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For out of olde feldes, aas men seith,

Cometh al this newe corn fro yeer to yere;

And out of olde bokes, in good feith,

Cometh al this newe science that men lere.
— Geoffrey Chaucer

1 Introduction and summary

String theory is known to possess enormous (possibly infinite-dimensional) symmetry that

goes beyond the scope of conventional field theories. Double Field Theory (DFT) [1–5] is a

new approach for keeping manifest the (R-valued extension of) O(D,D) T-duality symme-

tries as well as unifying and geometrizing all gauge invariance of the massless fields in string

theory. It dispenses full-fledged string theory while retaining theory’s most salient features,
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so the approach offers a novel and effective method for investigating stringy characters and

gaining physical insights to intricacies of the string theory.

The novelty of DFT is doubling the spacetime dimensions at the benefit of geometrizing

all gauge invariance of the graviton, Kalb-Ramond, and Yang-Mills fields (further the

equations of motion are invariant under a constant shift in the dilaton field). These massless

fields live in this doubled spacetime; not only vacuum configuration but also physical

excitations above the vacuum extend through the doubled spacetime. Yet, the theory

should be constrained such that actual mechanical degrees of freedom live on a middle-

dimensional subspace of the doubled spacetime. Therefore, the DFT poses a novel question

for how Noether currents associated with asymptotic symmetries of the massless fields

and global charges associated with their physical excitations are measured in the doubled

spacetime in O(D,D) covariant manner.1 This work constitutes the answer we found for

this question.

To be specific, we shall proceed with the Lagrangian formulation of the ‘heterotic’

DFT, whose field contents include the NS-NS sector coupled to Yang-Mills [6, 7] (cf. [8–

10]). Our main result is summarized by the O(D,D)-covariant expression of a generic

conserved global charge, spelled in eq. (3.56), which we copy here:

Qtotal[X] =

∮

∂M
dD−2xAB e−2d

[
K [AB] + 2X [ABB] +

1

g2YM

Tr
{
12(PF P̄ )[ABV C]XC

}]
.

(1.1)

The first two terms in the integrand correspond to the NS-NS sector DFT version of the

Noether (or Komar) potential and its counter-correction a la Wald [11–13]. The last term

is the contribution of the Yang-Mills sector that is coupled minimally to the DFT. Using

this formula, we can compute conserved global charges such as mass, doubled translational

momenta, and angular momenta. We could also study the asymptotic symmetry algebra,

which we relegate to a future work.

In gauge and gravity theories, symmetry currents and conserved charges play important

roles in analyzing classical and quantum dynamics. In the Hamiltonian formulation, the

Arnowitt-Deser-Misner (ADM) [14] approach constructs these conserved charges, which are

related to Hamiltonian surface terms that should be added to constraints for well-defined

Hamiltonian generators. Using this approach, their algebras were studied in a variety of

contexts [15–18].

In Lagrangian formulation with a well-defined action functional, which was developed

after the Hamiltonian formulation, the conserved currents are derived by the Noether the-

orem and the global charges are obtained as hypersurface integral of the current densities.

However, proper Lagrangian formulation of symmetry currents and conserved charges are

often complicated by the background vacuum configuration and also by fall-off behaviour

of dynamical excitations. This is because global symmetry is defined by the asymptotic

symmetry set by the orbit of gauge or diffeomorphism transformations at infinity with the

common asymptotic behaviour. In other words, a specific choice of the asymptotic bound-

ary condition puts the true local symmetries to a subset of the full gauge or diffeomorphism

1By the O(D,D) covariance of DFT, we just mean the counterpart to the GL(D) covariance of gravity.
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group. If the quotient of the full gauge or diffeomorphism transformation by this subset

is nontrivial, it defines the asymptotic symmetries associated with the chosen boundary

conditions. For some representative works that touch on these issues in various dimensions

and that deals with physical implications, see, for example, [19]–[23].

The Lagrangian formulation for the symmetry currents and conserved charges [24–26]

has the advantage of manifest covariance. In this formulation, however, the action may in

general contain boundary terms, which play an important role. Though not contributing

to the equations of motion, the surface terms contribute to setting boundary conditions.

Accordingly, the asymptotic symmetries depend sensitively on the boundary terms in the

action. Here is a good place to recall them in the context of the ordinary metric formulation

of gravity. The well-defined variational principle that yields the Einstein’s equation is

provided by the Einstein-Hilbert action,

I =
1

16πGN

[∫

Σd

√−gR(g) + 2

∮

∂Σd

√
|h|(K −K0)

]
. (1.2)

Here, Σd is a general pseudo-Riemannian manifold with metric g as the second fundamental

form, ∂Σd is a (spacelike, lightlike or timelike) boundary of Σd with induced metric h. The

surface term, the Gibbons-Hawking term,2 allows its variation to counter off variations of

the derivative of the metric so that Dirichlet boundary condition for the metric suffices.

The action is not just for facilitating equations of motion as the condition for station-

ary configuration. Associated with large diffeomorphism gauge transformations, one can

construct conserved Noether currents and global charges from the action. The global gauge

transformations have support at asymptotic boundary ∂Md−1 of a timelike or lightlike hy-

persurface Md−1 in Σd. However, in order to be able to express them as surface integrals

at ∂Md−1, the metric should additionally obey Dirichlet boundary condition at ∂Md−1.

For instance, in asymptotically flat spacetime, the action must maintain the property that

a physical excitation belongs to stationary configuration under all possible variations pre-

serving asymptotic flatness.

With the Gibbons-Hawking surface term alone, the action renders its on-shell variation

a non-zero surface term. However, the hypersurface where the requisite counterterm is

embedded is forced to fluctuate and so its variation is no longer well-defined. This difficulty

can be lifted by replacing the Gibbons-Hawking term by a new counterterm which is a

local function of boundary metric and Ricci curvature only and hence independent of an

embedding. A concrete proposal along this direction was put forward in asymptotic flat

spacetime [27]–[29] and in asymptotic (anti) de Sitter spacetime [30]. Such counterterm

renders a well-posed variational principle for all deformations of the metric consistent with

asymptotic flatness. Furthermore, such a counterterm also facilitates the computation of

conserved global charges in a procedure similar to that of Brown and York [32].

To explain the Noether currents and conserved global charges, i.e. (1.1), in a self-

contained manner and to apply them to various known string theory backgrounds, we

organized this paper as follows. In section 2, we first review the semi-covariant formulation

of DFT, closely following the formulation developed in [33–36]. The formalism based on the

2See [31] for a DFT extension of Gibbons-Hawking term.

– 3 –



J
H
E
P
1
1
(
2
0
1
5
)
1
3
1

semi-covariant derivative and its complete covariantization is essential to decode our results.

Section 3 contains main results of this paper. We first derive an off-shell conserved Noether

current, JA (3.26), and corresponding Noether potential, KAB (3.27), which originates from

the generalized diffeomorphism invariance of DFT. Meanwhile, we also identify the DFT

extension of the off-shell conserved Einstein curvature tensor, ∇AG
AB = 0 (3.13). We then

follow the prescription by Wald [11–13] (see also [37, 38]). Introducing counter corrections,

we modify the off-shell conserved Noether current and the potential, ĴA (3.37), K̂AB (3.38).

The integration of the modified Noether current defines the O(D,D)-covariant conserved

global charge. After finishing our analysis on the pure NS-NS sector DFT, we generalize to

include Yang-Mills [6, 7] as well as cosmological constant. In section 4, we apply our general

result to various known backgrounds, which include fundamental string [39], Reissner-

Nordström black hole, black five-brane [40] and linear dilaton background [41]. We find

perfect agreement. We further consider genuine DFT (or stringy) backgrounds such as null-

wave in doubled spacetime [42] and non-Riemannian background [36]. We evaluate their

momenta along not only ordinary spatial or temporal directions but also dual directions.

We confirm the assertion of Berkeley, Berman and Rudolph [42] that a massless null wave

in doubled spacetime is identifiable with a macroscopic fundamental string in ordinary

spacetime.

In the appendix, we relegated some useful technical formulae and detailed analysis of

the asymptotic fall-off behaviour at infinity.

Note added. While we were finishing this paper, we became aware of the work by

C. Blair [43], which also studies conserved charges in DFT.

2 Review: semi-covariant formulation of double field theory

We begin with self-contained review of the semi-covariant formulation of the bosonic DFT

for the NS-NS sector [33, 34] and also the Yang-Mills sector [6, 7]. They constitute the

massless modes of string theory at leading order in string coupling perturbation theory. For

further extensions beyond the leading order, we refer readers to [44] for fermions, [45] for

the R-R sector, and [46–48] for the (gauged) maximal and half-maximal supersymmetric

completions.3

The DFT is defined over the doubled, (D + D)-dimensional spacetime. Denote the

O(D,D) vector indices by capital Latin letters, A,B,C, · · · = 1, 2, · · · , D+D. There exists

a unique O(D,D) invariant constant metric,

JAB =

[
0 1

1 0

]
. (2.1)

Using this invariant metric, we freely raise and lower the O(D,D) tensor indices.

