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Abstract

Background: In recent years, both single-nucleotide polymorphism (SNP) array and functional magnetic resonance
imaging (fMRI) have been widely used for the study of schizophrenia (SCZ). In addition, a few studies have been
reported integrating both SNPs data and fMRI data for comprehensive analysis.

Methods: In this study, a novel sparse representation based variable selection (SRVS) method has been proposed
and tested on a simulation data set to demonstrate its multi-resolution properties. Then the SRVS method was
applied to an integrative analysis of two different SCZ data sets, a Single-nucleotide polymorphism (SNP) data set
and a functional resonance imaging (fMRI) data set, including 92 cases and 116 controls. Biomarkers for the disease
were identified and validated with a multivariate classification approach followed by a leave one out (LOO) cross-
validation. Then we compared the results with that of a previously reported sparse representation based feature
selection method.

Results: Results showed that biomarkers from our proposed SRVS method gave significantly higher classification
accuracy in discriminating SCZ patients from healthy controls than that of the previous reported sparse
representation method. Furthermore, using biomarkers from both data sets led to better classification accuracy
than using single type of biomarkers, which suggests the advantage of integrative analysis of different types of
data.

Conclusions: The proposed SRVS algorithm is effective in identifying significant biomarkers for complicated disease
as SCZ. Integrating different types of data (e.g. SNP and fMRI data) may identify complementary biomarkers
benefitting the diagnosis accuracy of the disease.

Background
Schizophrenia (SCZ) is one of the most disabling and
emotionally devastating illnesses. The global median life-
time morbid risk for schizophrenia is 7.2/1,000 persons
[1]. Genetic factors play an important role in the develop-
ment of schizophrenia. To date, over 1000 genes have
been reported to associate with SCZ (http://www.szgene.
org/default.asp) and many SNPs have been identified as

biomarkers for the disease [2-4]. For example, Kordi-
Tamandani et al. showed that that promoter methylation of
the CTLA4 gene can increase the risk of SCZ disease [2].
Shayevitz et al. confirmed the gene NOTCH4 as a candi-
date gene for schizophrenia with genome-wide association
studies (GWAS) [3]. Chen et al. stated that three SNPs
spanning the MYO5B gene are significantly associated with
SCZ: rs4939921, rs1557355 and rs4939924 [4]. Besides
genomic data, fMRI is another widely used data modality in
SCZ studies [5][6]. To date, many methods have been pro-
posed to integrate multi-types of data in SCZ disease study* Correspondence: wyp@tulane.edu
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[7-11]. For example, Chen et al. proposed parallel indepen-
dent component analysis (paraICA) to identify genomic
risk components associated with brain function abnormal-
ities and detected significant biomarkers from both fMRI
data and SNP data that are strongly correlated [7]. Parallel
ICA is an effective method for the joint analysis of multiple
modalities including interconnections between them [8].
Utilizing this method, Meda et al. detected three fMRI
components significantly correlated with two distinct gene
components in SCZ study [11]. In this study, a novel sparse
representation based variable selection (SRVS) method was
proposed and applied to an integrative analysis of two types
of data: fMRI and SNP, aiming to obtain comprehensive
analysis.
Sparse representation including compressive sensing has

been widely used in signal/image processing and computa-
tional mathematics [12-18]. Candes et al. showed that
stable signal can be approximately recovered from incom-
plete and inaccurate measurements [14]. Wright et al. pro-
posed a sparse representation based clustering (SRC) for
face recognition, demonstrating high classification accu-
racy [15]. In our recent works [16-18], we developed novel
classification and feature selection algorithms based on
sparse representation theory. We applied those methods
to gene expression data analysis [16], to chromosome
image classification [18], and to joint analysis of different
data modalities (e.g. SNP data and gene expression data)
[17], and achieved improved classification accuracies as
well as better feature selections.
In applications of sparse representation, The availability of

