} ⊕ AL
6,a 13

6b N10,b 10 N5,b ⊕ {X8, X9} ⊕ AL
6,b 13

algebras of dimension 4, 5, 6, 7, 9 or 10, which are the sub-
algebras of the 13-dimensional Lie algebra. Thus, we have
established the following results.

Proposition 1 The geodesic Lagrangian (2) of Bianchi
V spacetimes can have a Noether algebra of dimension
4, 5, 6, 7, 9 or 10.

Proposition 2 The algebra of Lie point symmetries of the
geodesic equations of Bianchi V spacetimes specified by the
Noether symmetries can have dimension 5, 6, 7, 8, 10, 12 or
13.

A summary of our results is given in Table 1, where d(N )

and d(L) refer to the dimensions of Noether and Lie algebras,
respectively.

3 Physical interpretation of new solutions

The study of inhomogeneous and anisotropic cosmologies
started soon after the birth of GR [22] and a detailed analysis
of exact solutions in terms of the asymptotic of singularities
appeared in Refs. [23,24] followed by numerous attempts
[25–28]. For a more detailed survey of such cosmologies the
reader is referred to [29]. The class of Bianchi V spacetimes
contains anisotropic and homogeneous cosmologies which
are crucial to investigate for several reasons. The universe is
homogeneous at very large scales and the question of whether
it had started with a little bit irregularity requires us to analyze
small perturbations away from the high symmetry of Fried-
mann models. This could help us investigate the present-day
anisotropy of the microwave background radiation and irreg-
ularities in density and temperature at the early epochs when
the radiation was emitted. Besides adiabatic cooling, viscous

123



63 Page 8 of 15 Eur. Phys. J. C (2016) 76 :63

dissipation and particle creation of an anisotropic universe
can be studied with new cosmological models.

The information of matter content in Bianchi V space-
times is contained in the Riemann and Weyl tensors, which
can be used to examine the effect of tidal forces due to cur-
vature in the manifold along the geodesics. The former helps
us to monitor the change in volume, while the latter provides
a change in the shape of the observer along the geodesics.
The basic requirement for a spacetime to be physical is that
the positive energy condition is met. The positive energy
condition requires that T00, which corresponds to the energy
density being non-negative; therefore T00 ≥ 0. It is worth
pointing out that the existence of such Noether symmetries
completely specifies the cosmological models, which is in
agreement with the results in [30], where point-like Noether
symmetries were employed to determine feasible models in
extended gravity quantum cosmology. Our prime interest
here is to investigate the positive energy condition in the
models specified by Noether symmetries.

The components of the Einstein, Weyl, and curvature ten-
sors involving arbitrary functions are already given in [7]. It
was also shown that the rank of a 6 × 6 curvature matrix is
3, 4, 5 or 6 in Bianchi V spacetimes, where the case of rank
3 gives rise to the infinite-dimensional Lie algebra of proper
CCs. On the other hand the rank of a 6 × 6 Weyl matrix is 0,
4 or 6, and such spacetimes do not admit proper WCs except
for the trivial rank zero case. The Lie algebra of proper con-
formal KVs in such spacetimes is 4-dimensional. We now
discuss the physical interpretation of the cosmological solu-
tions obtained in the last section in the light of the positive
energy condition.

Case 1 (4-dimensional algebra)

The class of Bianchi V spacetimes admitting a 4-dimensional
algebra of Noether symmetries contains all three arbitrary
scale factors and the corresponding invariants are given in
(12). We investigate general physical characteristics of this
spacetime by considering the energy density

ρ(t) = A′

A

B ′

B
+ B ′

B

C ′

C
+ A′

A

C ′

C
− 3 α2

4A2 , (50)

where the positive energy condition requires that ρ(t) ≥ 0.
It is convenient to bring ρ(t) into a more useful form,

