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Abstract
In the present work, we consider a boundary value problem with gluing conditions of
an integral form for the parabolic-hyperbolic type equation. We prove that the
considered problem has the Volterra property. The main tools used in the work are
related to the method of the integral equations and functional analysis.

Introduction
The theory of mixed type equations is one of the principal parts of the general theory of
partial differential equations. The interest for these kinds of equations arises intensively
because of both theoretical and practical uses of their applications. Many mathematical
models of applied problems require investigations of this type of equations.
The actuality of the consideration of mixed type equations has been mentioned, for the

first time, by S. A. Chaplygin in  in his famous work ‘On gas streams’ []. The first fun-
damental results in this direction was obtained in - by Tricomi [] and Gellerst-
edt []. The works of Lavrent’ev [], Bitsadze [, ], Frankl [], Protter [, ] andMorawetz
[], have had a great impact in this theory, where outstanding theoretical results were
obtained and pointed out important practical values of them. Bibliography of the main
fundamental results on this direction can be found, among others, in the monographs of
Bitsadze [], Berezansky [], Bers [], Salakhitdinov andUrinov [] andNakhushev [].
In most of the works devoted to the study of mixed type equations, the object of study

was mixed elliptic-hyperbolic type equations. Comparatively, few results have been ob-
tained on the study of mixed parabolic-hyperbolic type equations. However, this last type
of equations have also numerous applications in the real life processes (see [] for an in-
teresting example in mechanics). The reader can find a nice example given, for the first
time, by Gelfand in [], and connect with the movement of the gas in a channel sur-
rounded by a porous environment. Inside the channel, themovement of gas was described
by the wave equation and outside by the diffusion one. Mathematic models of this kind
of problems arise in the study of electromagnetic fields, in a heterogeneous environment,
consisting of dielectric and conductive environment for modeling the movement of a lit-
tle compressible fluid in a channel surrounded by a porous medium []. Here, the wave
equation describes the hydrodynamic pressure of the fluid in the channel, and the equa-
tion of filtration-pressure fluid in a porous medium. Similar problems arise in the study
of the magnetic intensity of the electromagnetic field [].
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In the last few years, the investigations on local boundary value problems, for mixed
equations in domains with non-characteristic boundary data, were intensively increased.
We point out that the studies made on boundary value problems for equations of mixed
type, in domains with deviation from the characteristics (with a non-characteristic bound-
ary), have originated with the fundamental works of Bitsadze [], where the generalized
Tricomi problem (ProblemM) for an equation of mixed type is discussed.
In the works [] and [], the analog to the Tricomi problem for a modeled parabolic-

hyperbolic equation, was investigated in a domain with a non-characteristic boundary in
a hyperbolic part. Moreover, the uniqueness of solution and the Volterra property of the
formulated problem was proved. We also refer to the recent works devoted to the study
of parabolic-hyperbolic equations [–].
In the last years, the interest for considering boundary value problems of parabolic-

hyperbolic type, with integral gluing condition on the line of type changing, is increasing
[, ].
In the present work, we study the analog to the generalized Tricomi problem with an

integral gluing condition on the line of type changing.We prove that the formulated prob-
lem has the Volterra property. The obtained result generalizes some previous ones from
Sadybekov and Tajzhanova given in [].

Formulation of the problem
Let � ⊂ R

 be a domain, bounded at y >  by segments AA, AB, BB of straight lines
x = , y = , x = , respectively, and at y <  by a monotone smooth curve AC : y = –γ (x),
 < x < l, / < l < , γ () = , l + γ (l) =  and by the segment BC : x– y = , l ≤ x < , which
is the characteristic curve of the equation

Lu = f (x, y), ()

where

Lu =

⎧⎨
⎩ux – uyy, y > ,

uxx – uyy, y < .
()

Now we state the problem that we will consider along the paper:

Problem B To find a solution of Eq. (), satisfying boundary conditions

u(x, y)|AA∪AB = , ()

