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The reproductive system of human female exhibits a much faster rate of aging than other body systems. Ovarian aging is 
thought to be dominated by a gradual decreasing numbers of follicles, coinciding with diminished quality of oocytes. Meno-
pause is the final step in the process of ovarian aging. This review focuses on the mechanisms underlying the ovarian aging 
involving a poor complement of follicles at birth and a high rate of attrition each month, as well as the alternated endocrine 
factors. We also discuss the possible causative factors that contribute to ovarian aging, e.g., genetic factors, accumulation of 
irreparable damage of microenvironment, pathological effect and other factors. The appropriate and reliable methods to assess 
ovarian aging, such as quantification of follicles, endocrine measurement and genetic testing have also been discussed. In-
creased knowledge of the ovarian aging mechanisms may improve the prevention of premature ovarian failure.  
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The ovary undergoes much more serious effects of age than 
any other tissues of the body, and the reproductive outcome 
has been demonstrated to be negatively correlated with age 
[1,2]. The ovarian aging related follicle number reduction 
and oocyte quality decay cause the gradual decline in fertility 
and ultimately natural sterility. Thus, “poor ovarian reserve 
(OR)” is often used synonymously with “ovarian aging”. 

The variability of ovarian aging among individuals is ev-
ident indicated by the large variable age at menopause. This 
implies that some females remain fertile until the fifth dec-
ade of life, which is physiological ovarian aging, whereas 
others face the loss of natural fertility in their mid-thirties, 
which is called premature ovarian failure (POF), and is 
pathological ovarian aging. The mechanisms behind gradual 
decreasing of the follicle pool and the decaying oocyte 
quality are far from being totally understood, although some 
progress involved in the endocrine, paracrine, metabolic and 

genetic factors has given some light to the complex puzzle. 

1  Mechanisms underlying ovarian aging 

During human fetal life, germ cells rapidly proliferate by 
mitosis to reach a maximum of 67 million oocytes by 
1620 weeks of pregnancy in human beings [3,4]. For-
mation of primordial follicles occurs in fetal ovaries by the 
late second trimester. Once the pool of primordial follicles 
formed, it serves as a source of developing follicles [3,5,6], 
and the primordial follicles in the pool remain quiescent for 
many years (even for 40 years) until activated to become 
primary follicles [6]. Every month, a few follicles from this 
pool are activated and progress through the stages of pri-
mary, preantral and antral follicle. Eventually, only one 
follicle (dominant follicle) reaches the pre-ovulatory stage 
while the others undergo atresia at different developmental 
stages [3,7]. Simultaneously, the number of oocytes under-
goes an inevitable decline. At birth, approximately 12 mil-
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lion follicles are present in ovary [8], and 300000500000 
remain by the onset of puberty [9,10]. During the reproduc-
tive years of life, the number of primordial follicles de-
creases at a steady rate of approximate 1000 follicles per 
month [1113]. Actually, more than 99.9% of primordial 
follicles undergo atresia at different developing stages and 
only about 400–500 follicles reach ovulation stage in the 
lifetime [11]. 

1.1  Follicle loss and ovary aging 

Ovarian aging is thought to be dominated by a gradual de-
crease in the number of primordial follicles. With ovarian 
aging, oocyte quality reduces with the increased incidence 
of miscarriages and chromosomal aberrations that usually 
occur after the age of 35 years [9,12,14,15] (Figure 1).  

The accelerating decline of follicle pool is ascribed to a 
poor complement of follicles at birth and/or a high rate of 
attrition each month. The variation of ovarian aging among 
individuals is considerable. Some women show a bi-expo- 
nential decline, i.e., an abrupt decline at 38 years of age [16], 
while others favor an exponential decline throughout re-
productive life [17]. At about 31 years old, fecundity begins 
gradually decreasing and the number of follicles could fall  

below the critical level of 25000 at approximately 37.5 
years of age, indicating the beginning of the ovarian aging 
[13,18]. The decline in ovarian follicle pool dictates the 
onset of important reproductive processes, including decay-
ing fecundity, natural infertility, irregular menstrual cycle 
and ultimately menopause [19]. The final menstrual period 
(menopause) occurs at an average age of 51 years [20], 
when only about 1000 follicles remain in the ovaries [13].  

