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Abstract

The human gut harbors more than 100 trillion microbial cells, which have an essential role in human metabolic
regulation via their symbiotic interactions with the host. Altered gut microbial ecosystems have been associated
with increased metabolic and immune disorders in animals and humans. Molecular interactions linking the gut
microbiota with host energy metabolism, lipid accumulation, and immunity have also been identified. However, the
exact mechanisms that link specific variations in the composition of the gut microbiota with the development of
obesity and metabolic diseases in humans remain obscure owing to the complex etiology of these pathologies. In
this review, we discuss current knowledge about the mechanistic interactions between the gut microbiota, host
energy metabolism, and the host immune system in the context of obesity and metabolic disease, with a focus on
the importance of the axis that links gut microbes and host metabolic inflammation. Finally, we discuss therapeutic
approaches aimed at reshaping the gut microbial ecosystem to regulate obesity and related pathologies, as well as
the challenges that remain in this area.
The essential role of the gut microbiota in human
health
Trillions of microbes live in our guts, which are collectively
termed “gut microbiota” [1]. The process of colonization
with these microbes starts prenatally, through microbial
transmission from mother to fetus [2]. Colonization of
the human gut continues after birth and is modulated
by factors including gestational age, mode of delivery
(natural or by Caesarean section), diet (breastfeeding or
infant formula),
hygiene, and antibiotic exposure. The environment and
diet during the first 3 years of life are crucial to the ac-
quisition of an adult-like microbiota and to the estab-
lishment of bacterial–host symbiosis that influences
the development of the immune and neurologic sys-
tems. The human gut microbiota reaches the character-
istics of an adult microbiota between the ages of 2 and
5 years [2].
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Gene sequencing data have shown that although a
great diversity of bacterial species is found among healthy
individuals, the gut metagenome (that is, all the genes in
the community of gut microorganisms) is involved in core
functions, such as the digestion and degradation of other-
wise indigestible nutrients, and the development and
stimulation of the immune system and digestive tract of
the host [3–7]. The gut microbiota also produces pharma-
cologically active signaling molecules that interact with
the metabolism of the host [8–10]. For example, short-
chain fatty acids (SCFAs) are produced by fermentation of
dietary fibers by gut bacteria. Their interaction with G
protein-coupled receptors (GPCRs) affects insulin sensi-
tivity in adipocytes and peripheral organs, thus regulating
energy metabolism [11]. Transient changes in the intes-
tinal ecosystem occur throughout life and in some cases
can result in the disruption of microbial–host symbiosis
[12]. Owing to the essential role of the gut ecosystem in
maintaining host physiology, its alteration can trigger a
wide range of physiological disorders, including low-grade
inflammation, metabolic disorders, excess lipid accumula-
tion, and loss of insulin sensitivity, which increase the risk
of developing metabolic diseases.
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Scientific efforts have been focused on understanding
the mechanistic basis of the crosstalk between gut mi-
crobes and host metabolism in the development and
maintenance of host diseases and have revealed the im-
portance of the gut-microbial–host-immune axis [13].
However, whether the presence of keystone bacterial
species or the general loss of microbial core functions is
the main factor responsible for metabolic and inflamma-
tory disorders of the host is still unclear [13]. In this re-
view, we explore the complex mechanisms that link lipid
metabolism, inflammation, insulin signaling, and obesity
(Fig. 1). We also discuss the influence of the gut micro-
biota in the onset of obesity and metabolic diseases
through molecular interactions with energy metabolism
and inflammation pathways of the host. Finally, we as-
sess the therapeutic potential of manipulating microbial
ecology to prevent obesity-related pathologies.