(ux – uy)|AC =  ()

and gluing conditions

ux(x, +) = ux(x, –),

uy(x, +) = αuy(x, –) + β

∫ x


uy(t, –)Q(x, t)dt,  < x < ,

()

whereQ is a given function such thatQ ∈ C([, ]× [, ]), andα,β ∈R satisfy α +β > .
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When the curve AC coincides with the characteristic one x + y = , α =  and β = ,
the Problem B is just the Tricomi problem for parabolic-hyperbolic equation with a non-
characteristic line of type changing, which has been studied in [].
Regular solvability of the Problem B with continuous gluing conditions (α = , β = )

have been proved, for the first time, in [], and strong solvability of this problem was
proved in the work [].
Several properties, including the Volterra property of boundary problems for mixed

parabolic-hyperbolic equations, have been studied in the works [–].
We denote the parabolic part of the mixed domain � as � and the hyperbolic part

by �.
A regular solution of the Problem B in the domain � will be a function

u ∈ C(�̄)∩C(� ∪AB)∩C(� ∪AC ∪AB)∩C,(�)∩C,(�),

that satisfies Eq. () in the domains � and �, the boundary conditions ()-(), and the
gluing condition ().
Regarding the curve AC, we assume that x + γ (x) is monotonically increasing. Then,

rewriting it by using the characteristic variables ξ = x + y and η = x – y, we have that the
equation of the curve AC can be expressed as ξ = λ(η),  ≤ η ≤ .

Main result
Theorem  Let γ ∈ C[, l] and Q ∈ C([, ]× [, ]). Then for any function f ∈ C(�̄),
there exists a unique regular solution of the Problem B.

Proof By a regular solution of the Problem B in the domain � we look for a function that
fulfills the following expression:

u(ξ ,η) =



[
τ (ξ ) + τ (η) –

∫ η

ξ

ν(t)dt
]
–

∫ η

ξ

dξ

∫ η

ξ

f(ξ,η)dη, ()

where

ξ = x + y, η = x – y, f(ξ ,η) =


f
(

ξ + η


,
ξ – η



)
,

τ (x) = u(x, –), ν(x) = uy(x, –).
()

Based on () from (), using the expressions on (), we deduce that

ν(η) = τ ′(η) – 
∫ η

λ(η)
f(ξ,η)dξ, ≤ η ≤ . ()

By virtue of the unique solvability of the first boundary problem for the heat equation ()
satisfying condition (), and the fact that u(x, ) = τ (x), its solution can be represented as

u(x, y) =
∫ x


dx

∫ 


G(x – x, y, y)f (x, y)dy +

∫ x


Gy (x – x, y, )τ (x)dx, ()
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where τ () =  andG(x, y, y) is the Green’s function related to the first boundary problem,
for the heat equation in a rectangle AABB, which has the form []

G(x, y, y) =



√

πx

+∞∑
n=–∞

[
exp

{
–
(y – y + n)

x

}
– exp

{
–
(y + y + n)

x

}]
. ()

Calculating the derivative ∂u
∂y in () and passing to the limit at y → , we get

uy(x, +) = –
∫ x


k(x – t)ux(t, +)dt + F(x),

where

k(x) =
√
πx

+∞∑
n=–∞

e–
n
x =


√

πx 

+ k̃(x), ()

and

F(x) =
∫ x


dx

∫ 


Gy(x – x, y, y)|y=f (x, y)dy. ()

Thus, the main functional relation between τ ′(x) and ν(x) = uy(x, +), reduced to the
segment AB from the parabolic part of the domain, implies that

ν(x) = –
∫ x


k(x – t)τ ′(t)dt + F(x). ()

Suppose, in a first moment, that α �= . From () and (), considering the gluing condi-
tion (), we obtain the following integral equation regarding the function τ ′(x):

τ ′(x) +
∫ x


k(x, t)τ ′(t)dt = F(x). ()