As the decrease in follicle numbers, the quality of oocyte 
also diminishes. The decay of oocyte quality is believed to 
be owing to an increase in meiotic nondisjunction, leading 
to an increasing rate of aneuploidy in the early embryo of 
older females [2124], and also to many other factors (Fig-
ure 1). Underlying mechanisms may involve differences 
between germ cells when they are formed, accumulated 
damages in oocytes during the lifetime, or age-related decay 
of the quality of the granulosa cells surrounding the oocyte 
[9,25]. 

A study of European women who lived between the16th 
and the early 19th century showed that those who married 
late more likely to be infertile，women who married when 
older than 35 years of age had twice the chance of sterility 
compared with those who married at 3034 years of age 
[26]. Hence, delayed childbearing increases the chance of  

 

 

Figure 1  Schematic representation of the number of primordial follicles present in the ovaries and the quality of oocytes in relation to female age. The 
graph is modified from Hansen et al. [5] and de Bruin et al. [19]. 
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failure of spontaneous pregnancy [26]. Delayed childbear-
ing and reduced age-related natural sterility have resulted in 
an increase in the number and proportion of women more 
than 35 years of age who need to receive ART (assisted 
reproductive technologies) treatment [11]. Unfortunately, 
the ART treatment outcomes are also adversely influenced 
by advanced patient age, and to optimize treatment out-
comes for these patients becomes more and more critical 
[27]. These indicate that the decreased quantity and quality 
of follicles contribute to the fertility decline. 

1.2  Follicle loss and endocrine 

Ovary, also as an important endocrinal organ, secrets sex 
hormones and preserves the normal menstrual cycle coop-
erating with hypothalamus and pituitarium. The number of 
the follicles in ovary has a direct relationship with the men-
strual cycle during peri-menopausal stages, interacting with 
the levels of progesterone and gonadotropin (FSH and LH).  

Epidemiologic studies in women show that hormones 
change at both the individual and population levels [20], 
and these studies extend our understanding of some key 
hormonal changes which occur during female reproductive 
aging. During the period of the transition from peri-meno- 
pausal to menopause, the number of follicles falls sharply as 
a result of follicle recruitment accelerating and the loss of 
the residual follicular stock speeding up [18], which are 
caused by the rising of FSH level [11,28]. As a result, the 
length of the menstrual cycle could be shortened as well as 
follicular phase [3,29,30]. The primary clinical sign of the 
reproductive aging is that the length of the menstrual cycle 
is shortened by 2–3 d [3,31]. 

The increase of FSH level is caused by declining inhibin 
B and AMH which are negative regulators of FSH level 
[11]. The main sources of inhibin B and AMH are the 
pre-antral and small antral follicles [3234]. The depletion 
of the premature follicles along with aging leads to low lev-
el of inhibin B and AMH [3540], and concurrently results 
in FSH accumulation [4143]. Increasing FSH level accel-
erates the processes of selection and recruitment of the 
dominant follicles. Meanwhile, high level FSH impels 
granulosa cells around premature oocytes undergoing un-
timely maturity. The non-synchronous maturation between 
granulosa cells and oocytes results in more follicular atresia 
and loss [11,18,44]. As the FSH level increasing, the cours-
es mentioned above could be magnified until the primordial 
follicle pool exhausted, estrogen level reduced, ultimately 
menopause [45,46]. The changes of endocrine contribute to 
a series of menopause symptoms caused by ovary aging and 
many age-related diseases, such as cardiovascular disease, 
osteoporosis, Alzheimer’s disease, cancer, and obesity. 

2  Factors that cause ovary aging 

In general, factors affecting oocyte quality and quantity 

with the age are still not well defined. However, several risk 
factors have been indicated to be associated with premature 
ovarian aging and consequently the age at menopause (Fig-
ure 1), such as genetic factors, microenvironment factors 
and pathological factors and other factors [47]. 