Obesity and the metabolic syndrome
Obesity is characterized by an excess of adipose tissue
and occurs when an imbalance exists between energy in-
take and energy expenditure [14]. The onset of obesity is
a complex process that involves genetic and environ-
mental factors and is often associated with the develop-
ment of several chronic complications, such as high
fasting glucose levels (hyperglycemia), elevated triglycer-
ide levels (hypertriglyceridemia), low levels of high-
density lipoprotein (dyslipidemia), and high blood pres-
sure (hypertension) [15]. Individuals who meet at least
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Fig. 1 Crosstalk between the gut microbiota and the mammalian
host in inflammation and metabolism. The gut microbiota can
contribute to host insulin resistance, low grade inflammation, and
fat deposition through a range of molecular interactions with the
host and therefore can indirectly participate in the onset of obesity
and metabolic diseases
three of these criteria are clinically diagnosed as having
the metabolic syndrome [15], which increases the risk of
developing metabolic diseases such as type 2 diabetes
and cardiovascular diseases. Most of the individuals with
the metabolic syndrome have abnormal fat accumula-
tion, which suggests that the excess of adipose tissue has
a causative role in this syndrome [16]. However, this hy-
pothesis has been challenged because several epidemio-
logical studies have identified people with a healthy body
mass index (BMI) who nevertheless presented with
markers of metabolic dysfunction, such as high levels of
triglycerides and accumulation of fat in the liver [15, 17].
The metabolic syndrome should be considered as a clin-
ical diagnosis that is mechanistically driven by a complex
combination of factors including impaired fat accumula-
tion, insulin action, and immunity [18].

Link between impaired insulin action, low-grade
inflammation, and obesity
In healthy individuals, insulin triggers glucose uptake in
peripheral organs and the secretion of this hormone is
activated by the rise in postprandial plasma glucose con-
centration. Insulin enables the use of extracellular glu-
cose by the body, which results in increased glycolysis
and respiration, but it also enables the storage of glucose
and lipids by stimulation of glycogenesis and lipogenesis
and enables protein synthesis. Insulin also reduces deg-
radation and recirculation of carbohydrates and lipids by
inhibiting gluconeogenesis and lipolysis [19, 20]. Im-
paired insulin action in peripheral organs results in a
loss of sensitivity to insulin, which is also called insulin
resistance. Loss of insulin sensitivity triggers fasting
hyperglycemia and increases hepatic lipid synthesis, dys-
lipidemia, hypertension, and fat accumulation in adipose
tissues. Thus, insulin resistance is an important factor
that initiates some of the features characteristic of the
metabolic syndrome [20, 21]. In addition, long-term in-
sulin resistance, which leads to a constant raised level of
systemic glucose concentration, is the main driver of
type 2 diabetes. The metabolic disorders characteristic of
the metabolic syndrome (hyperglycemia, hypertriglyc-
eridemia, dyslipidemia, hypertension) are also associated
with activation of the immune system [22]. Excessive
calorie intake, increased fat accumulation, and lipotoxi-
city activate the production of effector molecules (cyto-
kines) and cells that are primarily involved in innate
immunity [23, 24]. This production promotes a chronic,
low-grade inflammatory status, induces the recruitment
and activation of many mature immune cells (including
mast cells, macrophages, and dendritic cells) in meta-
bolic tissues and particularly in adipose tissues, and also
induces recruitment and activation of other cells, such
as adipocytes, that modify the tissue milieu and reinforce
the inflammatory process [25, 26]. Cai and colleagues
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have shown that activation of effector molecules of in-
flammation contributes to desensitizing insulin signaling
pathways [24].
At the molecular level, several mechanisms linking the

activation of inflammatory pathways and impaired insu-
lin action come into play: activation of IκB kinase com-
plex, extracellular signal-regulated protein kinases 1 and
2 (ERK1/2), and c-Jun N-terminal kinases (JNKs) in in-
flammatory tissues in individuals with obesity decreases
tyrosine phosphorylation of the insulin receptor sub-
strate (IRS) proteins, leading to an attenuation of insulin
signaling [27]. However, activation of JNKs and IκB kin-
ase complex does not affect inflammation in the same
way and does not attenuate insulin signaling in all tis-
sues [27, 28]. The production of cytokines such as tumor
necrosis factor α (TNF-α) or interleukin (IL)-1β in vis-
ceral adipose tissues in rodents and humans affects insu-
lin sensitivity by altering the expression of genes
encoding IRS-1, the glucose transporter GLUT4, and
PPAR-α [29, 30]. Obesity-related inflammation and im-
paired insulin action are tightly connected; inflammation
leads to impaired insulin action, which in turn contrib-
utes to the development of metabolic abnormalities. The
emergence of chronic inflammation in individuals with
obesity has been suggested to promote the clinical pro-
gression of the metabolic syndrome and obesity-related
pathologies such as type 2 diabetes and non-alcoholic
fatty liver disease (also called hepatic steatosis) [22, 31].