3In particular, thanks to the twofold spin groups, i.e. Spin(1, 9) × Spin(9, 1), the distinction between

IIA and IIB disappears [46], and the maximal D = 10 supersymmetric double field theory unifies IIA and

IIB supergravities.
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The actual physics is realized in D-dimensional subspace. As the DFT starts with

doubled (D+D)-dimensional spacetime, this doubled spacetime must be projected appro-

priately. We do this by imposing the property that the doubled coordinate system satisfies

local equivalence relations [35, 36],

xA ≃ xA + φ(x)∂Aϕ(x) , (2.2)

which was termed as ‘coordinate gauge symmetry’. In (2.2), φ(x) and ϕ(x) are arbitrary

smooth functions in DFT. Each equivalence class or each gauge orbit defined by the equiva-

lence relation (2.2) represents a single physical point, and diffeomorphism invariance refers

to a symmetry under arbitrary reparametrizations of the gauge orbits.

The equivalence relation (2.2) is realized in DFT by enforcing that arbitrary functions

and their arbitrary derivatives, denoted here collectively by Φ, are invariant under the

coordinate gauge transformations shift,

Φ(x+∆) = Φ(x) , ∆A = φ∂Aϕ . (2.3)

The coordinate gauge symmetry can be also realized as a local Noether symmetry on a

string worldsheet [36].

The symmetry under the coordinate gauge transformation (2.3) is equivalent (i.e. nec-

essary [35] and sufficient [36]) to the section condition [5],

∂A∂
A = 0 . (2.4)

Acting on arbitrary functions, Φ, Φ′, and their products, the section condition leads to

∂A∂
AΦ = 0 (weak constraint) , ∂AΦ∂

AΦ′ = 0 (strong constraint) . (2.5)

Diffeomorphism transformation in the doubled-yet-gauged coordinate system is gener-

ated by a generalized Lie derivative [1, 49, 50]. Acting on n-indexed field, it is defined by

L̂XTA1···An := XB∂BTA1···An+ωT ∂BX
BTA1···An+

n∑

i=1

(∂Ai
XB−∂BXAi

)TA1···Ai−1
B
Ai+1···An .

(2.6)

Here, ωT denotes the weight of the T field. In particular, the generalized Lie derivative of

the O(D,D) invariant metric is trivial,

L̂XJAB = 0 . (2.7)

The commutator of the generalized Lie derivatives is closed by the C-bracket [1, 3],

[
L̂X , L̂Y

]
= L̂[X,Y ]C , [X,Y ]AC = XB∂BY

A − Y B∂BX
A +

1

2
Y B∂AXB − 1

2
XB∂AYB .

(2.8)

In the NS-NS sector, dynamical contents of the DFT consist of the dilaton, d(x), and

a pair of the projection fields PAB, P̄AB, obeying the properties

PAB = PBA , P̄AB = P̄BA , PA
BPB

C = P C
A , P̄A

BP̄B
C = P̄ C

A . (2.9)
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Further, the projection fields are orthogonal and complementary:

PA
BP̄B

C = 0 , P̄A
BPB

C = 0 , PAB + P̄AB = JAB . (2.10)

The two projection fields are not independent, since

PA
B + P̄A

B = JA
B. (2.11)

The dynamical contents are contained (in addition to the dilaton) in the difference of the

projection fields

PAB − P̄AB = HAB. (2.12)

This is the well-known generalized metric [5], which can be also independently defined as

a symmetric O(D,D) element having the properties

HAB = HBA and HA
BHB

C = δ C
A . (2.13)

The projection fields and dilaton are naturally in the string frame. To facilitate the

O(D,D) invariant integral calculus, we assign the scaling weight of these fields as

ω[P ] = ω[P̄ ] = 0 , ω[e−2d] = 1 . (2.14)

The central construction of the DFT starts with the semi-covariant derivative, defined

by [33, 34]

∇CTA1A2···An := ∂CTA1A2···An−ωT Γ
B
BCTA1A2···An+

n∑

i=1

ΓCAi

BTA1···Ai−1BAi+1···An , (2.15)

The connection is defined by [34]:4

ΓCAB = 2
(
P∂CPP̄

)
[AB]

+ 2
(
P̄[A

DP̄B]
E − P[A

DPB]
E
)
∂DPEC

− 4

D − 1

(
P̄C[AP̄B]

D + PC[APB]
D
)(
∂Dd+ (P∂EPP̄ )[ED]

)
,

(2.16)

Below, we shall elaborate the uniqueness of this connection. The semi-covariant derivative

obeys the Leibniz rule and annihilates the O(D,D) invariant constant metric:

∇AJBC = 0 . (2.17)

Unlike the Levi-Civita connection in the Riemannian Einstein gravity, the diffeomor-

phism transformation (2.6) cannot put the connection (2.16) to vanish pointwise in doubled

spacetime. One may view this as failure of the equivalence principle. This is not surprising

since it is know that in string theory the equivalence principle no longer holds due to the

Kalb-Ramond field and the dilaton field.

4In this review of the bosonic DFT, we focus on the above ‘torsionless’ connection (2.16). Yet, in

supersymmetric DFT, it is necessary to include torsions in order to ensure the ‘1.5 formalism’ [45–47].
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The semi-covariant Riemann curvature calculates the field strength of the connec-

tion (2.16):

SABCD :=
1

2

(
RABCD +RCDAB − ΓE

ABΓECD

)
. (2.18)

Here, RABCD denotes the ordinary Riemann curvature associated with the connection:

RCDAB = ∂AΓBCD − ∂BΓACD + ΓAC
EΓBED − ΓBC

EΓAED . (2.19)

A crucial defining property of the semi-covariant Riemann curvature is that, under

arbitrary variation of the connection (2.16), its variation takes the form total derivative [34],

δSABCD = ∇[AδΓB]CD +∇[CδΓD]AB . (2.20)

Further, the semi-covariant Riemann curvature satisfies precisely the same symmetric prop-

erties as the ordinary Riemann curvature, including the Bianchi identity,

SABCD = S[AB][CD] = SCDAB , S[ABC]D = 0 . (2.21)

In addition, when projected by P, P̄ , the semi-covariant Riemann curvature obeys identi-

ties [34],

PI
APJ

BP̄K
C P̄L

DSABCD = 0 , PI
AP̄J

BPK
C P̄L

DSABCD = 0 ,

(PABPCD + P̄ABP̄CD)SACBD = 0 ,

PI
AP̄J

CPBDSABCD = PI
AP̄J

C P̄BDSABCD =
1

2
PI

AP̄J
CSAC .

(2.22)

As in the Riemannian case, we also define the semi-covariant Ricci curvature as the

trace part of the semi-covariant Riemann curvature,

SAC := SABCDJ BD = SABC
B, (2.23)

However, unlike the Riemannian case, the above Bianchi identities imply that the Ricci

curvature is traceless

SA
A = SAB

AB = 0 . (2.24)

The alluded connection (2.16) turns out to be the unique solution to the following five

requirements [34]:

∇APBC = 0 , ∇AP̄BC = 0 , (2.25)

∇Ad = −1

2
e2d∇A(e

−2d) = ∂Ad+
1

2
ΓB

BA = 0 , (2.26)

ΓABC + ΓACB = 0 , (2.27)

ΓABC + ΓBCA + ΓCAB = 0 , (2.28)

PABC
DEFΓDEF = 0 , P̄ABC

DEFΓDEF = 0 . (2.29)

The first two relations, (2.25), (2.26), are the compatibility conditions with all the geometric

objects — or the NS-NS sector — in DFT. The third constraint (2.27) is the compatibility
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condition with the O(D,D) invariant constant metric, (2.17), which is also consistent

with (2.10) and (2.25). The next cyclic property, (2.28), makes the semi-covariant derivative

compatible with the generalized Lie derivative as well as with the C-bracket,

L̂X(∂) = L̂X(∇) , [X,Y ]C(∂) = [X,Y ]C(∇) , (2.30)

The last conditions (2.29) assert that the connection belongs to the kernel of the triple-

projection fields PABC
DEF , P̄ABC

DEF . They are properties of the connection (2.16) which

completes to ensure the uniqueness.