2.1  Genetic factors 

2.1.1  Genomic DNA alternation 

The role of genetic factors concerning “menopausal age” 
has attracted increasing attention in recent years. Family 
history of premature menopause has been convincingly cer-
tified [4850]. Through the menopausal age observations in 
sibling pairs and parent-child comparisons, it is generally 
accepted that genetic factors must be involved in the pro-
cesses directing reproductive aging. the heritability has been 
estimated to range from 30% to 85% [51]. 

POF is an ovarian defect that the primordial follicle pool 
depletes before the age of 40 years, which can be defined as 
a type of ovarian aging. Therefore, POF may offer a unique 
model for the insights into the genetic mechanisms of ovar-
ian aging. Several mutant mouse models such as GDF9, 
FSHR and ER mice have provided clues about mole-
cules involved in the development of POF in humans [52]. 
Meanwhile, research in patients with POF has highlighted 
many candidate genes, such as GDF9, BMP15 and FOXL2, 
of which the micro-deletion causes early ovarian arrest 
[5355]. Hamatani et al. [56] compared the oocytes be-
tween the young (56 weeks) and old (4245 weeks) mice, 
and found that about 530 genes exhibited statistically sig-
nificant differences, including genes involved in mitochon-
drial function (mt-Atp6, Sod1, Hspa4, Nfkbia, etc.), chro-
mosome stability (Hook1, Tuba1, Cggbp1, etc.), oogenesis 
and fertilization (Madh1, Smad1, Bmpr2, etc.). 

Recently, based on genome-wide linkage scanning be-
tween sibling sisters, two chromosomal regions (9q21.3 and 
Xp21.3) have shown suggestive linkage. No less than 28% 
of female fragile X premutation carriers may develop POF 
[57], and one gene in the linkage of chromosome 9 encodes 
a member of BCL2 family, which is participated in apopto-
sis [58,59]. Besides, a number of highly significant associa-
tions with menopausal age have been demonstrated for 
SNPs in regions on chromosomes 5, 6, 13, 19, and 20 by 
genome-wide association study in several natural meno-
pause cohorts [60,61]. 

In addition, the incidence of aneuploidy increases with 
the age. Pellestor et al. [62,63] have indicated the relation-
ship between maternal age and chromosomal abnormalities 
based on the research in 1397 human oocytes obtained from 
IVF treatment cycles. This cytogenetic study demonstrated 
that chromosome non-disjunction contributed to the occur-
rence of aneuploidy during either meiosis I or II [64]. The 
occurrence of non-disjunction has been attributed to the 
abnormal chromosomal alignment, meiotic spindle defects 
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or reduced formation of chiasmata [6568]. Meanwhile, 
according to Angell et al. [69], the cohesins that hold the 
chromatids together during metaphase I decline gradually 
but constantly with age in female, which contributes to the 
premature separation of chromatids during meiosis and fi-
nally results in aneuploidy. In summary, both the non-  
disjunction and the premature separation of chromosomes 
contribute to aneuploidy during either meiosis I or II 
[70,71]. 

2.1.2  Mitochondrial DNA (mtDNA) mutation 

Mitochondria play a key role in energy production, cell pro-
liferation and apoptosis. Their own genetic material, 
mtDNA, is maternally inherited. mtDNA is very important, 
in spite of its smaller size compared with genomics DNA. 
Trifunovic et al. [72] engineered mutant polgA knock-in 
mice with a defect in the nucleus-encoded catalytic subunit 
of mtDNA polymerase. These mice develop a premature 
aging phenotype beginning at 9 months because of the ac-
cumulated mtDNA mutations. Their work provides a causa-
tive relationship between mtDNA mutations and aging 
phenotypes in mammals. According to the observation on 
luteinizing granulosa cells, Seifer et al. showed that these 
somatic cells contain higher levels of mtDNA deletion in 
the women ages >38 years [73], and deeply reduced antiox-
idant enzymes in the damage mitochondria [74], and facili-
tate the activation of the apoptosis in oocytes, by providing 
specific factors such as ceramide [75,76]. Seifer et al. [76] 
showed that the mtDNA 4977-bp deletion (△mtDNA4977) 
increased in the older women, which may affect the fertili-
zation. Hamatani et al. [56] showed different expression of 
mitochondrial function genes that participated in the ATP 
metabolism and binding, as well as many other genes in-
volved in the ubiquitin-proteasome and NF-kappa B path-
way based on comparing the young and old oocyte. In ab-
normal mitochondria, [Ca2+] oscillations fail to trigger ATP 
production which support normal physiological processes 
[77,78], such as spindle formation, abnormal chromosomal 
alignment [65,79], and then affect fertility. However, these 
abnormalities can be rescued by micro-injecting cytoplasm 
from younger oocytes [80]. In short, mitochondria sustain 
the normal physiological functions of ovary through the 
ATP synthesis, calcium signaling and apoptosis. 