Here,

k(x, t) =

α

[
k(x – t) + βQ(x, t)

]
, ()

and

F(x) =

α
F(x) + 

∫ x

λ(x)
f(ξ,x)dξ +

β
α

∫ x


Q(x, t)dt

∫ t

λ(t)
f (ξ, t)dξ. ()

Hence, the Problem B is equivalent, in the sense of unique solvability, to the second kind
Volterra integral equation ().
The restrictions imposed on the functions γ , Q, and the right-hand side of Eq. () guar-

antees that, by virtue of () and (), the kernel k(x, t) is a kernel with weak singularity.
So, we have that Eq. () has a unique solution and τ ′ ∈ C(, ). Since τ () = , we deduce
the uniqueness of the function τ . Equation () gives us the uniqueness of function ν and,
as consequence, we deduce, from Eq. (), the uniqueness of solution of Problem B when
α �= .

http://www.boundaryvalueproblems.com/content/2013/1/94
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Consider now the other case, i.e. α =  and β �= .
From functional relations () and (), and taking gluing condition () into account at

α = , we have

–
∫ x


k(x – t)τ ′(t)dt + F(x) = β

∫ x



[
τ ′(t) – 

∫ t

λ(t)
f(ξ, t)dξ

]
Q(x, t)dt

or, which is the same,

∫ x


τ ′(t)

[
k(x – t) + βQ(x, t)

]
dt = F(x) + β

∫ x


dt

∫ t

λ(t)
Q(x, t)f(ξ, t)dξ.

Considering the representation of k(x – t), the previous equation can be rewritten as fol-
lows:

∫ x



τ ′(t)dt
(x – t)/

=
√

π

[
F(x) + β

∫ x


dt

∫ t

λ(t)
Q(x, t)f(ξ, t)dξ

–
∫ x


τ ′(t)

(̃
k(x – t) + βQ(x, t)

)
dt

]
. ()

Since Eq. () is the Abel’s equation, it can be solved and so we arrive at the following
identity:

τ ′(x) =
F()√

πx
+

√
π

{∫ x



F ′
(t)dt√
x – t

+ β
∫ x



dt√
x – t

∂

∂t

∫ t


dz

∫ z

λ(z)
Q(t, z)f(ξ, z)dξ

–
∫ x



dt√
x – t

∂

∂t

∫ t


τ ′(z)

[̃
k(x – t) + βQ(t, z)

]
dz

}
.

Considering F() = , after some simplifications, we get

τ ′(x) +
∫ x


K(x, z)τ ′(z)dz = F(x), ()

where

K(x, z) =
√
π

{
Q(z, z)√
x – z

+
∫ x–z


(x – t)–




∂

∂t
[̃
k(t – z) + βQ(t, z)

]
dt

}
,

F(x) =
√
π

∫ x


dx

∫ 



[∫ x–x



Gyt(t, y, )√
x – x – t

dt
]
f (x, y)dy

+
β√
π

∫ x


dη

∫ η

λ(η)

[
Q(η,η)√x – η

+
∫ x–η



Qt(t,η)√
x – η – t

dt
]
f(ξ,η)dξ. ()

Since the kernel K(x, z) has a weak singularity, then Eq. () has a unique solution, and
it can be represented as

τ ′(x) = F(x) +
∫ x


R(x, z)F(z)dz, ()

where R(x, z) is the resolvent kernel of ().
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As a consequence, arguing as in the case α �= , we deduce, from Eq. (), the uniqueness
of solution of Problem B for α =  and β �= , and the result is proved. �

In the sequel, we will deduce the exact expression of the integral kernel related to the
unique solution of Problem B.
To this end, we suppose, at the beginning, that α �= . Note that the unique solution of

Eq. () can be represented as

τ ′(x) =
∫ x


(x, t)F(t)dt + F(x), ()

where (x, t) is the resolvent kernel of Eq. (), and it is given by the recurrence formula:

(x, t) =
∞∑
n=

(–)nkn(x, t), k(x, t) = k(x, t),

kn+(x, t) =
∫ x


k(x, z)kn(t, z)dz.