ρ(t) = a′b′ + b′c′ + a′c′ − 3α2

4
e−2a, (51)

by introducing a simple change of quantities a = ln A, b =
ln B, c = lnC . The first three terms in the above equation
have the qualitative behavior of kinetic energies in Newtonian
mechanics [1]. Since a′ encodes the information of how fast
or slow the expansion takes place, the mixed term, a′b ′, can
be regarded as the kinetic energy of the composite system

of both a and b. A similar argument holds for the composite
systems (b, c) and (a, c). However, it is important to note
that in the above relation we do not have the contribution of
individual kinetic energies due to a, b, and c, respectively. In
fact the product terms can be set equivalently to

ρ(t) = 1

2
(a′+b′+c′)2− 1

2
(a′2+b′2+c′2)− 3α2

4
e−2a, (52)

where the first term is positive and corresponds to the kinetic
energy Tc, of the composite system a, b, and c. The second
term is the total kinetic energy Te, of the individual systems,
which is negative. Therefore in all Bianchi V spacetimes the
total kinetic energy of the individual and composite systems
is irrelevant and the quantity which is crucial is the difference
Tc − Te. For a realistic model we require that Tc > Te. The
energy density is negative in the case when Tc = Te, where
the spacetime is unrealistic. The last term could be regarded
as the potential term, which is an exponential function of the
scale factor a. The significance of the first scale factor A(t)
over the others is apparent and notably Noether symmetries
also characterized it.

Note that the contribution of the last term is small com-
pared to the other terms as long as |A(t)| grows with time.
However, the evolution of A(t) is critical in the interval
A(t) ∈ [0, 1] , in which case a(t) is negative and the last
term plays a significant contribution in decreasing the over-
all energy density of the spacetime. On the other hand the
slopes of b(t) and c(t) play a significant role in the energy
density of spacetimes. In particular from Eq. (51) it is clear
that the contribution of the product b′c′ is larger than the
sum b′ + c′. Therefore if both b and c simultaneously accel-
erate or decelerate then both slopes are positive or negative,
and we expect the spacetime to be realistic. Moreover, if the
slopes are opposite then the only possibility for a physical
spacetime is that when A(t) ∈ [0, 1] , in which case the last
term contributes in a positive energy density; so it is to bal-
ance the effect of the other terms. Now we consider those
cases in which the evolutionary functions are specified by
the existence of Noether symmetries and identify the critical
bounds on the expansion parameters for realistic Bianchi V
spacetimes.

Case 2 (5-dimensional algebra)

In this case we obtained three subcases in which one of the
subcases contains arbitrary functions. We consider the cases
in which all functions are completely specified,

2a. ds2 = dt2 − c2
1t

2dx2 − eαx (c2
2t

2mdy2

+ c2
3t

2ndz2), m �= n, (53)

which has non-zero components of the Weyl tensor; therefore
it is not a conformally flat spacetime. There are 11 non-zero
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curvature invariants where we mention only the Ricci scalar
and denote it by IR, given by

IR1,a = 3α2 − 4c2
1(m

2 + mn + n2)

2c2
1t

2
, (54)

which is singular at t = 0. The Einstein tensor is given by

Gμν =

⎡

⎢
⎢
⎢
⎣

4c2
1(m+mn+n)−3α2

4c2
1 t

2 0 0 −α(m+n−2)
2t

0 c2
1((1−n)(m+n) − m2)+α2/4 0 0

0 0 G22 0
−α(m+n−2)

2t 0 0 G33

⎤

⎥
⎥
⎥
⎦

, (55)

where

G22 = (α2 − 4m2c2
1)c

2
2t

2(n−1)eαx

4c2
1

,

G33 = (α2 − 4n2c2
1)c

2
3t

2(m−1)eαx

4c2
1

. (56)

For a realistic cosmological model, we impose the positive
energy condition on the dynamical energy density,

ρ(t) = 4c2
1(m + mn + n) − 3α2

4c2
1t

2
, (57)

which is positive if 4c2
1(m +mn + n) − 3α2 ≥ 0. Therefore

we obtain a critical bound on the evolution factor α,

|α| ≤ 2|c1|
√
m + mn + n

3
. (58)

Since the quantity in the square-root must be positive, we
obtain an extra condition on the powers m and n, i.e., m >