Interactions between gut microbes and host
metabolism in the physiopathology of obesity
and the metabolic syndrome
Although genetic variants have been associated with sus-
ceptibility to developing obesity and type 2 diabetes, the
heritability of these variants is fairly modest. The gut
microbiota has recently been recognized as a key envir-
onmental factor driving metabolic diseases. In fact, the
gut microbiota is even seen as a separate endocrine
organ, which is involved, through a molecular crosstalk
with the host, in the maintenance of host energy homeo-
stasis and in the stimulation of host immunity [32].
Shifts in gut microbial composition caused by external
factors can result in a dramatic alteration of the symbi-
otic relationship between gut bacteria and the host,
which promotes the development of metabolic diseases.
In particular, the gut microbiota is believed to contribute
to metabolic diseases via stimulation of low-grade in-
flammation [13].

The gut microbiota affects calorie harvest and energy
homeostasis
A body of evidence shows that the gut microbiota helps
to harvest energy and increase host fat storage [33, 34].
Germ-free mice have 40 % less total body fat than
conventional mice although they ingest 29 % more calo-
ries than their conventionally raised littermates [33].
Germ-free mice also gain less weight than convention-
ally raised mice and they are protected against diet-
induced glucose intolerance and the development of
insulin resistance [28]. In addition, fecal microbiota
transplanted from conventionally raised mice to germ-
free mice triggered a 57 % increase in the amount of
body fat and a dramatic increase in hepatic triglyceride
levels and insulin resistance without modifying the
amount of food consumed [11]. The expression of host
genes involved in energy homeostasis, lipid metabolism,
and mitochondrial metabolism in different parts of the
gut, as well as in the liver and adipose tissues, is mark-
edly different in germ-free mice and conventionally
raised mice [35].
Studies in germ-free and conventionally raised mice

have revealed several mechanisms linking gut bacteria
and energy metabolism (Fig. 2):

1. The gut microbiota can have a role in the
development of the gut epithelium by increasing the
density of small intestinal villi capillaries and by
influencing gut physiology and gut motility, thus
promoting caloric extraction from the diet [6, 36].

2. Polysaccharides are not digested in the proximal
intestine of humans and rodents; instead, they are
transformed into digestible compounds such as
sugars or SCFAs by the gut microbiota in the distal
intestine. These energy substrates are used by
colonocytes in particular and the host in general [37].

3. The gut microbiota downregulates the intestinal
expression of fasting-induced adipose factor (FIAF),
which inhibits lipoprotein lipase in adipose tissues.
FIAF activates the breakdown of lipoprotein-
contained triacylglycerol into free fatty acids to be
used by muscle and adipose tissues. Therefore, the
inhibition of FIAF promotes triglyceride deposition
in adipocytes [11].

4. The gut microbiota suppresses the release of
adenosine monophosphate-activated protein kinase
(AMPK), which is primarily expressed in skeletal
muscle, brain, and liver in response to metabolic stress
(for example, hypoxia, glucose deprivation, exercise).
AMPK inhibition promoted by gut bacteria leads to
downregulation of mitochondrial fatty acid oxidation,
ketogenesis, glucose uptake, and insulin secretion and
up-regulation of lipogenesis and cholesterol and
tryglyceride synthesis [34, 38].

5. SCFAs are ligands for GPCRs such as GPR41,
GPR43, and GPR109A, which are expressed in gut
enteroendocrine cells. These specialized cells have
essential endocrine functions in the intestine or
pancreas. Upon SCFA production, GPCRs stimulate
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Fig. 2 Metabolic and immune interactions between gut microbes and the host in obesity and the metabolic syndrome. The gut microbiota is
involved in a molecular crosstalk with the host that modulates host physiology, metabolism, and inflammatory status. In particular, the gut
microbiota participates in the physiology and motility of the digestive tract and in the digestion of polysaccharides, which directly influences host
energy availability. The gut microbiota inhibits fasting-induced adipose factor (FIAF) in the intestine and monophosphate activated protein kinase
(AMPK) in several organs such as the brain and muscle, which results in increasing fat deposition. The short-chain fatty acids (SCFAs) produced by
bacteria from polysaccharides interact with G protein-coupled receptors (GPCRs; GPR41, GPR43, and GPR109A), which stimulates gut motility and
host immunity. The gut microbiota also contributes to fat deposition through the regulation of the farnesoid X receptor (FXR), the bile acid receptor
responsible for the regulation of bile acid synthesis and hepatic triglyceride accumulation. The gut microbiota converts choline to trimethylamine, thus
influencing the bioavailability of choline for host use and indirectly affecting phosphatidylcholine production and hepatic triglyceride transport by
very-low-density lipoproteins (VLDLs)
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peptide YY (PYY), which leads to changes in gut
motility and facilitation of nutrient absorption. Samuel
and colleagues [34] showed that GPR41-deficient mice
have more lean body mass and less body fat than their
wild-type littermates. However, a more recent study
had contrasting results, with GPR41 knockout mice
showing increased amounts of body fat and decreased
energy expenditure in comparison with wild-type
mice [39]. GPR43 activation is also thought to reduce
fat accumulation and regulate energy metabolism by
suppressing insulin sensitivity in adipose tissues and
increasing insulin sensitivity in liver and muscle
[9, 11]. The gut microbiota also regulates the adaptive
immune system in the gut and maintains colonic
health in mice through the SCFA-dependent
activation of GPR43 [40].