From (), taking τ () =  into account, we have that

τ (x) =
∫ x


(x, t)F(t)dt,

where (x, t) =  +
∫ x
t (z, t)dz.

From the formula (), and considering (), one can easily deduce that

u(ξ ,η) = τ (ξ ) +
∫ η

ξ

dη

∫ η

λ(η)
f(ξ,η)dξ. ()

Substituting the representation of τ (x) into () and considering () and (), after some
evaluations we get

u(x, y) =

α

∫ ξ


dx

∫ 


G(ξ – x, y)f (x, y)dy

+ 
∫ ξ


dη

∫ η

λ(η)
(ξ ,η)f(ξ,η)dξ

+
β
α

∫ ξ


dη

∫ η

λ(η)
G(ξ – η,η)f(ξ,η)dξ

+
∫ η

ξ

dη

∫ η

λ(η)
f(ξ,η)dξ, ()

where

G(x, y) =
∫ x


(x, t)Gy(t, y, )dt,

and

G(x,η) =
∫ x


Q(z + η,η)(x, z)dz.

http://www.boundaryvalueproblems.com/content/2013/1/94
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In an analogous way, substituting the representation of τ (x) into (), we have

u(x, y) =
∫ x


dx

∫ 


G(x – x, y, y)f (x, y)dy

+ 
∫ x


dη

∫ η

λ(η)
G(x – η, y)f(ξ,η)dξ

+
β
α

∫ x


dη

∫ η

λ(η)
G(x – η,η)f(ξ,η)dξ, ()

where

G(x, y, y) =G(x, y, y) +

α

∫ x


G(t, y)Gy(x – t, y, )dt

and

G(x,η) =
∫ x


Gy(x, y, )G(x – x,η)dx.

From () and (), we arrive at the following expression:

u(x, y) =
∫∫

�

Kαβ(x, y,x, y)f (x, y)dx dy,

where

Kαβ (x, y,x, y)

= θ (y)
{
θ (y)θ (x – x)G(x – x, y, y)

+ θ (–y)θ (x – η)
[
G(x – η, y) +

β
α

G(x – η,η)
]}

+ θ (–y)
{
θ (y)θ (ξ – x)G(ξ – x, y) + θ (–y)

[


θ (η – η)θ (η – ξ )θ (ξ – ξ)

+ θ (ξ – η)
[
(ξ ,η) +

β

α
G(ξ – η,η)

]]}
.

Here,

θ (y) =

⎧⎨
⎩, y > ,

, y < .

When α =  and β �= , by using a similar algorithm, we conclude that

u(x, y) =
∫∫

�

Kβ (x, y,x, y)f (x, y)dx dy,

where

Kβ (x, y,x, y)

= θ (y)
{
θ (y)θ (x – x)

[
G(x – x, y, y) +G(x – x,x, y, y)

]

http://www.boundaryvalueproblems.com/content/2013/1/94
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+ θ (–y)θ (x – η)G(x – η, y,η)
}
+ θ (–y)

{
θ (y)θ (ξ – x)G(ξ ,x, y)

+ θ (–y)
[
θ (ξ – η)Q(ξ ,η) +



θ (η – η)θ (η – ξ )θ (ξ – ξ)

]}
,

with

G(x,x, y) =
√
π

∫ x–x



[
Gy(z, y, )√

z
+

∫ z



{
Gys(s, y, )√

z – s

+ R(z + x, s + x)
[
Gy(s, y, )√

s
+

∫ s



Gyt(t, y, )√
s – t

dt
]}

ds
]
dz,

Q(x,η) =
β√
π

∫ x–η



[
Q(η,η)√

z
+

∫ z



{
Qs(s,η)√

z – s

+ R(z + η, s + η)
[
Q(η,η)√

s
+

∫ s



Qt(t,η)√
s – t

dt
]}

ds
]
dz,

G(t,x, y, y) =
∫ t


G(s,x, y)Gy(t – s, y, )ds

and

G(x, y,η) =
∫ x


Gy(x – x, y, )Q(x,η)dx.