−n/(n + 1), n �= −1. If n is a positive number then there
are two possibilities that either m is positive or negative. If
it is negative then the spacetime becomes singular at t = 0,
while it is non-singular in the other case. For −1 < n <

0, the evolutionary function, B(t) = c1tm, has a positive
power. However, in the other case, n < −1, the evolutionary
function can have a positive or negative power as before.
Therefore the evolution of the above spacetime is such that

it started at an initial time t = c4 �= 0; then the energy
density continues to decrease and vanishes as t → ∞. The
flux across the x and y surfaces is zero; therefore the density
of the first two components of linear momentum is zero;
however, the z-component of the linear momentum density is

p(t) = G03 = −α(m + n − 2)

2t
, (59)

which could be positive or negative, depending on the choice
of α, m, and n, and it asymptotically decays as t → ∞.

Similarly, in the other case the spacetime has the form

2b. ds2 = dt2 − c2
1dx2

− eαx (c2
2e

2βtdy2 + c2
3e

2γ tdz2), β �= γ, (60)

which also has non-zero components of the Weyl tensor;
therefore it is not conformally flat. Again there are 11 non-
zero curvature invariants and the Ricci scalar is

IR1,b = 3α2 − 4c2
1(β

2 + βγ + γ 2)

2c2
1

, (61)

which is non-singular and non-dynamical unlike the previous
case. The matter tensor is given by

Gμν =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

4βγ c2
1−3α2

4c2
1

0 0 −α(β+γ )
2

0 α2

4 −c2
1(γ

2+βγ +β2) 0 0

0 0
(α2−4γ 2c2

1)c2
2e

αx+2βt

4c2
1

0

−α(β+γ )
2 0 0

(α2−4β2c2
1)c2

3e
αx+2γ t

4c2
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (62)

In order to obtain a bound on the coefficient α, we consider
the density

ρ(t) = 4βγ c2
1 − 3α2

4c2
1

, (63)

which is positive if

|α| ≤ 2|c1|
√

βγ

3
. (64)
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Now there are two cases: β and γ are both positive or nega-
tive. Unlike the previous case the above spacetime has a fixed
energy density for all time. On the other hand the momentum
density is also fixed, which could be positive if both β and γ

are positive and negative otherwise.

Case 3 (6-dimensional algebra)

The spacetime is

3a. ds2 = dt2 − c2
1t

2dx2 − eαx (c2
2t

2ndy2 + c2
3t

2ndz2),

(65)

where the Weyl tensor vanishes; therefore it is conformally
flat and Petrov type O. There are four curvature invariants,
where the Ricci scalar is

IR1,a = 3(α2 − 4n2c2
1)

2c2
1t

2
. (66)

The matter tensor becomes

Gμν =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

4n(n+2)c2
1−3α2

4c2
1 t

2 0 0 (1−n)α
t

0 α2

4 + nc2
1(2 − 3n) 0 0

0 0
(α2−4n2c2

1)c2
2 t

2(n−1)eαx

4c2
1

0

(1−n)α
t 0 0

(α2−4n2c2
1)c2

3 t
2(n−1)eαx

4c2
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (67)

therefore the energy density is positive, G00 = ρ(t) > 0, for
the following critical bound on α:

|α| < 2|c1|
√
n(n + 2)

3
, (68)

where the above spacetime is realistic. The quantity n(n+2)

must be non-negative, which is true if n > 0 or n < −2.

The energy density vanishes as t → ∞, and so does the
momentum density for the above spacetime.

In the other subcase the spacetime is

3b. ds2 = dt2 − (c1t + c2)
2dx2 − eαx (c2

3dy2 + c2
4dz2),

(69)

where the Weyl tensor vanishes; therefore it is conformally
flat and Petrov type O. The Einstein tensor becomes

Gμν =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−3α2

4(c1t+c2)2 0 0 αc1
c1t+c2

0 α2

4 0 0

0 0
c2

3α2eαx

4(c1t+c2)2 0
αc1

c1t+c2
0 0

c2
4α2eαx

4(c1t+c2)2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (70)

therefore the energy density is negative, G00 = ρ < 0, for
all time and the above spacetime is unrealistic.