The triple-projection fields carrying six indices,PABC
DEF , P̄ABC

DEF , used in (2.29),

are explicitly given by

PCAB
DEF := PC

DP[A
[EPB]

F ] +
2

D − 1
PC[APB]

[EPF ]D ,

P̄CAB
DEF := P̄C

DP̄[A
[EP̄B]

F ] +
2

D − 1
P̄C[AP̄B]

[EP̄F ]D ,

(2.31)

which satisfy the ‘projection’ properties,

PABC
DEFPDEF

GHI = PABC
GHI , P̄ABC

DEF P̄DEF
GHI = P̄ABC

GHI . (2.32)

They are symmetric and traceless,

PABCDEF = PDEFABC , PABCDEF = PA[BC]D[EF ] , PABPABCDEF = 0 ,

P̄ABCDEF = P̄DEFABC , P̄ABCDEF = P̄A[BC]D[EF ] , P̄ABP̄ABCDEF = 0 .

(2.33)

The triple-projection fields describe anomalous part of the semi-covariant derivative

and the semi-covariant Riemann curvature under the generalized diffeomorphism transfor-

mations. From

(δX−L̂X)ΓCAB = 2
[
(P + P̄)CAB

FDE − δ F
C δ D

A δ E
B

]
∂F∂[DXE] , (2.34)

it is straightforward to see that the generalized diffeomorphism anomalies are all given by

the triple-projection fields,

(δX−L̂X)∇CTA1···An
=

n∑

i=1

2(P+P̄)CAi

BDEF∂D∂EXF TA1···Ai−1BAi+1···An
,

(δX − L̂X)SABCD = 2∇[A

(
(P+P̄)B][CD]

EFG∂E∂FXG

)
+ 2∇[C

(
(P+P̄)D][AB]

EFG∂E∂FXG

)
.

(2.35)

Hence, one can easily project out the anomalies through appropriate contractions with the

triple-projection fields.

The fully covariant derivatives are obtainable by further projections,

PC
DP̄A1

B1 · · · P̄An
Bn∇DTB1···Bn , P̄C

DPA1
B1 · · ·PAn

Bn∇DTB1···Bn ,

PABP̄C1
D1 · · · P̄Cn

Dn∇ATBD1···Dn , P̄ABPC1
D1 · · ·PCn

Dn∇ATBD1···Dn (divergences) ,

PABP̄C1
D1 · · · P̄Cn

Dn∇A∇BTD1···Dn , P̄ABPC1
D1 · · ·PCn

Dn∇A∇BTD1···Dn (Laplacians) ,

(2.36)
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Correspondingly, fully covariant Ricci curvature and fully covariant curvature scalar are5

SAB := PA
C P̄B

DSCED
E = PA

C P̄B
DSCD = (PSP̄ )AB (Ricci curvature) ,

S : = (PACPBD − P̄AC P̄BD)SABCD (scalar curvature) .
(2.37)

Because of the triviality of the semi-covariant scalar curvature, SA
A = SAB

AB = 0 (2.24),

hereafter we use the calligraphic font to denote the nontrivial Ricci curvature and scalar

curvature, ‘SAB, S’.
A remark is in order at this point. As an alternative to the semi-covariant approach

described above, from the outset, one may wish to postulate a “perfectly well-behaving”

connection, say Γ̃CAB, such that it would transform as (δX−L̂X)Γ̃CAB = −2∂C∂[AXB]

instead of (2.34) and hence there would be no diffeomorphism anomalies like (2.35). Yet,

this is most likely not true in generic DFT, since such a “perfect” connection cannot

always be constructed solely out of the NS-NS sector. It requires extra unphysical degrees

of freedom or “undetermined” part [52]. After projecting them out, the final results would

be reduced to the semi-covariant formalism.

We now extend the semi-covariant DFT formulation to YM sector. For a given Lie

algebra-valued vector potential, VA, the semi-covariant YM field strength is defined by [6, 7]

FAB := ∇AVB −∇BVA − i[VA, VB] . (2.38)

Unlike the Riemannian torsionless case, the connections above are not cancelled but yields

non-derivative and non-commutator contribution.

As seen from the generic formula (2.35), the semi-covariant YM field strength is not

completely covariant but rather semi-covariant under diffeomorphisms. Again, the anoma-

lous part is parametrized by the triple-projection fields,

(δX − L̂X)FAB = −2(P + P̄)CAB
DEF∂D∂[EXF ]VC . (2.39)

Thus, following the general prescription (2.36), the completely covariant YM field

strength is

(PF P̄ )AB = −(P̄FP )BA = PA
C P̄B

DFCD . (2.40)

The YM gauge transformation is realized by the action

VA −→ gVAg
−1 − i(∂Ag)g

−1 ,

FAB −→ gFABg
−1 + iΓC

AB(∂Cg)g
−1 ,

(PF P̄ )AB −→ g(PF P̄ )ABg
−1 .

(2.41)

One finds that a two-derivative scalar fully invariant with respect to both the diffeomor-

phism and the YM gauge transformations is

Tr
[
(PF P̄ )AB(PF P̄ )AB

]
= Tr

[
PAC P̄BDFABFCD

]
. (2.42)

5For the torsionless connection (2.16), the following identities hold as for the completely covariant scalar

curvature,

P
AB

P
CD

SACBD = P
AB

SACB
C = −P̄

AB
P̄

CD
SACBD = −P̄

AB
SACB

C
.

However, it is the expression in (2.37) that ensures the ‘1.5 formalism’ in the supersymmetric DFTs with

torsions [46, 47].

– 9 –



J
H
E
P
1
1
(
2
0
1
5
)
1
3
1

Clearly, there appear doubled off-shell degrees of freedom in the (D+D)-component gauge

potential. In order to halve them, if wanted, we may impose the ‘gauged section condi-

tion’ [7]:

(∂A − iVA)(∂
A − iV A) = 0 , (2.43)

which, along with the original section condition (2.4), implies VA∂
A= 0, ∂AV

A= 0,

VAV
A= 0. Here, it is implicit that the connections are in an irreducible representation

of the fields that the covariant derivative acts on.

For consistency, the condition (2.43) is preserved under all the symmetry transfor-

mations: O(D,D) rotations, diffeomorphisms (2.6) and the Yang-Mills gauge symme-

try (2.41).

We can construct the DFT action IDFT for the NS-NS sector coupled to YM sector and

cosmological constant as

IDFT =

∫

ΣD

LDFT , LDFT = LNSNS + LYM − 2Λe−2d , (2.44)

where the integral is taken over a D-dimensional section or their ‘manifold-like’ patch,

ΣD. Here, Λ denotes the DFT-cosmological constant [34]. The fully invariant Lagrangian

densities are given for each sector by

LNSNS = e−2d(PACPBD − P̄AC P̄BD)SABCD = e−2dS ,

LYM = g−2
YMe

−2dTr
[
PAC P̄BDFABFCD

]
.

(2.45)

At the outset, one needs to impose appropriate section condition. Up to O(D,D) du-

ality rotations, the solution to the section condition is locally unique. It is a D-dimensional

section, ΣD, characterized by the independence of the dual “winding” coordinates,

∂

∂x̃µ
≡ 0 . (2.46)

Here, the Greek letters are D-dimensional indices on the section ΣD. In this foliation, the

whole doubled coordinates are given by

xA = (x̃µ, x
ν) . (2.47)

To perform the ‘Riemannian’ reduction onto the D-dimensional section, ΣD, one only

needs to parametrize the projection fields and the dilaton in terms of a D-dimensional

Riemannian metric, Gµν , an ordinary dilaton, Φ, and a Kalb-Ramond two-form potential,

Bµν [5],

HAB := PAB − P̄AB =

(
G−1 −G−1B

BG−1 G−BG−1B

)
, e−2d =

√
|G|e−2Φ . (2.48)

The DFT scalar curvature (2.37) reduces upon the section condition to

S|ΣD
= RG + 4∆Φ− 4∂µΦ∂

µΦ− 1

12
HλµνH

λµν , (2.49)

where Hλµν := 3∂[λBµν].
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Up to field redefinitions, eq. (2.48) is the most general parametrization of the “gener-

alized metric”, HAB = PAB − P̄AB, of which the upper left D×D block is non-degenerate.

The parametrization of the doubled YM vector potential reads from [6],

VA =

(
ϕλ

Aµ +Bµνϕ
ν

)
, (2.50)

of which the D-dimensional vector, ϕλ, which is in the YM adjoint representation can be

put trivial upon the ‘gauged section condition’ (2.43) [7]. For the consequent expression

of the completely covariant YM field strength in terms of ϕλ and Aµ, we refer readers to

(3.19) and (3.21) of [6].

When the upper left (D ×D) block of the generalized metric is degenerate — where

G−1 is positioned in (2.48) — the Riemannian metric ceases to exist upon the section,

ΣD (2.46). Nevertheless, the O(D,D) DFT and a doubled sigma model [36] have no

problem with describing such a non-Riemannian background, as long as the generalized

metric is a symmetric O(D,D) element, satisfying HAB = HBA and HA
BHB

C = δ C
A . We

refer readers to [36] for a concrete example (see also a math literature [51]).