6. Parseus and colleagues [41] proposed that the gut
microbiota contributes to the high-fat-diet-induced
obesity phenotype through the regulation of the
farnesoid X receptor (FXR), the bile acid receptor
responsible for the regulation of bile acid synthesis
and hepatic triglyceride accumulation.

7. Choline is an essential nutrient for the synthesis of
phosphatidylcholine, which is a major component of
cell and mitochondrial membranes.
Phosphatidylcholine is also a major component of
very‐low‐density lipoproteins (VLDL), which are
responsible for export of triglycerides to the organs
[42]. Defective export of triglycerides by VLDL leads
to their accumulation in hepatocytes, which is the
central mechanism in the development of hepatic
steatosis [43]. The gut microbiota, through its ability
to convert choline to trimethylamine, regulates the
bioavailability of choline and indirectly affects the
storage of triglycerides in the liver [44].

Shifts in the gut microbial ecosystem in obesity
Human studies and animal models have been used to
demonstrate that the gut microbiota is altered in obesity.
A comparison of bacterial composition in the gut of
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lean, wild-type, and obese mice (leptin-deficient ob/ob
mice, in which obesity is induced by a deficiency in lep-
tin, the hormone that controls satiety) showed differ-
ences in the abundance of the phyla Bacteroidetes and
Firmicutes. In particular, the Firmicutes:Bacteroidetes ra-
tio positively correlated with the obese phenotype inde-
pendently of diet [45]. Turnbaugh and colleagues [33]
also compared the gut microbiota of lean mice and mice
with diet-induced obesity and found an increase in the
abundance of Firmicutes that was associated with diet-
induced obesity. However, the observed differences were
related to the growth of a specific class within the Firmi-
cutes phylum, the Mollicutes class, in animals with diet-
induced obesity. Moreover, these compositional changes
were completely reversed after a return to a normal diet,
which suggests that diet is the main contributing factor
to obesity-associated changes in the gut microbiota.
These observations were supported by the findings of
Murphy and colleagues [46], who identified an increase
in the Firmicutes:Bacteroidetes ratio in ob/ob mice and
in mice fed a high-fat diet compared with lean mice. Of
note, this increase was more significant in the high-fat-
diet fed mice than in the ob/ob mice.
More recently, Ridaura and colleagues [47] have estab-

lished causal links between gut microbial communities
and obesity by transplanting fecal samples from co-twins
discordant for obesity into separate groups of germ-free
mice. They found that mice colonized with the fecal
microbiota of co-twins with obesity had a greater in-
crease in body weight and amount of adipose tissue than
the mice colonized with the fecal microbiota of lean co-
twins. In addition, obese mice co-housed with lean mice
also experienced a lower weight gain than those co-
housed with obese mice and a shift in gut microbiota
composition towards a lean-like status. In particular,
growth of Bacteroidetes was stimulated in obese mice
co-housed with lean mice and was associated with the
increased expression of proteins involved in branched-
chain amino acid catabolism and increased production
of SCFAs [47]. It is important to note that although
SCFAs are a source of calories for the host, their intes-
tinal production has been mostly associated with re-
duced inflammation and increased satiety and with
overall positive metabolic effects [32, 48]. Altogether,
these results show that the lean or obese gut microbial
ecosystem in the mouse model is mostly influenced by
the diet and to a lesser extent by co-housing with litter-
mates. The effects of co-housing the obese and lean
mice were highly transferable in germ-free mice, thus
contributing to the protection or the onset of obesity in
these mice.
Human studies also indicated an alteration of the gut