a limited number of samples is an important issue (e.g., fea-
ture selection and signal recovery) [19][20][21]. According
to compressive sensing theory (e.g., the restricted isometry
property (RIP) condition [23][24] for signal recovery), the
number of available samples should not be less than the
number of signals to be selected/recovered. However, the
number of features/variables in genomic data (e.g. SNP
data) or medical imaging data (e.g. fMRI data) are usually
significantly big than the number of samples. In those cases,
the traditional methods for compressive sampling cannot
effectively analyse the data.
In a recent work, Li et al. [21] developed a voxel selection

algorithm for fMRI data analysis. The method was based
on sparse representation and is designed to get a sparse
solution when sufficient samples exist. However, it may
not handle the small sample problem described above.
In this study, a novel sparse representation based vari-

able selection (SRVS) algorithm was proposed to select
relevant biomarkers from big data sets having small sam-
ple sizes. The analysis was obtained by using a window
based approach, whose size determines the resolution of
the variable selection. We first tested the SRVS algorithm
on a simulated data set (size of 100 × 1e6, with 50 cases
and 50 controls), demonstrating the multi-resolution

characteristic of the method. Then the algorithm was
applied to an integrative analysis of two real data sets: a
SNP data set (size of 208 × 759075) and a fMRI data set
(size of 208 × 153594). Using the proposed SRVS algo-
rithm, biomarkers for SCZ were identified and validated.

Methods
fMRI and SNP data collection
A total of 208 subjects, after signing informed consent,
were recruited in the study, including 96 SCZ cases (age:
34 ± 11, 74 males) and 112 healthy controls (age: 32 ± 11,
68 males). Both SNP and fMRI data were collected from
each of those 208 subjects. The healthy controls have no
history of psychiatric disorders and were free of any medi-
cal. SCZ cases met the DSM-IV diagnostic criteria for
schizophrenia. After pre-processing, 153594 fMRI voxels
and 759075 SNP loci were obtained for the following
biomarker selections. Please refer to [22] for detailed
description of data collection and pre-processing.

Generalized sparse model
To combine different data sets for integrative analysis,
we consider the following model:

y = [α1X1,α2X2]
[

δ1
δ2

]
+ ε = Xδ + ε (1)

where y ∈ Rn×1 is the phenotype vector of the subjects;
matrix X1 ∈ Rn×p1 and X2 ∈ Rn×p2 represent data sets of
different modalities having normalized column vectors
(e.g., || ∗ ||2 = 1); X = [α1X1,α2X2] ∈ Rn×p; α1 + α2 = 1,
and α1,α2 > 0 are the weight factors for X1 and X2

respectively. The measurement error ε ∈ Rn×1. We aim to

reconstruct the unknown sparse vector δ =
[

δ1
δ2

]
∈ Rp×1

based on y and X, where δ1 ∈ Rp1×1, δ2 ∈ Rp2×1, and
p1 + p2 = p.
It can be proven that when p > 35n, the matrix

X ∈ Rn×p has the difficulty to satisfy the restricted isome-
try property (RIP) condition [24] for signal recovery. In
this work, p = 759075 + 153594 = 912669 and n = 208.
Thus p � 35n = 7280. To overcome this problem, we
propose the SRVS algorithm described as follows.

SRVS algorithm
To best approximate y with the model given by Eq. (1), we
consider the following Lp minimization problem:

min ||δ||p subject to ||y − Xδ||2 ≤ ε (2)

where || ∗ ||2 represents Lp norm; p ∈ [0, 1]. The SRVS
Algorithm given below is used to solve the Lp minimiza-
tion problem and select the phenotype relevant column
vectors out of X.
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Spare representation base variable selection (SRVS)
algorithm (http://hongbaocao.weebly.com/software-for-
download.html)
1. Initialize δ(0) = 0;
2. For the l th step, randomly select Xl ∈ Rn×k from

X = {x1, . . . , xp} ∈ Rn×p; Mark the indexes of the columns
in Xl as Il ∈ R1×k;
3. Solve Eq. (3) to get δl ∈ Rk×1:

min ||δl||p s.t. ||y − Xlδl||2 ≤ ε (3)

4. Update δ(l) ∈ Rp×1 with δl: δ(l)(Il) = δ(l−1)(Il) + δl;
where δ(l)(Il) and δ(l−1)(Il) denote the Il th entries in δ(l)

and δ(l−1) respectively;
5. If ||δ(l)/l − δ(l−1)/(l − 1) ||2 > α, update l = l + 1; go to