3 Off-shell Noether current, Noether potential and global charge

In this section, we take the DFT of NS-NS sector coupled to YM sector and system-

atically derive off-shell conserved Noether current as well as the corresponding Noether

potential which originate from the generalized diffeomorphism gauge invariance. We then

construct global charges, expressed in terms of surface integral of modified Noether current

that follows from appropriate surface term in the DFT action. We shall first present the

construction for the NS-NS sector and later incorporate the YM sector.

3.1 Noether analysis on DFT of NS-NS sector

Recall that dynamical field contents of the NS-NS sector DFT are the projection field

PAB and the dilaton field d. Under variation of these fields, variation of the DFT La-

grangian (2.45) takes the structure6

δLNSNS = −2δd e−2dS + 4e−2d(PδP P̄ )AB(PSP̄ )AB + ∂A

[
e−2dΘA

]
, (3.1)

where ΘA in the last surface term denotes

ΘA := 2(PACPBD − P̄AC P̄BD)δΓBCD . (3.2)

For infinitesimal variations, (3.1) yields the equations of motion for the projection field,

respectively, the dilaton field:7

S = (PACPBD − P̄AC P̄BD)SABCD ≃ 0 , (PSP̄ )(AB) = P(A
C P̄B)

DSCD ≃ 0 . (3.3)

6Note that δPAB = (PδP P̄ )AB + (P̄ δPP )AB .
7Note the equivalence, PA

C P̄B
DSCD ≃ 0 ⇔ P(A

C P̄B)
DSCD ≃ 0.
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So, on the shell, the Lagrangian vanishes: the on-shell action would be given entirely by a

surface term one may add to it.

The variation of the connection in (3.2) is given by [34],

δΓCAB = 2P D
[A P̄ E

B] ∇CδPDE + 2(P̄ D
[A P̄ E

B] − P D
[A P E

B] )∇DδPEC

− 4

D − 1
(P̄C[AP̄

D
B] + PC[AP

D
B] )(∂Dδd+ PE[G∇GδPE

D])

− ΓFDE δ(P + P̄)CAB
FDE .

(3.4)

The last line does not contribute to (3.2) as, from (2.29) and (2.33), the following projection

properties follow:

PCBΓFDE δ(P + P̄)CAB
FDE = −PCB(P + P̄)CAB

FDEδΓFDE = 0 ,

P̄CBΓFDE δ(P + P̄)CAB
FDE = −P̄CB(P + P̄)CAB

FDEδΓFDE = 0 .
(3.5)

Using also the relations

PBDδΓBCD = 2PC
B∂Bδd−∇BδPBC , P̄BDδΓBCD = 2P̄C

B∂Bδd+∇BδPBC ,

δΓCABP
CF P̄BG = (P∇)F (PδP P̄ )A

G + (P̄∇)A(PδP P̄ )FG − (P̄∇)G(PδP P̄ )FA ,

δΓCABP̄
CFPBG = (P∇)G(PδP P̄ )A

F − (P̄∇)F (PδP P̄ )GA − (P∇)A(PδP P̄ )GF ,

(3.6)

we can simplify ΘA into the form

ΘA(d, P, δd, δP ) = 4(P − P̄ )AB∂Bδd− 2∇BδP
AB . (3.7)

Consider now arbitrary generalized diffeomorphism gauge transformations. They are

generated by the generalized Lie derivatives, so

δXd = L̂Xd = XA∂Ad−
1

2
∂AX

A = −1

2
∇AX

A ,

δXPAB = L̂XPAB = XC∂CPAB + (∂AX
C − ∂CXA)PCB + (∂BX

C − ∂CXB)PAC

= (∇AX
C −∇CXA)PCB + (∇BX

C −∇CXB)PAC

= 2(P̄∇)(A(PX)B) − 2(P∇)(A(P̄X)B) .

(3.8)

These equations give the O(D,D)-covariant Killing equations in DFT:

∇AX
A = 0 and (P∇)A(P̄X)B − (P̄∇)B(PX)A = 0 . (3.9)

From (3.8), it also follows that the connection transforms as [34]

δXΓCAB = L̂XΓCAB + 2
[
(P + P̄)CAB

FDE − δ F
C δ D

A δ E
B

]
∂F∂[DXE] . (3.10)

This is in fact the generic variation (3.4) when restricted to the generalized diffeomorphism

gauge transformations.
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To derive off-shell conserved Noether current, we start with the covariance of the

weight-one Lagrangian under the general diffeomorphism gauge transformation:

δXLNSNS = ∂A
(
XALNSNS

)
. (3.11)

It gives the identity:

∂A

(
X

A
e
−2d

S
)
= e

−2d
XB∇A

[
4(PAC

P̄
BD

− P̄
AC

P
BD)SCD − J

AB
S
]

+ ∂A

[
4e−2d(P̄AC

P
DE

− P
AC

P̄
DE)SCDXE + 2e−2d(PAC

P
BD

− P̄
AC

P̄
BD)δXΓBCD

]

+ ∂A

(
X

A
e
−2d

S
)
,

(3.12)

implying that the sum of the first line and the second line should vanish identically. Ac-

tually, the above identity (3.12) holds not just for generalized gauge transformations but

also for arbitrary local transformations generated by the vector field, XA. Therefore, the

first line and the second line of (3.12) ought to vanish independently.8 Consequently, we

obtain an off-shell, covariantly conserved two-index curvature field GAB, which we propose

as the DFT counterpart of the Einstein curvature tensor :

GAB := 2(PAC P̄BD − P̄ACPBD)SCD − 1

2
J ABS obeying ∇AG

AB = 0 , (3.13)

and an off-shell, covariantly conserved Noether current,

JA := 4(P̄ACPD
E − PAC P̄D

E)X
ESCD + 2(PACPBD − P̄AC P̄BD)δXΓBCD ,

obeying ∇AJ
A = 0 , ∂A(e

−2dJA) = 0 .
(3.14)

We can further decompose the conservation law of the generalized Einstein curvature

GAB by projecting ∇AG
AB = 0 with P or P̄ . We obtain a pair of conservation relations:

∇A

(
4PAC P̄BDSCD − P̄ABS

)
= 0 , ∇A

(
4P̄ACPBDSCD + PABS

)
= 0 , (3.15)

which can be re-expressed as

4(P∇)A(PSP̄ )AB − (P̄∇)BS = 0 , 4(P̄∇)A(P̄SP )AB + (P∇)BS = 0 . (3.16)

We see that these conservation relations are precisely the ‘differential Bianchi identities’

obtained previously in [52]. While the difference of the two projected curvatures in (3.15)

yields back the generalized Einstein tensor (3.13), their sum leads to nothing new. Rather,

it yields the conservation relation of ‘symmetric’ Einstein curvature tensor:

∇A

[
G(AB)

]
= 0 where G(AB) := GACHC

B = −4(PSP̄ )(AB) − 1

2
HABS . (3.17)

Note also that the equations of motion (3.3) are equivalent to the vanishing of the gener-

alized Einstein curvature,

GAB ≃ 0 . (3.18)

8For those readers not convinced, consider the case where the vector field XA is a distribution on an

arbitrary point as a Dirac delta function and integrate (3.12) over a section. This will confirm that the first

line vanishes by itself.
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Note that the off-shell, conserved Noether current is expressible as

JA = 8(P̄SP )[AB]XB+4∇B

[
(P∇)(A(P̄X)B) − (P̄∇)(A(PX)B) − 1

2
HAB∇CX

C

]
, (3.19)

and, also in terms of the Einstein curvature tensor and the Θ-term (3.7), as

JA = −2GABXB +ΘA(d, P, δXd, δXP )− SXA . (3.20)

This then leads to the on-shell Noether current:

HA := ΘA(d, P, δXd, δXP )− SXA . (3.21)

Taking the divergence, we obtain

∇AH
A = 2GAB∇AXB = 2SδXd− 4(PSP̄ )ABδXPAB ≃ 0 . (3.22)

Indeed, the right-hand side vanishes either on-shell or, alternatively, for a Killing vector,

XA, satisfying (3.9). We would like to further re-express the Noether current such that

conservation relation is manifest. We do so by searching for a skew-symmetric Noether

potential, KAB, in terms of which the off-shell conserved Noether current is given by

e−2dJA = ∂B(e
−2dKAB) + Φ∂AΦ′ , KAB = −KBA . (3.23)

In this form, the conservation relation is manifest up to the section condition. Note that

Φ∂AΦ′ takes the generic form of a ‘derivative-index-valued vector’ [35] which generates

the coordinate gauge symmetry (2.3). As such, upon imposing the section condition, it

is automatically conserved. Moreover, it will not contribute to the global charge in the

next subsection, which is defined on a given choice of the section by the spatial integral of

the conserved charge density. Hence, we may freely drop off such derivative-index-valued

vectors and take the Noether current up to the derivative-index-valued-vectors as

e−2dJA ≡ ∂B(e
−2dKAB) . (3.24)

To find explicit expression of the Noether potential, we utilize the projection field

identities (2.22) and commutator relations:

[
(P∇)B, (P̄∇)A

]
XB = (P̄SP )ABX

B ,
[
(P̄∇)B, (P∇)A

]
XB = (PSP̄ )ABX

B ,

(3.25)

and rewrite the off-shell conserved current JA in the form

JA = 4∇B

[
(P̄∇)[A(PX)B] − (P∇)[A(P̄X)B]

]
+ 2∂A

[
(P̄ − P )BC∇BXC

]
. (3.26)

This expression naturally suggests to define the skew-symmetric Noether potential as

KAB := 4(P̄∇)[A(PX)B] − 4(P∇)[A(P̄X)B] . (3.27)

With this definition, we finally get

e−2dJA = ∂B(e
−2dK [AB]) + 2e−2d∂A

[
(P̄ − P )BC∇BXC

]

+ 2e−2d(P∂APP̄ )BC
[
(P̄∇)C(PX)B + (P∇)B(P̄X)C

]
.