2.1.3  Decreased telomerase activity  

Currently, the correlation between reproduction and telo-
mere length has received growing attractions. Telomeres are 
the repetitive DNA sequences at chromosomal ends, which 
cap the chromosomes and prevent end-to-end fusion of 
chromosomes [81,82]. The telomere length is a marker for 
cellular aging as it gradually shortens with successive cell 
division. Once telomeres reach a threshold length, cell cycle 
arrest, apoptosis and genomic instability will ensure 
[81,83,84]. Telomerase can maintain the telomere length 
and therefore ensures genomic stability [8587]. The te-

lomerase deficiency, combined with long-time exposure to 
ROS, may lead to the telomere shortening quickly, which 
will affect maternal aging on fertility [88]. Kinugawa et al. 
[89] indicated that the telomerase activity was present in the 
young ovaries, but it decreased with age. They speculated 
that the primordial follicle depletion was related to the de-
cline of telomerase activity, so the telomerase maybe used 
as a marker of ovarian functional age. Hanna et al. [90] be-
lieved that longer telomere in the POF patients may be re-
lated to slow cell division rates or abnormal hormone expo-
sure in these women. Butts et al. [91] considered that the 
aberrant telomere homeostasis was due to occult ovarian 
insufficiency in young women. Hamatani et al. [56] noted 
that the expression of TERT (telomerase reverse transcrip-
tase) decreased during general aging and cellular senes-
cence. In conclusion, old oocytes may be unable to maintain 
intact chromosomes due to the low telomerase activity, 
which affects the female fertility. 

2.2  Microenvironment factors in the ovarian aging  

2.2.1  Oxidative stress (OS) and ovarian aging 

Till now, research on aging causative factors is mainly  
focusing on the spontaneous damages accumulated dur-  
ing daily biological metabolism process [92,93]. The 
modification of different kinds of molecules caused by oxi-
dative stress is suggested to be one of the culprits of aging 
[94]. 

Reactive oxygen species (ROS) and reactive nitrogen 
species (RNS) are called free radicals and have high reac-
tivity [95], which are generated during the biological me-
tabolism process. The widely accepted theory is that the 
aging-associated cellular respiratory decline can result in 
increased intra-mitochondrion electron leakage and raised 
production of ROS, which in turn affect mtDNA stability 
and the function of mitochondria [96,97]. When the genera-
tion of pro-oxidants including ROS and RNS exceeds the 
scavenging capacity by antioxidants, the oxidative stress 
(OS) appears. This imbalance could cause extensive oxida-
tive damages which then induce cytochrome c and other 
apoptosis trigger factors release from mitochondria and fi-
nally result in cell death [98100]. 

Since the increase in ROS production during aging may 
lead to oxidized proteins accumulation, the free-SH protein 
level was used to explain the relationship between the in-
tracellular oxidative stress and ovarian aging by Tatone et al. 
[100]. Their results clearly demonstrated a remarkable 
quantitative and qualitative decrease in free-SH protein in 
ovarian follicular fluid especially in older women. The de-
crease of free-SH protein with age strongly suggests that an 
increase of oxidative stress in the follicular microenviron-
ment with aging [100]. Based on the same principle, Wie-
ner-Megnazi et al. [101] reported an age-related increase in 
free radical activity which also correlates with a low success 
rate of IVF by the ROS level quantification. Thus, it is be-
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lieved that higher oxidative stress presents in follicular fluid 
of older women. 