microbial ecosystem with obesity. Turnbaugh and
colleagues [33] observed differences in the distal gut
microbiota of individuals with obesity compared to lean
individuals and the relative abundance of Bacteroidetes
increased as individuals lost weight when undergoing
either a fat-restricted or a carbohydrate-restricted low-
calorie diet. The decreased Bacteroidetes:Firmicutes
ratio found in people with obesity is thought to lead to
more efficient hydrolysis of non-digestible polysaccha-
rides in the intestinal lumen and may lead to more calo-
ries and fat being extracted from food than occurs in
lean individuals [11]. However, other human studies in
which gut bacterial composition was compared between
lean individuals and individuals with obesity have failed
to confirm the association between obesity and a de-
creased Bacteroidetes:Firmicutes ratio [49, 50]. A recent
report has suggested that the microbiota of people with
obesity and those who are lean responds differently to
the calorie content in the diet [51]. Nutrient absorption
induced a shift in the gut microbial composition in lean
individuals but not in those with obesity, increasing the
relative abundance of Firmicutes while decreasing the
relative abundance of Bacteroidetes [50]. Microbial gene
richness might also have a role in the inflammatory sta-
tus of the host, which is related to obesity. Individuals
with obesity who have a high bacterial gene count were
found to carry a higher proportion of species associated
with an anti-inflammatory status (for example, F. praus-
nitzii) and a lower proportion of species associated with
a proinflammatory status (for example, Bacteroides spp.).
Also, the bacterial gene count for genes associated with
oxidative stress was higher in individuals with low bac-
terial gene count than in those with high bacterial gene
count [51]. As carrying out a controlled dietary interven-
tion study in humans is difficult, the complex interaction
between diet, age, host environment, and host genetic
background in the modulation of gut microbial ecosys-
tems is not fully understood. Nevertheless, a recent re-
port suggests that alteration of the gut microbiota by
behavioral changes, including new dietary habits [52]
and use of antibiotics, could be the main driver of the
obesity pandemic [53, 54].

Chronic inflammation links the gut microbiota to obesity
and insulin resistance
One of the hallmarks of obesity and obesity-related
pathologies is the occurrence of chronic low-grade in-
flammation [22]. Lipopolysaccharides (LPS), also called
endotoxins, which are derived from the outer cell mem-
brane of Gram-negative bacteria, have been thought to
initiate the inflammation-related processes associated
with the onset of obesity and insulin resistance (Fig. 3)
[23]. LPS contain lipid A in their structure and are able
to cross the gastrointestinal mucosa via leaky intestinal
tight junctions or by infiltrating chylomicrons, the
lipoproteins responsible for the absorption of dietary
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Fig. 3 Induction of inflammatory signals in proinflammatory macrophages and their connection with insulin pathways. a After translocation of
gut bacteria to other tissues, the bacterial lipopolysaccharides (LPS) in the circulation and organs activate the transcription of cytokines via Toll-like
receptor (TLR)4. Activated TLR4 mediates inflammatory signals involving myeloid differentiation primary response gene 88 (MyD88)-dependent pathways.
The downstream responses trigger the activation of mitogen-activated protein kinase (MAPK) pathways, including those involving extracellular
signal-regulated protein kinases 1 and 2 (ERK1/2), c-Jun-N-terminal kinases (JNK), p38, and inhibitor of IκB kinase complex (IKKβ). These pathways participate
in the activation of transcription factors nuclear factor κB (NF-κB) and activator protein 1 (AP-1) and cytokine production. ERK1/2 and JNKs are also involved
in the induction of insulin signaling pathways. b Pattern-recognition receptors such as TLR4, TLR2, and TLR8 are activated by LPS, cytokines, or lipotoxicity.
The intracellular nucleotide oligomerization domain (NOD)-like receptors also recognize LPS, which leads to induction of thioredoxin-interacting
protein (which is encoded by TXNIP) and recruitment of other effector molecules such as those that are components of inflammasome
pathways [28]. Inflammasomes are multiprotein complexes composed of three proteins: nucleotide-binding domain leucine-rich repeat
containing (NLR) protein, adaptor protein ASC, and caspase-1. Inflammasome activation contributes to the maturation of the cytokines interleukin
(IL)-1β and IL-8
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triglycerides and cholesterol from the intestine to the
plasma [23, 55, 56]. Once they reach the systemic circu-
lation, LPS infiltrate tissues such as the liver or adipose
tissues, triggering an innate immune response [23]. In
particular, LPS bind the plasma LPS-binding protein
(LBP), which activates the receptor protein CD14 that is
located in the plasma membrane of macrophages [56].
The complex thus generated binds Toll-like receptor 4
(TLR4) at the surface of macrophages, which triggers
transduction signals that activate the expression of genes
encoding several inflammatory effectors, such as nuclear
factor κB (NF-κB) and activator protein 1 (AP-1) [56,
57]. LPS also regulate the nucleotide oligomerization do-
main (NOD)-like receptors present in macrophages and
dendritic cells, which cooperate with TLRs to induce
NF-κβ. In addition, LPS participate in the recruitment of
other effector molecules, such as nucleotide-binding do-
main leucine-rich repeat containing (NLR) protein,
adaptor protein ASC, and caspase-1, which are compo-
nents of the inflammasome, a multiprotein oligomer that
activates the innate immune system [27].
Systemic LPS are found at low concentrations in