(3.28)
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In going from (3.26) to (3.28), one needs to take care of the semi-covariant derivative

connections. It turns out that they merely yield derivative-index-valued vectors, as in the

second line of (3.28). For this, it is worth to note that ΓA
BCP

B
DP̄

C
E = (P∂APP̄ )DE is

a derivative-index-valued vector as well.

3.2 Conserved global charges

We now proceed to construct conserved global charges, which will constitute generators

of asymptotic symmetry algebra. The starting point is the two-form Komar function.

While our Noether potential (3.27) can correctly reproduce the two-form Komar integrand,

it is well known that the Komar integrand itself needs to be further corrected [11–13]

(see also [37] and references therein). Here, we derive such a correction and define a

corresponding conserved global charge.

We start by rewriting the semi-covariant four-index Riemann curvature in terms of the

semi-covariant derivative acting on the connection:

SABCD =
1

2

(
ΓE

ABΓECD + ΓCA
EΓDBE − ΓCB

EΓDAE + ΓAC
EΓBDE − ΓAD

EΓBCE

)

+∇[AΓB]CD +∇[CΓD]AB ,

(3.29)

This enables us to isolate the two-derivative terms (‘accelerations’) from the one-derivative

terms (‘velocities’) in the DFT Lagrangian:

e−2d(PACPBD − P̄AC P̄BD)SABCD

= e−2d(PACPBD − P̄AC P̄BD)

(
ΓAC

EΓBDE − ΓAB
EΓDCE +

1

2
ΓE

ABΓECD

)

+ 2∂A

[
e−2d(PACPBD − P̄AC P̄BD)ΓBCD

]

= e−2d(PACPBD − P̄AC P̄BD)

(
ΓAC

EΓBDE − ΓAB
EΓDCE +

1

2
ΓE

ABΓECD

)

+ ∂A

[
e−2d

{
4(P − P̄ )AB∂Bd− 2∂BP

AB
}]

.

(3.30)

Motivated by this observation, we define a composite vector field:

BA := 2(PACPBD − P̄AC P̄BD)ΓBCD (3.31)

= 4(P − P̄ )AB∂Bd− 2∂BP
AB . (3.32)

Note that this is not quite a diffeomorphism covariant vector: because of (2.34), BA trans-

forms anomalously,

δXBA = L̂XBA + 4(P̄AC P̄BD − PACPBD)∂B∂[CXD] . (3.33)

Only if the vector field XA can be restricted to satisfy ∂B∂[CXD] = 0, the composite

vector field BA transforms covariantly under the generalized diffeomorphism gauge trans-

formations. We will see momentarily that this condition can be arranged by modifying the

Noether potential in a specific way.
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The idea is that we would like to remove the two-derivative terms. To do so, we

consider modifying the DFT Lagrangian with a specific surface term:

L̂NSNS = LNSNS − ∂A(e
−2dBA)

= e−2d(PACPBD − P̄AC P̄BD)

(
ΓAC

EΓBDE − ΓAB
EΓDCE +

1

2
ΓE

ABΓECD

)
.

(3.34)

The idea is analogous to the modification of the Einstein-Hilbert action to the Schrödinger

action a la Dirac [53] that is free of two-derivative terms. While the equations of motion

remain intact, the theta term in the variation of the Lagrangian, (3.1), gets modified to

e−2dΘ̂A(d, P, δd, δP ) = e−2dΘA(d, P, δd, δP )− δ(e−2dBA) , (3.35)

such that the new theta term, Θ̂A(d, P, δd, δP ), no longer contains the derivative of the

variations. In particular, for the generalized diffeomorphism gauge transformations, we

have from (3.33) that

e−2dΘ̂A(d, P, δXd, δXP ) = e−2dΘA(d, P, δXd, δXP ) + 2∂B(e
−2dX [ABB])− e−2dBB∂

AXB

−XA∂B(e
−2dBB) + 4e−2d(PACPBD − P̄AC P̄BD)∂B∂[CXD] .

(3.36)

The off-shell Noether current (3.20) now receives extra contributions

e−2dĴA = e−2d
[
−2GABXB + Θ̂A(d, P, δXd, δXP )− (S −∇BB

B)XA
]

= e−2dJA + 2∂B(e
−2dX [ABB])− e−2dBB∂

AXB

+4e−2d(PACPBD − P̄AC P̄BD)∂B∂[CXD] .

(3.37)

Correspondingly, we have the modified Noether potential

K̂AB = KAB + 2X [ABB] . (3.38)

We need to ensure that the modified Noether current is conserved. Taking the diver-

gence, one finds that

∂A(e
−2dĴA) = 4e−2d(PACPBD − P̄AC P̄BD)∇[A(∂B]∂[CXD]) . (3.39)

Thus, the modified off-shell Noether current is not always conserved. However, we can

ensure the conservation relation provided we impose the diffeomorphism vector field to

obey the condition

∇[A(∂B]∂[CXD]) = 0 , (3.40)

or more strongly the condition

∂B∂[CXD] = 0 . (3.41)

Wonderfully, the latter condition is precisely the condition we needed in order to ensure

the composite vector field BA transform covariantly (3.33). The simplest example of such

restricted vector field is when XA is a constant vector, corresponding to a rigid translation

in doubled spacetime.
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With the conserved modified Noether current at hand, we finally obtain the conserved

global charge as surface integral:

Q[X] :=

∫

M

dD−1xA e−2dĴA =

∮

∂M
dD−2xAB e−2d

(
KAB + 2X [ABB]

)
. (3.42)

Here, M denotes a timelike hypersurface inside the section, ΣD = Rt × M, while ∂M
corresponds to its asymptotic boundary.

Intuitively, we can also motivate the conserved global charge proposed above from the

method adopted by Wald [11–13]. Modulo the equations of motion, the variation of the

on-shell conserved Noether current (3.21) reads

δ(e−2dHA) ≃ e−2dΩA(δ, δX)− 2∂B

(
e−2dX [AΘB]

)
+ e−2dΘB∂

AXB , (3.43)

where ΩA denotes the (Hamiltonian) symplectic structure defined by

e−2dΩA(δ1, δ2) := δ1

[
e−2dΘA(d, P, δ2d, δ2P )

]
− δ2

[
e−2dΘA(d, P, δ1d, δ1P )

]
. (3.44)

The above variation (3.43) then reveals an on-shell relation

e−2dΩA(δ, δX) ≃ ∂B

[
δ
(
e−2dKAB

)
+ 2

(
e−2dX [AΘB]

)]
− e−2dΘB∂

AXB . (3.45)

Again, the last term is a derivative-index-valued vector and can be dropped off when

integrated over a section. Finally, by assuming proper asymptotic fall-off behaviour at

infinity, the left-hand side of (3.35) can be made to vanish at infinity.9 This facilitates to

approximate

e−2dΩA(δ, δX) ≈ ∂Bδ
[
e−2d

(
KAB + 2X [ABB]

)]
. (3.46)

The final expression then supports the validity of our proposed expression for the conserved

global charge (3.42).

3.3 Extension to Yang-Mills and cosmological constant sectors

A proper account of low-energy string theory requires inclusion of the Yang-Mills sector

and the cosmological constant in addition to the NS-NS sector. Here, we consider the DFT

in which the NS-NS sector is coupled to Yang-Mills sector and the cosmological constant

is included (2.44),

LDFT = e−2d
[
S − 2Λ + g−2

YM Tr
(
PAC P̄BDFABFCD

)]
, (3.47)

and construct corresponding extension of the conserved global charges.