Thus, we have partially proved the following lemma.

Lemma  The unique regular solution of Problem B can be represented as follows:

u(x, y) =
∫∫

�

K(x, y,x, y)f (x, y)dx dy (x, y) ∈ �, ()

where K(x, y,x, y) ∈ L(� × �) and

K(x, y,x, y) = Kαβ (x, y,x, y), if α �= ,

K(x, y,x, y) = Kβ (x, y,x, y), if α = .

Proof Expression () has been proved before. Let us see that K(x, y;x, y) ∈ L(� × �).
Note that in the kernel defined in (), all the items are bounded except the first one. So,

we only need to prove that

θ (y)θ (y)θ (x – x)G(x – x, y, y) ∈ L(� × �).

From the representation of the Green’s function G(x – x, y, y) given in (), it follows
that, for the aforementioned aim, it is enough to prove that (for n = ):

B(x– x, y, y) = θ (y)θ (y)θ (x– x)



√

π (x – x)

[
exp

{
–
(y – y)

(x – x)

}
– exp

{
–
(y + y)

(x – x)

}]

is bounded.

http://www.boundaryvalueproblems.com/content/2013/1/94
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First, note that

B(x – x, y, y) ≤ 

√

π (x – x)
e–

(y–y)
(x–x) .

Using this fact, we deduce that

‖B‖L(�×�) =
∫ 


dx

∫ 


dy

∫ x


dx

∫ 



∣∣B(x – x, y, y)
∣∣ dy

=
∫ 


dy

∫ 


dy

∫ 


dx

∫ x



∣∣B(x, y, y)∣∣ dx
≤

∫ 


dy

∫ 


dy

∫ 



∣∣B(x, y, y)∣∣ dx ≤ 
π

∫ 


dy

∫ 


dy

∫ 




x
e–

(y–y)
x dx

=

π

∫ 


dy

∫ 



dx
x

∫ 


e–

(y–y)
x dy.

By means of the change of variables y–y

√
x = y, we get that this last expression is less than

or equals to the following one:


π

∫ 


dy

∫ 



dx
x

∫ y

√
x

y–

√
x

e–y



√
xdy ≤ 

π

∫ 


dy

∫ 



dx√
x

∫ +∞

–∞
e–y dy =

√
π
.

As a consequence, K(x, y;x, y) ∈ L(� × �) and Lemma  is completely proved. �

Define now

Fαβ(x) =

⎧⎨
⎩F(x), α �= ,

F(x), α = .

We have the following regularity result for this function.

Lemma  If f ∈ C(�), f (, ) =  and Q ∈ C([, ]× [, ]), then Fαβ ∈ C[, ] and
Fαβ() = .

Proof Using the explicit form of the Green’s function given in (), it is not complicated to
prove that function Fαβ , defined by formulas () and (), belongs to the class of functions
C[, ] and Fαβ() = .
Lemma  is proved. �

Lemma  Suppose that Q ∈ C([, ]× [, ]) and f ∈ L(�), then Fαβ ∈ L(�) and

‖Fαβ‖L(,) ≤ C‖f ‖L(�). ()

Proof Consider the following problem in �:

ωx –ωyy = f (x, y), ω|AA∪AB∪AB = . ()

Obviously, we have that F(x) = limy→ ωy(x, y).

http://www.boundaryvalueproblems.com/content/2013/1/94
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First, note that it is known [] that problem () has a unique solution ω ∈ W ,
 (�),

and it satisfies the following inequality:

‖ω‖L(�) + ‖ωx‖L(�) + ‖ωy‖L(�) + ‖ωyy‖L(�) ≤ C‖f ‖L(�). ()

Using now the obvious equality

ωy(x, ) = ωy(x, y) –
∫ y


ωyy(x, t)dt,

we have that

∥∥ωy(·, )
∥∥
L(,)

=
∫ 



∣∣ωy(x, )
∣∣ dx = ∫ 


dy

∫ 



∣∣ωy(x, )
∣∣ dx

≤ C
[‖ωy‖L(�) + ‖ωyy‖L(�)

]
. ()

From () and (), we obtain

‖F‖L(,) =
∥∥ωy(·, )

∥∥
L(,)

≤ C‖f ‖L(�). ()

Now, by virtue of the conditions of Lemma  and the representations () and (), from
expression () and the Cauchy-Bunjakovskii inequalities, we get the estimate () and
conclude the proof. �

Denote now ‖·‖l as the normof the Sobolev spaceHl(�) ≡Wl
(�) withW 

 (�) ≡ L(�).

Lemma  Let u be the unique regular solution of Problem B. Then the following estimate
holds:

‖u‖ ≤ c‖f ‖. ()

Here, c is a positive constant that does not depend on u.

Proof By virtue of Lemma , and from () and (), we deduce that

∥∥τ ′∥∥
L(,)

≤ C‖Fαβ‖L(,) ≤ C‖f ‖.

The result follows from expression (). �

Definition  We define the setW as the set of all the regular solutions of Problem B.
A function u ∈ L(�) is said to be a strong solution of Problem B, if there exists a func-

tional sequence {un} ⊂W , such that un and Lun converge in L(�) to u and f , respectively.
Define L as the closure of the differential operator L : W → L(�), given by expres-

sion ().
Note that, according to the definition of the strong solution, the function u will be a

strong solution of Problem B if and only if u ∈D(L).
Now we are in a position to prove the following uniqueness result for strong solutions.

http://www.boundaryvalueproblems.com/content/2013/1/94


Berdyshev et al. Boundary Value Problems 2013, 2013:94 Page 11 of 14
http://www.boundaryvalueproblems.com/content/2013/1/94

Theorem  For any function Q ∈ C([, ]× [, ]) and f ∈ L(�), there exists a unique
strong solution u of ProblemB.Moreover, u ∈W 

 (�)∩W ,
x,y (�)∩C(�), satisfies inequality

() and it is given by the expression ().

Proof Let C
(�) be the set of the C(�) functions that vanish in a neighborhood of ∂�

(∂� is a boundary of the domain �). Since C
(�) is dense in L(�), we have that for any

function f ∈ L(�), there exist a functional sequence fn ∈ C
(�), such that ‖fn – f ‖ → ,

as n→ ∞.
It is not difficult to verify that if fn ∈ C

(�) then Fαβn ∈ C([, ]) (with obvious notation).
Therefore, Eqs. () and () can be considered as a second kind Volterra integral equation
in the space C([, ]). Consequently, we have that τ ′

n(x) = unx(x, ) ∈ C[; ]. Due to the
properties of the solutions of the boundary value problem for the heat equation in � and
the Darboux problem, by using the representations () and (), we conclude that un ∈ W
for all fn ∈ C

(�).
By virtue of the inequality (), we get

‖un – u‖ ≤ c‖fn – f ‖ → .

Consequently, {un} is a sequence of strong solutions, hence, Problem B is strongly solv-
able for all right hand f ∈ L(�), and the strong solution belongs to the space W 

 (�) ∩
W ,

x,y (�)∩C(�). Thus, Theorem  is proved. �

Consider now, for all n = , , . . . , the sequence of kernels given by the recurrence for-
mula

Kn(x, y;x, y) =
∫∫

�

K(x, y;x, y)K(n–)(x, y,x, y)dx dy,

with

K(x, y;x, y) = K(x, y;x, y),

and K defined in Lemma .