Long-lasting higher oxidative stress damage is considered 
to be involved in the process of ovarian aging [102,103]. An 
investigation between poor oocyte quality and oxidative 
stress indicated that women undergoing IVF have a signifi-
cantly higher concentration of 8-OHdG (a marker of DNA 
oxidation degree) in the ovarian follicular fluid and a simi-
lar higher proportion of degenerative oocytes. Whereas 
providing those women who failed to become pregnant in 
the IVF-embryo transfer trial with antioxidants results in an 
obviously reduced intrafollicular concentration of 8-OHdG 
and higher pregnant rate [104]. Recent studies have also 
shown that age-related decay of oocytes accompany with 
dysfunction of mitochondria. This adverse change arises 
from excessive free radicals. Mitochondrial dysfunction can 
cause cellular injury that increased with age [105,106]. To-
gether with an age-related estrogen decrease, the loss of its 
protective effects against oxidative stress finally lead to 
decay of the ovary. It may account for the significantly ele-
vated rate of congenital birth defects in the women older 
than 38 years [107]. 

Over the past few years, several studies in mammas indi-
cated that long-term age-related oxidative stress was caused 
by the impairment of antioxidant enzymatic defense. Tarin 
et al. [108] described a sharp decrease of glutathione (GSH) 
and glutathione transferase (GST), both of which are in-
volved in free radical scavenging, in ovulated mature oo-
cytes from aged mice. It has been found that administration 
of antioxidants to reproductively old mice effectively res-
cued the adverse effects of female aging on oocyte quality 
[109]. Others suggested that oxidative stress level in young 
mouse oocytes negatively affects spindle structure by de-
creasing ATP production, thus give a good mimic model of 
the aging process [110]. Similarly, such a pattern of enzy-
matic defense is obviously affected by reproductive aging as 
oocytes from older women have a reduced ratio between 
CAT (catalase) and SOD (superoxide dismutase), indicating 
a decrease of ROS scavenging capability with aging 
[111,112]. The weakening of antioxidant defense also oc-
curs in granulosa cells where reproductive aging accompa-
nies with the down regulation of Cu/Zn SOD, Mn SOD, 
CAT, and accumulation of oxidative damages [111].  

These results indicate that oxidative stress has a negative 
impact on oocyte development. With the accumulation of 
oxidative damage through increase in ROS production and a 
contemporaneous lowering of antioxidant defense will fi-
nally lead to pathological ovarian aging.  

2.2.2  AGEs and ovarian aging 

The formation of AGEs (advanced glycation end products) 
is an irreversible process, accelerating with aging, athero-
sclerosis, diabetes mellitus, etc. Long-lived proteins such as 
collagens, nerve proteins, and lens crystallins are most vul-
nerable to be affected by AGEs [113]. It was suggested that 

AGEs cause tissue injury either through protein cross-  
linking or directly binding to specific receptors termed 
RAGE (receptor for advanced glycation end-products) lo-
cated in different cells, such as endothelium and smooth 
muscle cells [114]. For example, AGEs deposited in the 
arterial wall in Alzheimer patients may induce oxidant 
stress to promote further damage [115117], as well as ir-
reversible cross-linked proteins in vessel collagen which 
finally contributes to atherosclerosis [118]. Frye et al. [119] 
have demonstrated that the concentration of cross-links in 
collagen and lens proteins increased with aging in AG-
Es-dependent manner. The binding of AGE with their spe-
cific receptors RAGE would result in generation of intra-
cellular oxidative stress [114]. By using different AGE in-
hibitors researchers found that blocking the formation of 
AGEs in experimental animals prevents or slows down ag-
ing [120,121]. Tatone et al. also observed that the expres-
sion and activity of enzymes for detoxifying methylglyoxal, 
a major precursor of AGEs, in ovaries of reproductively old 
mice are lower than in young mice. All the above observa-
tions indicated that the accumulation of AGEs in aging 
ovary and other age-related diseases is a marked event, they 
may account for weakened efficiency of vascularization and 
for the activation of oxidative response through RAGE in-
teraction. 