Case 4 (7-dimensional algebra)

In this case the spacetime involves one arbitrary function,

ds2 = dt2 − A(t)2(dx2 − eαx (c2
1dy2 + c2

2dz2)), (71)

which turns out to be the case where the Weyl tensor is zero,
thus the above spacetime is conformally flat and is of Petrov
type O. This is an interesting case, as it can be regarded as an
inhomogeneous extension of the FRW spacetime. There are
four curvature invariants, including the basic Ricci scalar,

IR1 = 3(α2−4AA′′−4A′2)
2A2 , IR2 = 3(4AA′′−4A′2+α2)2

64A4 ,

IR3 = 3(4AA′′ − 4A′2 + α2)3

512A6 ,

IR4 = 21(4AA′′ − 4A′2 + α2)4

16384A8 . (72)

The Einstein tensor assumes the form

Gμν =

⎡

⎢
⎢
⎢
⎢
⎣

3(4A′2−α2)

4A2 0 0 0

0 (α2−8AA′′−4A′2)
4 0 0

0 0
c2

1(α2−8AA′′−4A′2)eαx

4 0

0 0 0
c2

2(α2−8AA′′−4A′2)eαx

4

⎤

⎥
⎥
⎥
⎥
⎦

, (73)

where there is no non-zero component of the linear momen-
tum density. The energy density is

ρ(t) = 3(4A′2 − α2)

4A2 , (74)

which could be positive or negative, in general. We now con-
sider two dynamical evolutions of this non-flat spacetime; in
terms of a power-law and an exponential law. In the case of
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Fig. 1 The graph of energy density for α = 1,m = 1, c1 = 1

a power-law, A(t) = c1tm , the density ρ(t) → ∞ for m < 0
and ρ(t) → 0 for m > 0, as t → ∞, where the former is not
an interesting case, while the latter contains some physical
information. For example, the density takes the form

ρ(t) = 3m2t−2 − 3α2

4c2
1

t−2m, (75)

and its behavior could be examined by choosing an initial
point

t0 =
(

2mc1

α

)1/(1−m)

, m �= 1, (76)

where it is zero and it was negative before. Therefore we
obtain three different cases: (i) 0 < m < 1, (ii) m = 1, and
(iii) m > 1.

In the first case we choose m = 1/2 without loss of gen-
erality, and we obtain

ρ(t) = 3

4

(

1 − α2t

c2
1

)

t−2, (77)

which is zero at t = c2
1/α

2 > 0. The critical point of ρ(t)
is tc = 2c2

1/α
2, where the density attains a global minimum

because ρ′′(tc) > 0. Since ρ(tc) < 0, it is not a realistic
spacetime. For the second case m = 1, the behavior of the
energy density is such that it starts from an initial value and
decreases continuously till it vanishes and the global maxi-
mum is the initial point where the energy density has started
at some non-zero time. The graph of the energy density is

Fig. 2 The graph of energy density for α = 1,m = 2, c1 = 1

depicted in Fig. 1. In the last case, m > 1, it attains a global
maximum value at

tmax =
(

4mc2
1

α2

)1/2(1−m)

, m �= 1, (78)

after which it continues to decrease till it vanishes as t → ∞,
as is shown in Fig. 2. By introducing a Hubble type parameter
responsible for the possible expansion or contraction of this
spacetime we find that

H(t) = A′

A
= m

t
, (79)

therefore H(t) ∝ t−1, and this model mimics the behavior
of a flat matter dominated universe (Einstein–de Sitter uni-
verse). Note that the expansion function has the same form
form = 2/3, in the above case. It is interesting that our model
is not flat and has an energy density which is different from
the energy density in a flat Einstein–de Sitter universe, which
varies as ρm(t) ∝ t−2. In our non-flat spacetime the energy
density varies as ρ(t) ∝ (4/3 − 3α2t2/3/4c2