healthy individuals but reach high concentrations in in-
dividuals with obesity, a condition called metabolic
endotoxemia [23]. Several mechanisms linking obesity
and metabolic endotoxemia have been proposed: during
consumption of a high-fat diet, the gut microbiota is
modified, which leads to increases in gut permeability
and in the systemic levels of bacterial products such as
LPS [23]. Additionally, excess fat intake triggers an in-
crease in chylomicrons in the intestine during the post-
prandial period (following a meal), which favors LPS
infiltration into the circulation [58]. Impaired lipoprotein
metabolism in patients with type 2 diabetes has also
been found to reduce LPS catabolism and might increase
endotoxemia-related inflammation [59]. The importance
of metabolic endotoxemia in the physiopathology of in-
sulin resistance and obesity has been further highlighted
by Shi and colleagues [50], who showed that mice
lacking TLR4 were protected against insulin resistance
induced by a high-fat diet. Results from another study
revealed that LPS infusion into genetically identical male
mice for 4 weeks induced a comparable weight gain to
that observed in mice consuming a high-fat diet [23].
Furthermore, an interesting animal model, the immuno-
protein CD14 knockout ob/ob mouse, which is unable to
induce LPS-mediated inflammatory pathways, was resist-
ant to weight gain and was insulin-hypersensitive, des-
pite being fed with the same diet as leptin-deficient ob/
ob mice [60]. In humans, circulating endotoxin levels
were found to increase by 20 % in individuals with obes-
ity or glucose intolerance and by 125 % in individuals
with type 2 diabetes compared with the levels in lean
individuals [61]. Circulating endotoxin levels were also
associated with elevated TNF-α and IL-6 concentrations
in adipocytes [62]. In addition, a high-fat or high-
carbohydrate diet, but not a diet rich in fiber and fruit,
activated systemic LPS secretion, as well as the expres-
sion of TLR4, NF-κB, and suppressor of cytokine (SOC)
3, which are factors also involved in pathways that regu-
late insulin secretion [62]. Together, these results show
the important role LPS-mediated inflammatory pathways
have in obesity and obesity-related pathologies.
Other microbial-derived metabolites produced from

aromatic amino acids (tyrosine, tryptophan, and phenyl-
alanine) have been suggested to interact with host sig-
naling pathways and thus affect host immunity. Indole
was identified as one of the major tryptophan-derived
microbial metabolites [63], produced by the action of
bacterial tryptophanase (which is present in Bacteroides
thetaiotaomicron, Proteus vulgaris, and Escherichia coli,
among other species) [64]. Upon absorption, indole can
be sulfated in the liver, which results in the production
of 3-indoxylsulfate, or can undergo further bacterial
metabolism, leading to the production of a range of re-
lated compounds, including indole-3-pyruvate, indole-3-
lactate, and indole-3-acetate [65]. These metabolites
bind human pharmacological targets, which puts the im-
pact of bacterial metabolism of tryptophan in human
health and disease into a wider perspective. In particular,