2.2.3  Perifollicular vascularization and ovarian aging  

It is suggested that a healthy microenvironment is essential 
for follicular development and oocyte quality. An important 
aspect of effects is oxygen supply and paracrine regulators 
that are mainly supplied by perifollicular vascularization 
[122124]. Indeed, modifications such as spindle and 
chromosome abnormalities are similar between young oo-
cytes obtained from Graafian follicles with reduced peri-
follicular vascularization and old MII oocytes [108,125]. 
Unlike primordial and preantral follicles which gain their 
blood supply mainly from the stromal vessels, growing fol-
licles depend on an ingrowth of capillaries into the theca 
[77]. It was well known that dominant follicles have more 
blood vessel than others [126,127], and oocytes deriving 
from follicles with complete vascularization and plenteous 
oxygen content (3%) had higher fertilization and devel-
opmental potential [128]. Furthermore, studies of perifollic-
ular vascularity before oocyte aspiration demonstrated a 
positive correlation between high-grade vascularity and 
improved live birth rate during IVF [129,130]. The hypoxia 
due to an inadequate ingrowth of capillaries into the theca 
of the mature follicle may trigger an oxidative stress. It is 
further supported by the observation that mitochondria of 
granulosa cells from aged women exhibit structural damage 
similar to those found in other cells with a hypoxia treat-
ment [74,131].  

In a word, the reduced oxygen content, nutritional factors, 
signaling molecules and others in aged ovary depending on 
a compromised perifollicular vascularization are typical 
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characteristics of ovarian aging. 

2.3  Pathological effects 

Ovarian pathological changes may contribute to subfertility. 
Endometriosis is a disease that functioning endometrial tis-
sue is outside the uterine cavity. Endometriosis is the fore-
most disease of reproductive-age women, 30%50% of pa-
tients with endometriosis are infertility. Research has found 
that endometriosis was significantly related to age, peaking 
at ages 4044 [132]. Laparoscopic excision or ablation le-
sions helps to improve pregnancy rate in patients with mild 
or moderate endometriosis [133]. However, excision of en-
dometriotic ovarian cysts decreased the ovarian sensitivity 
to gonadotropin [134]. More evidences are needed to illus-
trate the effects of these coexisting diseases on ovarian 
function. This also reminds us that surgical exploration of 
infertile patients needs more cautions.  

2.4  Other factoring  

Epidemiological investigations revealed that the ovarian 
function would be affected by environmental, behavioral 
and other factors. From the 1980s onwards, a successive 
epidemiological survey suggested that educational level, 
occupation and contraceptives have effects on ovarian func-
tion and fertility [135]. Smoking is also known to advance 
menopause [136]. Long-term exposure to smoking has been 
shown to be associated with subfertility of women in later 
life [137]. However, the exact mechanism underlying is yet 
unknown. Ovarian aging is also associated with the expo-
sure to radiation, heavy metals, pesticides and chemicals 
which could perturb the meiotic process and cause aneu-
ploidy [138]. In addition, improper diet can also promote 
premature ovarian aging [139]. 

3  Ovarian aging assessment 

In assisted reproductive technology (ART), ovarian aging 
has become a major detrimental factor of pregnancy 
achievement and maintenance. Thus, accurate assessment of 
ovarian aging is of utmost importance. Currently, in order to 
measure ovarian aging, a variety of tests have been devel-
oped (Figure 1). 

3.1  Quantification of follicles 

Ovarian aging in woman is thought to be dominated by a 
gradual decreasing numbers of follicles, coinciding with 
diminished quality of the oocytes within the follicles [9]. 
Total ovarian reserve (TOR) contains primordial follicles 
(not growing follicles, NGFs) and early growing follicles 
(GFs), thus the assessment of TOR could reflect the ovarian 
condition and predict menopausal age. 

Theoretically, the most direct representation of the ovar-
ian reserve (OR) is the quantity of ovarian NGFs. The 
number of primordial follicles in the peri-menopausal ova-
ries are only about 1/10 of that in the ovaries with the regu-
lar menstrual cycles, and primordial follicles are hardly 
found in postmenopausal ovaries [140]. Ovarian biopsy 
from 60 infertile women aged 1945 years showed a signif-
icant negative correlation between age and follicular density 
and ovarian volume [141]. However, the follicle density 
within the cortex has been shown to vary greatly in the 
same ovary and the minimum number of follicles required 
for fertility are also unknown [107,142], invasive ovarian 
biopsy was concluded not to be a reliable test of OR. 