Lemma  For the iterated kernels Kn(x, y;x, y) we have the following estimate:

∣∣Kn(x, y;x, y)
∣∣ ≤ (

√
πM)n

(



)n– (x – x)
n
 –

( n )
, n = , , , . . . , ()

where M =max (x,y)∈�

(x,y)∈�

|√x – xK(x, y;x, y)| and  is the Gamma-function of Euler.

Proof The proof will be done by induction in n.
Taking the representation of the Green’s function given in () into account, and from

the representation of the kernel K(x, y;x, y) at n = , the inequality ()

∣∣K(x, y;x, y)
∣∣ ≤ M(x – x)–




is automatically deduced.
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Let () be valid for n = k – . We will prove the validity of this formula for n = k. To this
end, by using inequality (), at n =  and n = k – , we have that

∣∣Kk(x, y;x, y)
∣∣

=
∣∣∣∣
∫∫

�

K(x, y;x, y)K(k–)(x, y,x, y)dx dy
∣∣∣∣

≤
∫∫

�

∣∣K(x, y;x, y)
∣∣∣∣K(k–)(x, y;x, y)

∣∣dx dy
≤

∫∫
�

θ (x – x)M(x – x)–

 θ (x – x)(

√
πM)k–

(



)k– (x – x)
k
 –




( k– )
dx dy

≤ Mk(
√

π )k–
(



)k– 
( k– )

∫ x

x
dx

∫ 

– 


(x – x)–

 (x – x)

k
 –


 dy.

Evaluating the previous integrals, we have that

∣∣Kk(x, y;x, y)
∣∣ ≤ Mk(

√
π )k–

(



)k– (x – x)
k
 –

( k– )

∫ 


σ – 

 ( – σ )
k
 –


 dσ

= (
√

πM)k
(



)k– (x – x)
k
 –

( k )
,

which proves Lemma . �

Nowwe are in a position to prove the final result of this paper, which gives us theVolterra
property for the inverse of operator L.

Theorem  The integral operator defined in the right hand of (), i.e.

L
–f (x, y) =

∫∫
�

K(x, y;x, y)f (x, y)dx dy, ()

has the Volterra property (it is almost continuous and quasi-nilpotent) in L(�).

Proof Since the continuity of this operator follows from the fact that K ∈ L(� × �). To
prove this theorem, we only need to verify that operator L–, defined by (), is quasi-
nilpotent, i.e.

lim
n→∞

∥∥L–n∥∥ 
n
 = , ()

where

L
–n = L

–[
L
–(n–)], n = , , , . . . .

From (), and by direct calculations, one can easily arrive at the following expression:

L
–nf (x, y) =

∫∫
�

Kn(x, y;x, y)f (x, y)dx dy. ()
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Consequently, using the inequality of Schwarz and expression (), from the represen-
tation () we obtain that

∥∥L–nf
∥∥
 =

∫∫
�

∣∣L–nf
∣∣ dxdy = ∫∫

�

[∫∫
�

Kn(x, y;x, y)f (x, y)dx dy
]

dxdy

≤
∫∫

�

[(∫∫
�

∣∣f (x, y)∣∣ dx dy
)(∫∫

�

∣∣Kn(x, y;x, y)
∣∣ dx dy

)]
dxdy

≤
(


√

πM
)n 

n(n – )( n )
‖f ‖.

From here, we get

∥∥L–n∥∥
 ≤

(


√

πM
)n 

( + n
 )
.

From the last equality, one can state the validity of the equality () and Theorem  is
proved. �

Consequence  Problem B has the Volterra property.

Consequence  For any complex number λ, the equation

Lu – λu = f ()

is uniquely solvable for all f ∈ L(�).

Due to the invertibility of the operator L, the unique solvability of Eq. () is equivalent
to the uniqueness of solution of the equation

u – λL–u = L
–f ,

which is a second kind of Volterra equation. This proves Consequence  of Theorem .
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