Boulangé et al. Genome Medicine  (2016) 8:42 Page 8 of 12
3-indoxylsulfate and indole-3-propionate have been
thought to interact with inflammation-related processes
in the human host [66]. 3-Indoxylsulfate activates the
aryl hydrocarbon receptor (AhR), thus regulating the
transcription of IL-6 and several enzymes from the P450
superfamily complex (for example, CYP1A1, CYP1A2,
and CYP2S1) [67]. Indole-3-propionate is a pregnane X
receptor (PXR) agonist with a beneficial role in gut
barrier function, which takes place either through up-
regulation of the expression of junctional proteins or by
downregulation of TNF-α production in enterocytes
[66]. By improving intestinal barrier permeability,
indole-3-propionate also indirectly limits the transloca-
tion of antigens and pathogens, and LPS infiltration, into
the circulation and, therefore, might reduce metabolic
endotoxemia and host inflammation [68]. Therefore, a
healthy or dysbiotic gut microbiota affects the gut and
metabolic health of the host through modulation of gut
physiology and LPS infiltration, calorie intake, fat accu-
mulation, and insulin action (Fig. 4).
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Therapeutic potential of manipulating the gut
microbial ecology
The study of the metabolic, signaling, and immune in-
teractions between gut microbes and the host, and how
these interactions modulate host brain, muscle, liver and
gut functions, has raised the concept of therapeutic
microbial manipulation to combat or prevent diseases
[4, 10]. In particular, the selection of specific gut bacter-
ial strains and the enhancement of the gut microbial
ecology represents a promising therapeutic approach to
control energy intake and reduce the prevalence of obes-
ity and the metabolic syndrome. Fecal transplantation is
an efficient way to reshape the gut microbial ecosystem
after antibiotic treatment or to help fight intestinal infec-
tion with Clostridium difficile and can be used as ther-
apy for inflammatory bowel diseases [69, 70]. A study
also showed that nine men with the metabolic syndrome
who underwent fecal transplantation with stools from
healthy lean individuals had lower fasting levels of tri-
glycerides and developed greater hepatic and peripheral
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insulin sensitivity after transplantation than nine men
who received a transplant of their own stool [71]. There-
fore, fecal transplantation may be useful in the struggle
against obesity, although the procedure is still at an ex-
perimental stage and the mechanisms involved require
further understanding.
The use of probiotics and prebiotics to improve the in-

teractions between gut microbes and host metabolism in
obesity and other metabolic diseases has been exten-
sively investigated [72]. Probiotics are live microorgan-
isms that, when used as food supplements, beneficially
affect the host by improving intestinal microbial balance
and changing the composition of the colonic microbiota
[73]. Specific bacterial species such as Bifidobacterium
spp. have been shown to improve glucose homeostasis,
reduce weight gain and fat mass, and restore glucose-
mediated insulin secretion in mice fed a high-fat diet [73].
Prebiotics are food ingredients that beneficially affect

the host by selectively stimulating the growth and/or ac-
tivity of one or a restricted number of bacteria present
in the colon. Prebiotics are composed of oligosaccharides
or short-chain polysaccharides. They are found in common
dietary products, such as vegetables and whole-grain ce-
reals, and can be added in yoghurt. The best-characterized
prebiotics are fructosyl-oligosaccharides (FOS), including
inulin (long-chain fructosyl-oligosaccharide), galactosyl-
oligosaccharides (GOS), and other oligosaccharides present
in milk, which are transformed by the gut microbiota into
SCFAs and simultaneously promote proliferation of se-
lected commensal bacteria in the colon [74–77]. For ex-
ample, inulin has been found to stimulate the growth of
bifidobacteria and may reduce caloric intake and fat mass
in animals H [75]. Prebiotic stimulation of the growth of
bifidobacteria is correlated with increased glucose toler-
ance, improved glucose-induced insulin secretion, and
normalization of inflammation in rodents [78]. GOS also
modulate the uptake of monosaccharides from the gut by
changing the activity of host monosaccharide transporters,
which in turn results in activation of glycolytic pathways
[76]. Consumption of prebiotics has also been associated
with a reduction in hepatic, renal, and plasma lipid levels
in rodents [74, 75]. In particular, GOS supplementation in
healthy mice decreased hepatic triglyceride levels by lower-
ing the activity of lipogenic enzymes, fatty acid synthase,
and microsomal triglyceride transfer proteins, which are
involved in VLDL synthesis [75, 79]. Therefore, ingestion
of prebiotics might lower lipogenic activity and increase
lipolytic activity.
The effects of prebiotics and probiotics on anti-