1)t
−2 in the case

m = 2/3, where the convergence of ρ(t) is faster in com-
parison to ρm . In the case of a radiation dominated universe
the energy density also varies in the same way. However, it
is constant for a flat spacetime dominated only by vacuum
energy. Note that in the case of a radiation dominated flat
universe the expansion factor is proportional to t1/2, which
corresponds to our first case. The energy density varies in the
same way, ργ ∝ t−2, which in the above non-flat spacetime
is ρ(t) ∝ (1 − α2t/c2

1)t
−2.
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Fig. 3 The graph of energy density for α = 1, β = 1, c1 = 1

In the case of an exponential form, A(t) = c1eβt , the
energy density becomes

ρ(t) = 3β2

4
− α2

4c2
1

e−2βt , (80)

which has a positive initial value, ρ(0) ≥ 0, if α ≤ √
3c1β.

The case in which β < 0 represents a contracting non-flat
spacetime that carries a positive energy for a short time and
continues to decrease such thatρ → −∞ as t → ∞, because
the contribution of the dynamical term will dominate the first
term at some point. On the other hand an expanding non-flat
spacetime requires that β > 0, in which case we observe
that the energy density increases rapidly for a short time,
after which it remains constant such that in the asymptotic
limit, t → ∞, it attains a finite positive value 3β2/4. The
graph of the energy density for this case is given in Fig. 3. It is
unexpected because in an expanding flat spacetime we expect
that the energy density decreases indefinitely; however, the
curvature in this spacetime confines it to attain a positive
definite value at an asymptotic limit. The Hubble parameter
for this spacetime is non-dynamical, H(t) = β > 0, there-
fore this non-flat spacetime mimics a flat universe dominated
by a vacuum energy which has fixed density. However, this
non-flat spacetime has a varying energy density such that it
attains a fixed positive value after a short interval of time.

Case 5 (9-dimensional algebra)

The following subcases arise, in which we obtain the 9-
dimensional Noether algebra. However, the form of the Ein-

stein tensor can easily be obtained from the last case by sub-
stituting the value of the arbitrary function A(t), in (73). We
have

5(a) ds2 = dt2 − c2
1dx2 − eαx (c2

2dy2 + c2
3dz2),

5(b) ds2 = dt2 − (c1t + c2)
2(dx2 + eαx (dy2 + dz2)),

5(c) ds2 = dt2 − c2
1dx2 − eαx+βt (c2

2dy2 + c2
3dz2).

The curvature rank for the spacetimes in case 5b is 3 and
the Lie algebra of both curvature and Weyl collineations is
infinite-dimensional [7]. In the first case we obtain the fol-
lowing non-zero components of the Einstein tensor:

Gμν =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 3α2

4c2
1

0 0 0

0 α2

4 0 0

0 0
α2c2

2e
αx

4c2
1

0

0 0 0
α2c2

3e
αx

4c2
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (81)

Since the energy density is negative, the above spacetime is
unrealistic although it is conformally flat. The components
of the matter tensor in case 5b can be obtained directly by
placing the value of A(t) = c1t + c2, in case 4, equivalently

Gμν =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

3(4c2
1−α2)

2(c1t+c2)2 0 0 0

0
α2−4c2

1
4 0 0

0 0
(α2−4c2

1)eαx

4 0

0 0 0
(α2−4c2

1)eαx

4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(82)

The positive energy condition requires that |α| < 2|c1|,
which indicates that the expansion coefficient α must be
smaller than twice the slope of the graph of A(t) = c1t + c2.
The energy density vanishes as t → ∞.

Lastly the case 5c has a distinct difference from the previ-
ous two cases in that there arise non-zero off-diagonal terms
in the matter tensor. The following are the non-zero compo-
nents of the Einstein tensor:

Gμν =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− (3α2−4β2c2
1 )

4c2
1

0 0 −αβ

0
α2−12β2c2

1
4 0 0

0 0
(α2−4β2c2

1 )c2
2 eαx+2βt

4c2
1

0

−αβ 0 0
(α2−4β2c2

1 )c2
3 eαx+2βt

4c2
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(83)

where we must have |α| < 2/
√

3 |c1β|, for a realistic model.
Note that the energy density in this Bianchi V spacetime is
fixed and it attains non-zero components of the momentum
density, unlike the previous cases where these were zero.
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Case 6 (10-dimensional algebra)

There are two subcases of the 10-dimensional Noether alge-
bra, which are

6(a) ds2 = dt2 − c2
1dx2 − e2β(c1x+t)(c2

2dy2 + c2
3dz2),

6(b) ds2 = dt2 − c2
1dx2 − e2β(−c1x+t)(c2

2dy2 + c2
2dz2).