Consider arbitrary variations of the projection field and the vector potential,

δ(FAB) = 2D[AδVB] − δΓC
ABVC , DA := ∇A − i [VA , ] ,

PA
C P̄B

Dδ(FCD) = 2PA
[C P̄B

D]DCδVD −∇C(PδP P̄ )ABVC .
(3.48)

9See appendix B for explicit demonstration of this for the asymptotically flat hypersurface.
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This induces variation of the YM part in the DFT Lagrangian as

δTr
(
PAC P̄BDFABFCD

)
= −4Tr

[
δVBDA

(
PF P̄

)[AB]
]

+2(PδP P̄ )AB Tr
[
(PFHF P̄ )AB +∇C

{
(PF P̄ )ABVC

}]

+∇ATr
[
4(PF P̄ )[AB]δVB − 2V A(PF P̄ )CDδP

CD
]
.

(3.49)

For local variations, from the first line, we find the YM equation of motion:10

DA

(
PF P̄

)[AB] ≃ 0 . (3.51)

From the second line in (3.49), we find that the equation of motion of the projection field

changes from (3.3) to

(PSP̄ )AB +
1

2
g−2
YM

[
(PFHF P̄ )AB +∇C

{
(PF P̄ )ABV

C
}]

≃ 0 . (3.52)

We also recall that the equation of motion of the dilaton is now modified to

S − 2Λ + g−2
YM Tr

(
PAC P̄BDFABFCD

)
≃ 0 . (3.53)

Once again, the DFT Lagrangian vanishes on-shell. For consistency, from (2.39) and (2.41),

it is straightforward to check that

(PFHF P̄ )AB +∇C

[
(PF P̄ )ABV

C
]
. (3.54)

is indeed fully covariant under both the generalized diffeomorphisms and the YM gauge

transformations.

The last line in (3.49) is the YM contribution to ΘA. Then, in steps completely parallel

to the analysis of the NS-NS sector DFT as carried out in section 3.1, we can straightfor-

wardly obtain the off-shell conserved Noether current associated with the diffeomorphism

transformation to the total DFT. Modulo the part identifiable with derivative-index-valued-

vectors, we get

e−2dĴA
total ≡ e−2dĴA + 12g−2

YM∂B Tr
(
e−2d(PF P̄ )[ABV C]XC

)

= ∂B
[
e−2dK [AB] + 12g−2

YMe
−2dTr

{
(PF P̄ )[ABV C]XC

}]
.

(3.55)

The conserved global charge is now generalized to

Qtotal[X] =

∮

∂M
dxAB e−2d

[
K [AB] + 2X [ABB] +

1

g2YM

Tr
{
12(PF P̄ )[ABV C]XC

}]
.

(3.56)

It is worth to note that the cosmological constant term does not contribute to the global

charges.

10It is useful to note

(PF P̄ )[AB] = (P̄FP )[AB] . (3.50)
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4 Applications

In this section, we apply the general formula of the conserved global charge (3.42) to various

asymptotically flat string backgrounds. In sections 4.2 and 4.3, we consider the null wave

solutions in DFT [42] and calculate their ADM 2D-momenta, which are the conserved

global charges associated with the global translations. In section 4.4, by performing further

dualities, we discuss the 2D-momentum for a non-Riemannian background reported in [36].

In section 4.5, as a demonstration for the YM-coupled DFT, we consider the Reissner-

Nordström black hole. In section 4.6, we consider the background of black 5-branes. Finally,

in section 4.7, as an application to a non-asymptotically flat background, we consider a

linear dilaton background and show that the known result can be correctly reproduced by

introducing an extra counterterm to the boundary.

Henceforth, we fix the D-dimensional section, ΣD, to be independent of the winding

coordinates, x̃µ, as in (2.46). Further, we decompose the generalized metric into a constant

part and a fall-off part,

HAB = H(0)
AB +∆AB , H(0)

AB :=

(
ηµν −ηµρ bρν

bµρ η
ρν ηµν

)
, (4.1)

where ηµν = diag(−1, 1, . . . , 1) = ηµν is the flat Minkowski metric. The asymptotic values

of the B-field is denoted by bµν and it is assumed to be constant. In this paper, we consider

two kinds of asymptotically flat backgrounds: (1) backgrounds with the topology, M =

R
D−1, which include the (higher-dimensional) Schwarzschild solution; and (2) backgrounds

with M = T p × R
D−p−1, where T p is a p-torus, which include backgrounds of p-branes

wrapped on the p-torus. For each background, we introduce the coordinates for the D-

dimensional section, ΣD, as

(1) : (xµ) = (t, xi) , i = 1, . . . , D − 1 , (4.2)

(2) : (xµ) = (t, zs, ym) , s = 1, . . . , p , m = 1, . . . , D − p− 1 , (4.3)

and define the radius respectively by

(1) : r :=
√

δij xi xj , (2) : r :=
√
δmn ym yn . (4.4)

Then, in terms of the radius, we assume a simple fall-off behaviour,

∆AB = O(rα) , e−2d = 1 +O(rα) , α < 0 . (4.5)

We have α = −(D − 3) for the Schwarzschild solution while α = −(D − p− 3) for p-brane

solutions.

Before considering examples, we make remarks on the conserved global charge defined

in (3.42). The charge consists of an integral of KAB and 2X [ABB]. The explicit form of the

DFT-Noether potential is given in appendix A, and its µν components with a Riemannian

parametrization (2.48) become

Kµν [X] = 2 ξ[µ;ν] −Hµνρ ζρ , (4.6)
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where ξµ;ν is the conventional Riemannian covariant derivative and XA is parametrized in

a manner parallel to (2.50) by

XA =

(
ζµ +Bµν ξ

ν

ξµ

)
. (4.7)

As this parametrization suggests, in this paper, we define the ADM 2D-momentum as

PA := Q[EA] , EA :=

(
∂̃µ

∂µ − bµν ∂̃
ν

)
, (4.8)

namely, the conserved global charge for X with constant ξµ or ζµ. We also replace Bµν by

bµν since the global charge is evaluated as the surface integral at infinity. In section 4.3,

we discuss the importance of this definition of the ADM momentum.

A remark is in order. DFT is manifestly covariant under O(D,D) rotations which

act on both the tensor indices and the arguments of the tensor, i.e. coordinates. In this

case, the whole configuration including the section itself is rotated, and there should be

no change in physics. However, if a specific given background admits an isometry, there is

ambiguity of choosing the section. Without rotating the section, it is possible to rotate the

tensor indices only and this can generate a physically different configuration. Thus, while

our global charge is manifestly O(D,D) covariant, it may not transform covariantly if we

keep the section fixed and rotate only the tensor indices.

4.1 Pure Einstein gravity

Here, considering the pure Einstein gravity, i.e.

Φ = 0 , Bµν = 0 , (4.9)

we show that the ADM mass, Pt, defined on (4.8), evaluated for a background with M =

R
D−1, correctly reproduces the well-known ADM mass formula [54],

EADM =
1

2κ2D

∫

SD−2
∞

dΩD−2 r
D−2 n̂k Gij

(
∂iGkj − ∂kGij

)
, (4.10)

where n̂k∂k = ∂r is a radial vector that becomes a unit vector at infinity.

From Bµν = 0, the DFT-Noether potential (4.6) is reduced to the standard Komar

potential:

Kµν [X] = 2 ξ[µ;ν] . (4.11)

On the other hand, Bµ, in the Cartesian coordinates, simply becomes

Bµ = −2Hµν ∂ν ln
√
|G| − ∂νHµν = Gµν Gρσ

(
∂ρGνσ − ∂νGρσ

)
. (4.12)

In particular, the identically conserved current, ∂ν(δ
[µ
λB

ν]), corresponds to the Einstein

pseudo-tensor a la Dirac [53].
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Our definition of the ADM mass is now

Pt = Q[∂t] =

∫

∂M
dD−2xµν

√
|G|

(
Kµν [∂t] + 2X [µBν]

)

= 2

∫

SD−2
∞

dD−2xtr
√
|G|

(
Ktr[∂t] +Br

)
, (4.13)

and we have as r goes to infinity,

Ktr[∂t] = −2GtµGrν ∂[µGν]t ≈ −n̂k
(
∂kGtt − ∂tGkt

)
, (4.14)

Br ≈ n̂k
(
∂kGtt − ∂tGkt

)
+ n̂k Gij

(
∂iGkj − ∂kGij

)
. (4.15)

These precisely coincide with the known results of [12]. Finally, summing them up and

using the expression for the integral measure at the spatial infinity, we have

2

∫

SD−2
∞

dD−2xtr
√
|G| · · · =

∫

SD−2
∞

dΩD−2 r
D−2 · · · . (4.16)

Recalling that we are choosing a unit 2κ2D = 1(= 16πGN ), we thus obtain the ADM mass

formula (4.10).