Step 2.
6. Set δ = δ(l)/l. The non-zero entries in δ correspond

to the columns in X to be selected.
In Step 3, we sought to solve a L0 minimization pro-

blem using the OMP algorithm [19]. The OMP has been
widely used for signal recovery and approximation [18],
[26-30].
It can be proven that, by using the SRVS algorithm,

one can identify the significant variables with high prob-
abilities. In addition, the SRVS algorithm can be shown
convergent for any given k and ε, generating an effective
solution for the sparse model specified by Eq. (2). In the
following section, we discuss the sparsity control issue
to determine the number of variables to be selected.

Sparsity control using k
In Step 2 of the SRVS Algorithm, we exploit Fisher-
Yates Shuffling algorithm [31] with a window of length
k to select Xl ∈ Rn×k from X ∈ Rn×p. The length k deter-
mines the resolution of the SRVS algorithm. When
k = p, the number of variables selected will be generally
equal to the sample number n[23]. The smaller the k,
the more the variables selected, and those variables gen-
erally include the variables selected with bigger k, as
shown in Figure 1. This multi-resolution property
enables us to select different number of variables at dif-
ferent significance levels.

Further sparsity control using ε

The parameter ε given in Eq. (2) can be used for further
sparsity control. The magnitudes of entries of δ reflect
the significance of the corresponding columns of X[21].
Thus, a threshold can be selected for δ using cross-valida-
tion [32]. Another way to determine a threshold is using
the error term ε (as shown in Figure 2), which reflects
the residual of ||y − Xδ||[20]. When ε = 0, noises may be
involved in the columns selected [20]. In this study, we
set ε = τ ||y||2. From Figure 2, we show that if the first
400 variables with amplitudes larger than 0.002 are

selected (i.e. points (400, 0.002) on ‘Regression coeffi-
cients’ curve), it corresponds to the point (400, 0.4) on
the ‘Error term coefficient’ curve; it indicates that with
these 400 variables, the error term ε = 0.4||y||2.

Validation
To validate the variable selected using our proposed
SRVS algorithm, we compared our selected SNPs and
fMRI voxels with that of previous studies. In addition, we
used the selected SNPs and fMRI voxels to identify SCZ
patients from healthy controls with the sparse represen-
tation based classifier (SRC) [15][18]. Then a leave one
out (LOO) cross-validation approach was carried out to
evaluate the identification accuracy. We compared the
classification results with that of Li et al.’s method [21].

Figure 1 Diagram for the sparsity control using k in SRVS
method. p is the total number of columns/variables. The results
were generated with white noise simulation data set (size 100 ×
1e6; 50 cases, 50 controls and 1e6 variables).

Figure 2 Diagram for further sparsity control using ε.
ε = τ ||y||2; the entries of δ were sorted in descending order by
amplitude. The results were generated with white noise simulation
data set of size 100 × 1e6 (50 cases and 50 controls) with

k = 0.02 × 1e6 = 2e4
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Furthermore, we compared the results of using variables
selected from one type of data and that of both types of
data. We also studied the influences of selecting different
number of variables.

Result
We applied our SRVS method with the sparse model given
by Eq. (1) to an integrative analysis of SNP and fMRI data
sets. The results were compared with that of Li et al.’s
method under different weighting factors. We also dis-
cussed the sparsity control issues using k and ε.

Variable selection with different weight factors
Sparse model given by Eq. (1) with different weight fac-
tors were solved by our proposed SRVS method and by
Li et al.’s method, respectively, as shown in Figure 3. It
can be seen that at the two ends (α1 = 0.3 or 0.6), the
variables were selected form one type of data.
In each of the 16 trials given by Figure 3, we selected the

top 200 biomarkers by our proposed SRVS method and by
Li et al.’s method [21]. As shown in Figure 3, the weight
factor has similar effects on the variable selection of the
two methods. It was interesting to see that even though
the number of SNPs was much larger than that of fMRI
voxels (759075 vs. 153594), similar number of variables
were selected from both data sets when weight factor α1

for SNP data set was around 0.5 (0.46 for SRVS method
with L0 norms, and 0.47 for Li et al.’s method). This sug-
gests that the two data sets may contain similar informa-
tion for the SCZ case/control study.