Although the above models are conformally flat, these are
unrealistic spacetimes, as the Einstein tensor is

Gμν =

⎡

⎢
⎢
⎣

−2β2 0 0 ∓2c1β
2

0 −2c2
1β

2 0 0
0 0 0 0
∓2c1β

2 0 0 0

⎤

⎥
⎥
⎦ , (84)

and the energy density in both subcases is negative, G00 =
−2β2 < 0.

4 Some considerations into f (R)-gravity theory

We now develop a few considerations for the anisotropic
cosmological solutions that are obtained as a consequence of
the existence of Noether symmetries in the context of f (R)-
gravity. The idea is to probe into earlier epochs in the evolu-
tion of the universe using the results obtained in the previous
section. As there arise several cases, we confine ourself to a
few most relevant cases for our purpose. For example, let us
consider case 5b, which meets the positive energy condition
for (|α| < 2|c1|) given by

ds2 = dt2 − (c1t + c2)
2(dx2 + eαx (dy2 + dz2)), (85)

in which case the Ricci scalar is

R = 3(α2 − 4c2
1)

2(c1t + c2)2 , (86)

which remains negative for all time due to the positive energy
condition; therefore the underlying manifold is hyperbolic.
We now obtain the field equations using the action of f (R)-
gravity involving a matter term in standard gravitational units
[31,32]

A = 1

2κ

∫
d4x

√−g f (R) + SM (gμν, ψ), (87)

where κ = 1, g denotes the background metric, and f (R) is
a general function of the first curvature invariant, which in
our case is given by (86). Here ψ denotes all matter fields
coupled to gravity. The field equations now assume the form

f ′Rμν − 1

2
f (R)gμν − (∇μ∇ν − gμν�) f ′ = Tμν, (88)

where f ′ = d f (R)/dR, ∇μ is the covariant derivative with
respect to the Levi–Civita connection of the metric, and
� = ∇μ∇μ. An immediate consequence of the above field
equations is that their trace yields the important equation

R f ′ − 2 f (R) + 3 �( f ′) = T, (89)

which indicates how the matter part, T , in f (R)-gravity is
differentially connected to the curvature in the given space-
time, unlike in standard GR, where we have the algebraic
relationship R = −κT . We now employ Bianchi V space-
time equation (85) and solve the fields equations in the rel-
atively simple case of a dust cloud. As in our case the Ricci
scalar R is a function of t , the field equations yield a system
of ordinary differential equations f ′(R(t)) = F(t), where
we subsequently represent the time derivative with an over-
dot (not to be confused with the overdot in Sect. 1). In this
case the non-zero components of the Ricci tensor are

R11 = 4c2
1 − α2

2
, R22 = R33 = eαx R11, (90)

which upon using the field equations (87) result in

− 1

2
f (R) = T00, (91)

(4c2
1 − α2)F − (c1t + c2)

2(2F̈ − f (R)) = T11. (92)

We now assume a perfect fluid whose energy-momentum
tensor is given by

Tμν = (ρ + p)uμuν − pgμν, (93)

where ρ(t) and p(t) are the energy and pressure densities of
the fluid, which satisfy the equation of state

p = ωρ, 0 ≤ ω ≤ 1, (94)

while uμ = √
g00(1, 0, 0, 0) is the four-velocity in comoving

coordinates. The conservation equation yields

ρ̇ + (ρ + p)

(
Ȧ

A
+ Ḃ

B
+ Ċ

C

)

= 0, (95)

which for the underlying spacetime (85) and in the case of a
pressure-less fluid, ω = 0, assumes the form