4.2 Null wave

We here consider the null-wave solution of DFT [42]

ds2 = ηµν dx
µ dxν + ηµν dx̃µ dx̃ν + (H − 1)

[
(dt− dz)2 − (dt̃+ dz̃)2

]
, (4.17)

e−2d = 1 , H(r) = 1 +
γD

rD−4
, (4.18)

where γD is a certain constant which depends on the dimension, D. This is another purely

gravitational solution in D-dimensions:

ds2 = (H − 2) dt2 − 2 (H − 1) dt dz +H dz2 + δmn dy
m dyn , (4.19)

Φ = 0 , Bµν = 0 . (4.20)

Here, we compactified the z-direction with a radius Rz, in order to make the value of the

global charge finite. The remaining ym directions are treated as non-compact.

In this background, using ∂µd = 0 and Kµν = −2Gρ[µGν]δ ∂ρξδ, we have at infinity,

Ktr[∂t] ≈ −∂rH(r) , Ktr[∂z] ≈ ∂rH(r) , Br ≈ 0 . (4.21)

Then, it is straightforward to show that the ADM energy and the momentum in the z-

direction becomes

Pt = Q[∂t] = 2

∫

∂M
dD−2xtr K

tr[∂t] = −
∫

dz

∫

SD−3
∞

dΩD−3 R
D−3 ∂rH

= (D − 4) γD (2πRz) ΩD−3 , (4.22)

Pz = Q[∂z] = 2

∫

∂M
dD−1xtr K

tr[∂z] =

∫
dz

∫

SD−3
∞

dΩD−3 R
D−3 ∂rH

= −(D − 4) γD (2πRz) ΩD−3 . (4.23)

– 21 –



J
H
E
P
1
1
(
2
0
1
5
)
1
3
1

Here, ∂M is the surface of constant t and r= R in the R → ∞ limit, and ΩD−3 is a surface

area of a (D − 3)-sphere with a unit radius; ΩD−3 = 2π(D−2)/2/Γ((D − 2)/2). As the

momenta in other directions are trivial, the 2D-momentum becomes

P
(wave)
A = (P̃ t, P̃ z, P̃m ; Pt, Pz, Pm) = nD (0, . . . , 0 ; +1,−1, 0, . . . , 0) , (4.24)

nD := (D − 4) γD (2πRz) ΩD−3 , (4.25)

which is indeed a null vector at the flat spatial infinity:

(
H(0)

)AB
P

(wave)
A P

(wave)
B = 0 . (4.26)

For D = 10, in our unit of 2κ10 = 1, the constants become

γ10 =
1

π3 (2πRz)2
, Ω7 =

π4

3
, n10 = 1/Rz . (4.27)

Namely, the ADM energy and the momentum have just the expected values:

P0 = 1/Rz = −Pz . (4.28)

4.3 Fundamental string

As it was pointed out in [42], the string background can be also constructed by considering

a null wave propagating in a winding direction z̃. Starting from the doubled wave solution,

by performing a T -duality along the z direction, one can obtain

ds2 = ηµν dx
µ dxν + ηµν dx̃µ dx̃ν + (H − 1)

[
(dt− dz̃)2 − (dt̃+ dz)2

]
, (4.29)

e−2d = 1 , H(r) = 1 +
γD

rD−4
. (4.30)

This corresponds to the following D-dimensional Riemannian background:

ds2 = H−1(r) (−dt2 + dz2) + δmn dy
m dyn , (4.31)

Btz = H−1(r)− 1 , Φ = 0 , (4.32)

which recovers the fundamental string background originally found in [39], up to a constant

gauge shift in the B-field.

For this string background, in a manner similar to the null-wave case, we obtain, at

infinity,

Krt[∂t] ≈ −∂rH(r) , Krt[∂̃z] ≈ ∂rH(r) , Br ≈ 0 . (4.33)

Therefore, the nontrivial momenta are

Pt = Q[∂t] = −
∫

dz

∫

SD−3
∞

dΩD−3 R
D−3 ∂rH = (D − 4) γD (2πRz) ΩD−3 = nD , (4.34)

P̃ z = Q[∂̃z] =

∫
dz

∫

SD−3
∞

dΩD−3 R
D−3 ∂rH = −(D − 4) γD (2πRz) ΩD−3 = −nD . (4.35)
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As these are the only non-zero components, the ADM momentum in the string background

becomes

P
(string)
A = nD (0,−1, 0, . . . , 0 ; +1, 0, . . . , 0) . (4.36)

This is the expected result: our global charge formula is covariant under global O(D,D)

transformations, so the ADM momentum in the string background should be related to

that in the null-wave background by an O(D,D) rotation, ΛA
B, which corresponds to the

T -duality along the z direction,

P
(string)
A = ΛA

B P
(wave)
B , R̃z =

l2s
Rz

. (4.37)

Further, from this duality relation, we identify n10 = 1/Rz = (2πR̃z)×(2πl2s)
−1 for D = 10,

which is the correct known mass for a fundamental string winding in the z direction.

Before proceeding further to the next example, let us comment on two aspects of the

ADM momentum.

• String winding charge. We can identify the well-known string winding charge (along

z direction) given by

QF1 ∝
∫

SD−3
∞

e−2Φ ∗D H , (4.38)

as the global charge, Q[∂̃z], for the winding direction z̃, i.e. ADM momentum along

the dual direction. Here, let us focus on a spacetime of toroidal topology, M =

Sz × R
D−2, such that a string is winding along the compactified z direction. The

momentum in the dual z̃ direction reads

P̃ z = Q[∂̃z] = 2

∫

∂M
dD−2xtr e

−2Φ
√
|G|Ktr[∂̃z] . (4.39)

By using the formula (4.6), the DFT-Noether potential becomes, restricted on the

section,

Kµν [∂̃z] = −Hµνz . (4.40)

Therefore, the ADM momentum becomes

P̃ z = Q[∂̃z] = −
∫

dz

∫

SD−3
∞

dD−3θ εtrzθ1···θD−3
e−2Φ

√
|G|GtρGrσ Gzδ Hρσδ

= 2πRz

∫

SD−3
∞

dD−3θ e−2Φ
√
|G| εtzrθ1···θD−3

GtµGzν GrρHµνρ

= 2πRz

∫

SD−3
∞

dΩD−3 e
−2Φ ∗D H , (4.41)

where θa (a = 1, . . . , D − 3) are angular coordinates. Namely, the well-known flux

integral for the string winding charge (in the z direction) precisely matches with the

quasi-local ADM momentum in the z̃-direction. This supports the idea [42] that

strings are waves in doubled spacetimes.
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• Physical ADM momentum. Let us consider a constant shift of the B-field in the

string background (4.30); Btz → Btz + 1 + c where c is a constant. After this

O(D,D) rotation to a new solution, we can show that the conserved global charges,

Q[∂A], become

Q[∂A] = nD (0,−1, 0, . . . , 0 ; −c, 0, . . . , 0) . (4.42)

Then, if c is positive, Q[∂t] is negative, and this suggests that Q[∂t] is not physically

reasonable as a definition of the mass. On the other hand, we can show that the

ADM momentum, defined in (4.8), is independent of the parameter, c,

P
(string)
A = nD (0,−1, 0, . . . , 0 ; +1, 0, . . . , 0) , (4.43)

and the ADM energy, P
(string)
t , is always positive.

4.4 Non-Riemannian geometry T-dual to fundamental string

Now, in order to obtain a non-Riemannian background, we further perform double T -

duality transformations along the isometric t- and z-directions (see (5.23) in [36] for the

explicit form). Through the O(D,D) rotations,11 the (t, z, t̃, z̃) part of the generalized

metric, HAB, has the following form:



c (2 + cH) 0 0 −(1 + cH)

0 −c (2 + cH) −(1 + cH) 0

0 −(1 + cH) −H 0

−(1 + cH) 0 0 H


 . (4.44)

Then, in the c → 0 limit, the upper-left (2×2) block vanishes which would correspond to the

inverse of the Riemannian metric. Namely, this background becomes singular in the con-

ventional Riemannian sense, and accordingly is called a non-Riemannian background [36].