Comparison with Li et al.’s method
We selected 200 variables (SNPs and fMRI voxels) in each
trial by our proposed SRVS method and by Li’s et al.’s

method respectively, as shown in Figure 3. However,
further study showed that the variables selected by the two
methods were significantly different (overlap <10%) (see
Figure 4). Thus it was necessary to validate and compare
those different groups of variables selected. We first com-
pared the selected SNPs and the corresponding genes with
the publicly reported SCZ genes for both methods. Then
we compared the brain regions identified using those two
methods. In addition, we compared the classification
accuracies using the variables selected by our proposed
SRVS method and Li et al.’s method.
When compared with the top genes reported (see ‘Top

45 SCZ genes’ in the Additional file 1). For the 16 trials
with the top 200 variables selected in each trial, our pro-
posed SRVS method and Li et al.’s method identified 4 dif-
ferent reported genes, as shown in Table 1. It should be
noted that even though both methods can identify gene
‘OPCML’, they recognized the gene through different
SNPs (SRVS is by ‘rs3026883’ and Li et al.’s method is by
‘rs1745939’).
To further compare the two methods at different sparsity
level, we studied more top variables in each of the 16
trials. To reach this purpose, we set ε = 0.3y2 and k = 0.05
for SRVS method. For Li’s method [21], the number of
subjects selected in each run was one tenth of total num-
ber of subjects; and we set the threshold θ = 0.01(please
refer to [21] for the meaning of θ). As a consequence, 500
to 800 variables (SNPs and fMRI voxels) were selected in
each trial. In this case, our proposed method selected
20 reported genes. For Li et al.’s method, 14 reported
genes were located, and 11 of the top 45 genes were iden-
tified by both methods [22]. However, the genes identified
by the two methods have <10% overlaps. For the top
50 genes selected by the two methods, there was only one

Figure 3 Variable selection with the sparse model using different methods. The ‘Weight factor’ in the plots refers to α1 (range of [0.3, 0.6];
step length = 0.02). (a) SRVS method with L0 norms (b) Li et al.’s SLR method
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gene, CSMD1, was identified by both methods. We listed
the top 50 genes and the corresponding SNPs chosen by
the two methods in Additional file 2.
When comparing the fMRI voxels selected (follow the

approach shown in Figure 3), we showed that the SRVS
method were capable of selecting fMRI voxels that were
clustered in specific regions, as shown in Figure 5 (a).
Those voxels located within a same region will have high
correlations with each other. Therefore the results indicate
the capability of our proposed SRVS method in selecting
significant biomarkers that are highly correlated. Further
study showed that the brains regions selected by our pro-
posed SRVS method were mostly reported being asso-
ciated with SCZ [33-35], including temporal lobe, lateral
frontal lobe, occipital lobe, and motor cortex (see Table 2).
However, Li et al.’s method tended to select voxels that
were scattered over different brain regions (see Figure 5
(b)). Besides, the brain regions selected by those two meth-
ods were largely different from each other. Thus we used
multivariate classification approach to evaluate the effec-
tiveness of the variables selected by two methods.

Multivariate classification
In this study, a LOO cross validation was carried out to
evaluate the classification accuracy. In each run of the

LOO validation, one sample was used for testing while the
rest ones were used for variable selection. Results were pre-
sented in Figure 6. We showed that our proposed SRVS
algorithm provided significantly higher classification ratios
(CRs) (p − value < 1e−11) for both the 200-selected-vari-
able case and the 800-selected-variable case. However,
using different number of top selected variables showed no
significant differences for neither of the two methods
(p-value > 0.1).
From Figure 6 (a) we showed that the highest classi-

fication accuracy was achieved at the weight factor
α1 = 0.5, where around equal sized SNPs and fMRI vox-
els were selected by the SRVS method. At the two ends
(α1 = 0.3 or 0.6), the classification accuracies were rela-
tively lower. This suggests that using biomarkers from
both types of data may lead to better identification
accuracy.