ρ̇ + 3c1ρ

c1t + c2
= 0, (96)

whose solution, involving a constant of integration C1, is

ρ(t) = C1

(c1t + c2)3 . (97)

123



63 Page 14 of 15 Eur. Phys. J. C (2016) 76 :63

By substituting the above value in (91) and (92), we obtain
an ordinary differential equation F(t), given by

F̈ − (4c2
1 − α2)

2(c1t + c2)2 F + C1

(c1t + c2)3 = 0, (98)

which has a solution

F(t) = C2(c1t + c2)
λ+ + C3(c1t + c2)

λ− − 2C1

α2(c1t + c2)
,

(99)

where C2 and C3 are constants of integration. The exponents
λ+ and λ− are given by

λ+ =
c1 +

√
9c2

1 − 2α2

2c1
, λ− =

c1 −
√

9c2
1 − 2α2

2c1
,

(100)

which are both real for the positive energy condition. In order
to find the explicit form of f (R), we employ Eq. (89) to
obtain

f = − 2C1

(c1t + c2)3 , (101)

which, in terms of R, using (86) is given by

f (R) ∝ R3/2. (102)

This is quite unexpected, because the above relationship is
found for f (R)-gravity in the background of the FRW uni-
verse and it is observed that all other models other than this
remain obscure [31]. Therefore, the analysis of a dust cloud in
the background of an anisotropic and homogeneous Bianchi
V spacetime (85) which does not correspond to an FRW uni-
verse reveals the same form of f (R). Here we have demon-
strated a successful implementation of our results obtained
in the previous section in f (R)-gravity. It would be interest-
ing to investigate more physical models with different equa-
tions of state in the background of other Bianchi V space-
times following the same lines. A detailed analysis of the
rest of the cases of such spacetimes and a brief compari-
son with other extended theories of gravity will be discussed
elsewhere.

5 Summary

We use Noether symmetries to study Bianchi V cosmologies.
It is determined that the algebra of Lie point symmetries of
the geodesic equations in such spacetimes can have dimen-
sion 5–8, 10, 12 or 13. On the other hand the dimensions

of the Noether algebras are 4–7, 9 or 10. The presence of
Noether symmetries helps us to obtain first integrals or the
constant of motion using the Noether theorem corresponding
to the geodesic Lagrangian. A key advantage of this approach
is the determination of unknown functions in the Lagrangian,
which are specified while solving the determining equations
for Noether symmetries; this reduces the dynamics signifi-
cantly. In all cases 2–6, we explicitly specified the unknown
evolutionary functions in these spacetimes. Besides one can
use the first integrals to obtain in closed form the exact solu-
tions of the equations of motion, i.e., geodesics in non-flat
spacetimes.

In order to interpret our results physically, we use the posi-
tive energy condition, which holds for all realistic cosmolog-
ical models. Interestingly it imposes constraints on the solu-
tions and provides us with critical bounds on the constants
for which a Bianchi V spacetime is physical. The expan-
sion coefficient, α, in all Bianchi V spacetimes is crucial.
By imposing the positive energy condition on the obtained
solutions it turns out that we can investigate different pos-
sible critical bounds on α, in which the non-flat spacetimes
have interesting physical characteristics. The positive energy
condition further imposes constraints on the spacetimes and
we obtain cases in which the energy density behaves in one
of the following ways. It is positive and constant for all time.
It varies with time and attains a global maximum after some
time, after which it asymptotically converges to a relatively
small but positive value. It increases for all time and attains
a maximum value in the asymptotic limit t → ∞. A brief
comparison of flat models (vacuum, radiation, matter) with
the non-flat spacetimes is given in detail.

Another important consequence of this study is the iden-
tification of f (R) ∝ R3/2, for a dust cloud in an anisotropic
and homogeneous spacetime (85), which is proven to exist in
an FRW universe using the standard f (R)-gravity approach.
It suggests us to briefly probe into earlier epochs of our uni-
verse when it was least isotropic. Therefore those Bianchi
V spacetimes where the positive energy condition success-
fully holds are the best candidates for further investiga-
tion with more physical models with different equations of
state.
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