inflammatory pathways, weight gain, and glucose metab-
olism in rodents have been largely attributed to SCFA
production [37]. SCFAs interact with GPCRs (for
example, GPR41 and GPR43) in the immune cells of the
human colon and promote expression of specific
chemokines in the colonic epithelium [80, 81]. SCFAs
repress NF-κB and affect the production of proinflam-
matory markers, such as IL-2 and IL-10, in leukocytes
[82]. SCFAs enhance satiety by increasing the synthesis
of PYY and proglucagon in epithelial cells and by inhibit-
ing the expression of neuroendocrine factors such as
leptin [83]. Other studies have indicated that the effects
of prebiotics on intestinal health and inflammation are
also mediated by the secretion of glucagon-like proteins
(GLP-1 and GLP-2) in enteroendocrine L cells [77, 84].
Cani and colleagues [68] showed that ob/ob mice fed a
high-carbohydrate diet supplemented with oligofructose
have increased intestinal representation of bifidobacteria
and lactobacilli, improved connections between tight
junctions, lower gut permeability, lower systemic endo-
toxemia, and lower systemic and hepatic inflammation
than ob/ob mice fed with a high-carbohydrate diet alone.
These physiological changes were correlated with GLP-2
levels and disappeared when the mice were treated with
a GLP-2 antagonist [68]. Another study also pointed out
that a synbiotic treatment combining polydextrose and
Bifidobacterium lactis B420 lowered the abundance of
Porphyromonadaceae in mice fed a high-fat diet [85].
This dietary supplement is thought to inhibit T helper
17 (Th17) cell infiltration in the small intestine, prevent-
ing metabolic inflammation and the development of type
2 diabetes [85].
In humans, probiotic intervention studies have re-

vealed a positive effect of these approaches on glucose
metabolism [86]. For example, during a 6-week random-
ized placebo-controlled study of 60 overweight healthy
Indian individuals, the VSL#3 probiotic mix decreased
systemic glucose and insulin levels [87]. However, evi-
dence of the anti-obesity effects of prebiotics remain to
be demonstrated. Many human studies highlight moder-
ate or no changes in weight loss after prebiotic interven-
tions [88]. Randomized controlled studies have identified
surrogate markers of prebiotic treatment (such as
plasma PYY, GLP-1, ghrelin) to be negatively correlated
with weight gain, inflammation, and impaired glucose
metabolism, which support the mechanisms observed in
rodents [89, 90]. However, there is no evidence to sug-
gest that prebiotic supplementation in infant formula
improves growth or clinical outcomes or causes adverse
effects in term infants. Studies in children, adults, and
the elderly vary in quality and outcomes. However, pre-
biotics have been shown to modulate the fecal micro-
biota and immune function in elderly individuals and to
reduce the levels of markers of the metabolic syndrome
in overweight adults [91–94]. The effect of prebiotics
and probiotics in obesity and related pathologies in
humans requires further exploration. In particular, care-
fully designed studies using appropriate doses of probio-
tics or prebiotics and controlled diets will be valuable to
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underpin the individual responses to different types of
interventions and their dependence on genetic, environ-
mental, and gut microbial factors.

Conclusions and future directions
The evidence for a strong contribution of the gut micro-
biota to the onset of obesity and metabolic diseases is
growing. The use of germ-free rodent models has enabled
us to establish the molecular basis of the interactions be-
tween gut microbes and the physiology of the host. The
modifications in the gut microbial ecology by dietary fac-
tors, antibiotics, probiotics, or prebiotics that were ob-
served in rodents and humans have further highlighted
the key modulatory roles of the gut microbiota and its
contribution to host obesity and metabolic diseases. In
particular, some metabolic disorders of the host are
thought to be associated with an inflammation-related
composition of the gut microbiota. However, how external
factors (such as diet, stress, age, drug intake, and circadian
cycles) affect the gut microbial composition and the effect-
iveness of microbial functions in rodents and humans is
still unclear. In the future, it seems essential to promote
top-down analytical approaches on an epidemiological
scale, integrating data from dietary questionnaires, data
about relevant environmental factors (such as stress or
factors that influence circadian rhythms) and history of
drug or antibiotic use to understand more deeply the
functions of gut bacteria in the physiopathology of human
obesity. In combination with animal studies, these inte-
grated epidemiological analyses will enable us to unravel
the missing connections within the metabolic axis linking
gut microbes and the host and to optimize therapeutic
strategies to reshape the gut microbial ecology. Using this
knowledge, we also hope to improve the stratification of
populations at risk of developing metabolic diseases and
offer novel perspectives for personalized healthcare, within
which clinicians might be able to tailor therapy on the
basis of individual habits and predispositions.
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