Discussion
In this study, we introduced a novel sparse representation
based variable selection (SRVS) method, and applied it to
an integrative analysis of SNP data and fMRI data. In the
case of medical imaging data (e.g. fMRI data) or genomic
data (e.g. SNP data), the number of samples tend to be
much less than the number of variables (e.g. fMRI voxles;
SNP loci). As a consequence, many of those variables are
correlated and cannot be identified by traditional sparse
signal recovery methods. The proposed SRVS method
can identify significant variables with high probability,
regardless of the coherence conditions required for exact
signal recovery in compressive sensing. For example,
significant fMRI voxels functionally correlated (within
neighbour brain regions) were identified simultaneously
by using our proposed SRVS algorithms (see Figure 5 (a)).
This manifests the capability of out proposed SRVS
method in handling big data set with small sample sizes.
In addition, the proposed SRVS method can be gener-

alized to integrate multiple data modalities for joint ana-
lysis and achieve comprehensive diagnosis. As can be
seen from Figure 6 (a), the highest classification accuracy
was achieved using approximately equal sized variables
from both data sets, suggesting that using biomarkers

Figure 4 Comparison of the variables (fMRI voxels/SNPs)
selected in the 16 trails by two different methods.

Table 1 The comparison with the reported first 45 SCZ genes (http://www.szgene.org/default.asp). The Index is the order of
the specific gene in the top 45 reported genes list.

SRVS (L0) Li et al.’s method

Index Genes SNPs Index Genes SNPs

6 PDE4B rs10846559 1 PRSS16 rs13399561

26 NRG1 rs12097254 11 DAOA rs16869700

35 PLXNA2 rs4811326 17 RPP21 rs1836942

37 OPCML rs3026883 37 OPCML rs1745939

The comparison of selected top SCZ genes by different methods. The Index is the order of the specific gene in the top 45 reported gene list.
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from both types of data may lead to higher diagnosis
accuracy.
Another advantage of the SRVS method is its multiple

detection resolutions. By choosing different values of
widow length k one can select different number of vari-
ables at different significance level. Furthermore, the error
term ε can be used for further sparsity control of the solu-
tion δ, selecting the most important variables. This multi-

resolution characteristic of SRVS provides a flexible vari-
able selection approach for big data sets.
When compared to the previous SCZ studies, our

method effectively identified more reported SCZ genes
than Li et al.’s method. Furthermore, most of the brain
regions identified using our proposed SRVS method are
previously reported as SCZ associated brain regions.
When using the selected variable to identify SCZ patients

Figure 5 A comparison of the fMRI voxels selected by using the two different methods. (a) Voxels selected using SRVS method (b) Voxels
selected using Li et al.’s method

Table 2 Main brain regions of selected voxels using SRVS method

Brain region Left(L)/Rigth(R) aal Selected voxels number

Precuneus L/R 51

Precentral Gyrus L/R 35

Sub-Gyral L/R 32

Middle Frontal Gyrus L/R 26

Middle Temporal Gyrus L 20

Cuneus R 17

Culmen L/R 16

Paracentral Lobule L 16

Lentiform Nucleus L/R 13

Superior Temporal Gyrus L/R 13

Declive L/R 13

Cingulate Gyrus * 13

Postcentral Gyrus R 9

Medial Frontal Gyrus R 7

Superior Frontal Gyrus R 7

Anterior Cingulate R 7

The main brain regions selected using SRVS method
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from controls, our method generated significantly higher
classification ratio than Li et al.’s method (Figure 5 (b),
p − value < 1e−11). Those results demonstrated the effec-
tiveness of our method.

Conclusions
Our proposed SRVS is effective in variable selection for
complex disease as SCZ. The biomarkers selected generate
better identification accuracy than that of Li et al.’s
method. When combining information from fMRI data
and SNP data for integrative analysis, higher identification
accuracy can be achieved, demonstrating the advantage of
the combined analysis.

Additional material

Additional file 1: The top 45 schizophrenia genes reported.

Additional file 2: The top 50 genes and the corresponding SNPs
chosen by the two methods proposed SRVS method and Li et al.’s
method.
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