Currently, noninvasive and available ultrasound tests of 
ovarian aging include AFC (antral follicle count), ovarian 
volume and ovarian blood flow. Some reports showed that 
AFC was found to have a better reliability than ovarian 
volume to predict ovarian response during ART [143]. In 
recent years, AFC has been demonstrated to be correlated 
with the occurrence of the menopausal transition [144], and 
to be related strongly with the quantitative aspects of OR. 
Considering the ease of measurement, low cost and reliabil-
ity, AFC has become one of the most commonly used ul-
trasonic markers of ovarian reserve in clinical practice [145]. 
In woman with poor ovarian reserve, stromal blood flow has 
been shown to be reduced or absent by Doppler assessment 
[146] . It is possible that ovarian stromal flow is used in the 
prediction of premature ovarian aging. 

3.2  Endocrine measurement 

Ovarian is an endocrine organ and functions through the 
feedback of gonadal hormones and gonadotropins. The de-
creased size of AFC is the main cause of the altered feed-
back, with a reduction in inhibin B secretion in the initial 
stages and estradiol and inhibin A output in later stages. 
This serological testing method is convenient and with high 
reproducibility.  

During the early follicular phase, basal hormone tests in-
cluding serum follicle-stimulating hormone (FSH), E2 and 
FSH/luteinizing hormone (LH) ratio, have been traditionally 
employed for OR assessment. The elevated FSH level is an 
irrefutable sign of ovarian aging, which only rise 10 years 
before the menopause or when women are becoming infer-
tile. Therefore, the change of FSH level is only a short-term 
predictor [147,148]. The levels of estradiol and inhibin A 
remain stable in early follicular phase in women, until the 
later phase of the menopausal transition [149,150]. Thus, 
the predictive ability of these tests to ovarian aging is lim-
ited in some extents. 

Anti-mullerian hormone (AMH) and inhibin are the 
TGF-B (transforming growth factor-B) superfamily mem-
bers. AMH is secreted into serum preferentially by small 
antral follicles [151,152]. Previous studies have shown that 
the AMH level is strongly related to inhibin B, FSH and 
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AFC in IVF [153,154]. With the decrease in the number of 
AFC, the AMH serum level diminishes as well 
[144,155157]. In contrast to other markers, one of the 
main advantages of AMH is the stability of its serum level 
during the entire menstrual cycle [158]. Therefore, in clini-
cal practice, AMH seems to be a suitable marker for OR 
prediction [159]. Nevertheless, serum AMH levels would 
invariably become undetectable near menopause [160] and 
this low-value makes it difficult to predict menopause age 
accurately. 

Inhibin B is primarily produced by antral follicles which 
are FSH-sensitive [161,162]. A reduction in cohort size with 
aging is accompanied by elevated FSH levels and decreased 
inhibin B secretion [163], however, inhibin B is often 
viewed as a rather late marker of decreased follicle numbers 
[43,163].  

3.3  Genetic testing 

Increasing attention has been paid to the genetic factors of 
ovarian aging and natural menopausal age. The high herita-
bility for the age of menopause indicates that there is a ge-
netic effect in ovarian aging [9]. Genes whose alteration 
causes POF have also been used for the assessment of ovar-
ian aging. These genes are those that associated with pri-
mordial follicle formation and growth, such as FIGLA, 
BMP15 and GDF9 gene [164,165], and those involved in 
hormone production, such as FSHR, LHR, FSH, CYP19 
and CYP17 [164,165]. As the substantial advances in ge-
nome research and its applications to the field of reproduc-
tion, genetic diagnosis of ovarian aging will become more 
popular. 

4  Perspective  

The mechanism underlying ovarian aging is exceptionally 
complex. It has been known that the OR is decreasing over 
time, but how this reserve is established in fetal ovaries, and 
whether the germline stem cells exist, are still unknown. 
With the continuous development of science and technology, 
transgenic/knockout technology and gene chips could be 
used to study the intrinsic molecular mechanisms of ovarian 
aging. Proper assessment of ovarian aging is of utmost im-
portance. The diagnosis of predictability at appropriate tim-
ing may guide pregnancy achievement or fertility preserva-
tion in women at risk. 
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