In this background, from the asymptotic form

Ktr[∂t] ≈ −c ∂rH(r) , Ktr[∂̃z] ≈ −c2 ∂rH(r) , Br ≈ 0 , (4.45)

we obtain the ADM 2D-momentum for the non-Riemannian (n-R) background,12

Q(n-R)[∂A] = nD (0, c2, 0, . . . , 0 ; c, 0, 0, . . . , 0) , (4.46)

P
(n-R)
A = nD

(
0, c2, 0, . . . , 0 ;

c

2 + c
, 0, 0, . . . , 0

)
. (4.47)

In this case, the ADM energy, which depends on the parameter, c, can have a negative

value.
11Note that the O(D,D) rotation here may not correspond to the traditional T-duality rotation. In

backgrounds with isometries, we can choose the coordinates, xA = (x̃a, x
a, x̃i, x

i) (a = 1, . . . , D − n,

i = D − n + 1, . . . , D), such that the background fields are independent of x̃a and xI = (x̃i, x
i). In

such backgrounds, a global O(D,D) rotation, HAB → OA
C OB

D HCD with OA
B =

(
1 0
0 OI

J

)
∈ O(D,D)

(keeping the coordinates fixed), transforms the equation of motion of DFT covariantly. We used this

rotation as a solution generating method. For discussions of related subtle issues, see [55, 56].
12For the non-Riemannian case, in order to calculate the ADM momentum explicitly, we need to use

a general formula (A.4), instead of (4.6). Further, since we cannot define bµν for the non-Riemannian

case, the ADM momentum should be defined using a different parametrization the generalized metric, see

e.g. [57].
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4.5 Reissner-Nordström black hole

As a simplest example in the YM-coupled DFT, let us consider the Reissner-Nordström

black hole,

ds2 = −f(r) dt2 + f−1(r) dr2 + r2 dΩ2
D−2 , f(r) := 1− 2µ

rD−3
+

q2

r2(D−3)
, Φ = 0 ,

(4.48)

A = −2gYMQ

rD−3
dt , Bµν = 0 , µ :=

M

2(D − 2)ΩD−2

, q2 :=
2(D − 3)Q2

(D − 2)
.

(4.49)

The doubled vector potential satisfies (2.43) and is parametrized by VA = (0, Aµ). Conse-

quently, we have (PF P̄ )[µν] = −fµν = −GµρGνσ(∂ρAσ − ∂σAρ), see (3.18) of [6].

In this background, the global charge (3.56) becomes

Q[X] = 2

∫

∂M
dD−2xtr

√
|G|

(
K [tr] + 2 ξ[tBr] − 4 g−2

YM f trAt ξ
t
)
. (4.50)

From the asymptotic behaviour, f trAt ∝ r−(2D−5), the last term does not contribute to

the surface integral. The nontrivial contributions come from

Ktr[∂t] ≈ 2(D − 3)µ r−(D−2) , Br ≈ 2µ r−(D−2) , (4.51)

such that we can recover the correct ADM mass,13

Pt = Q[∂t] = 2(D − 2)ΩD−2 µ = M . (4.52)

4.6 Black five-brane

Here, we consider the black 5-brane, whose background reads [40]:

ds2 = −

(
1− r2+

r2

)

(
1− r2

−

r2

) dt2 +
dr2(

1− r2+
r2

) (
1− r2

−

r2

) + r2 dΩ2
3 +

5∑

s=1

(dzs)2 , (4.53)

e−2Φ = 1− r2−
r2

, dB = Q ǫ3 , Q := r+r− , (4.54)

where ǫ3 is the volume element on the unit 3-sphere, satisfying
∫
S3 ǫ3 = 2π2, and r± is the

radius of the outer and the inner horizons. In order to make the conserved charges finite,

we assumed that the zs-directions to be a five-torus with the volume, VT 5 . In the extremal

limit, r+ → r−, this background approaches that of the NS5-brane.

In the Cartesian coordinates, we obtain the asymptotic form,

Ktr[∂t] ≈
2 (r2+ − r2−)

r3
, Br ≈ r2+ + r2−

r3
. (4.55)

13If we make a constant shift in the gauge field, Aµ → Aµ + aµ, the f trAt term also gives a contribution

to the ADM mass; Q[∂t] → Q[∂t] − 8(D − 3)ΩD−2 g
−1
YM Qat, which depends on the free parameter, at.

Like the definition of the ADM momentum given in (4.8), we can define a gauge invariant combination,

P̂t := Pt + 8(D − 3)ΩD−2 g
−1
YM QAt.
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As it is expected, the only non-vanishing component of the ADM momentum is the ADM

energy,

Pt = Q[∂t] =

∫
d5z

∫

S3
∞

dΩ3

(
3r2+ − r2−

)
= VT 5 2π2

(
3r2+ − r2−

)
, (4.56)

which reproduces the known result, (3.14) in [58], especially the mass of the NS5-brane

as the extremal limit, r± → N1/2ls. Note that the ADM momentum is timelike in this

background,

(H(0))AB PA PB < 0 . (4.57)

As expected, unlike the case of the fundamental string, the charge of the NS5-brane does

not appear as the ADM momentum. The charge of the NS5-brane will appear as the NUT

charge in doubled spacetime since it is T -dual to the Kaluza-Klein monopole, which has

the NUT charge. Another possibility is that, as discussed in [59, 60], since monopoles

are simultaneously interpreted as null waves in the ‘Exceptional Field Theory’, it may be

possible to describe the charge of the NS5-brane as an ADM momentum in the extended

spacetime.

4.7 Linear dilaton background

Finally, we demonstrate that our general formula (3.42) is also applicable for a non-

asymptotically flat background by adding a suitable counterterm as a boundary action.

As an example of a non-asymptotically flat background, consider the asymptotically

linear dilaton background, which can be obtained by taking a decoupling limit and per-

forming a coordinate transformation [41]:

ds2 = −f(r) dt2 +
Nl2s

r2f(r)
dr2 +Nl2s dΩ

2
3 +

5∑

s=1

(dzs)2 , (4.58)

e2Φ =
Nl2s
r2

, dB = Q ǫ3 , f(r) := 1− r20
r2

. (4.59)

Here, r0 is the corresponds to the outer horizon and N corresponds to the number of the

five-branes.

In this case, we have

Ktr[∂t] =
r2

Nl2s
∂rf(r) , Br = − 4r

Nl2s
f(r)− r2

Nl2s
∂rf(r) . (4.60)

Since the constant term in Br gives a divergent value to the conserved charge, we add

the following boundary term to the action:

S0 = −
∫

Rt×∂M

√
h e−2Φ b0 . (4.61)

Here, h is the induced metric on the boundary, Rt × ∂M, which is in our case a constant

r surface, and b0 is a function of h. This corresponds to the shift in BA by

BA → B̄A := BA + b0 n̂
A , (4.62)
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where n̂A := HAB nA and nA denote the unit normal vector at the boundary, HABnAnB =

1.14 In the present case, its asymptotic form becomes n̂A∂A ≈ ∂r. Thus, the shift simply

changes Br component as

Br → B̄r = Br + b0 . (4.63)

Here, we simply choose b0 as the minus of the leading term in Br, evaluated on the extremal

background, r0 = 0; b0 = 4/(N1/2ls). We then obtain

Ktr[∂t] + B̄r ≈ 2r20
Nl2s

1

r
. (4.64)

Therefore, the ADM mass, which is the only non-vanishing component of the ADM mo-

mentum, becomes

Q[∂t] =

∫
d5z

∫

S3
∞

dΩ3 e
−2d

(
Ktr[∂t] + B̄r

)
= 2r20 Ω3 VT 5 . (4.65)

This result matches with (138) in [61], where the mass was obtained from an approach of

Brown and York [32] as well as of Hawking and Horowitz [62]. See also (6.17) of [63], where

another approach was used.

5 Discussion

In this paper, we formulated the conserved Noether current and associated global charges

of the massless sector of string theory in the DFT approach. The result is manifestly

O(D,D)-covariant. We checked the result against various string theory backgrounds, not

only geometric but also non-geometric, and found that the result yields the right answers

in all cases.

There are further directions our result can be extended. One would like to include

the R-R sector fields and also to substantiate fermionic Noether currents and fermionic

global charges as odd-grading part of supersymmetric asymptotic symmetries in superstring

theories.

The most interesting and important applications of our result would be for non-

geometric backgrounds, either from exotic branes or exotic fluxes. As a step torward

this goal, we also apply our formula to the exotic 522-brane background [64–66],

ds2 = H(r)
(
dr2 + r2 dθ2

)
+H(r)K−1(r, θ) dx289 + dx203···7 , H(r) := σ ln(rc/r) ,

(5.1)

e2Φ = H(r)K−1(r, θ) , B89 = −K−1(r, θ) θ σ , K(r, θ) := H2(r) + σ2 θ2 , (5.2)

14Note that nA is defined through Stokes’ theorem for an arbitrary vector, KA,
∫

dD
x ∂A

(
e
−2d

K
A
)
=

∮
dD−1

x e
−2d

nA K
A
.

We note that nA = J AB nB is different from n̂A appearing in (4.62). Similarly, the normal vector, n̂k∂k,

appearing in (4.10) should be also understood as the D-dimensional components of n̂A.
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where σ := R8R9/(2πl
2
s) . In this background, we obtain

Ktr = 0 , Br = −∂rH
−1(r) , (5.3)

and the ADM mass is obtained as

Q[∂t] = −
∫

T3456789

d7z

∫
dθ r H−1(r) ∂rH(r) = 2πσ VT3456789 H

−1(r) . (5.4)

This agrees with the result in [65, 66], and can be viewed alternative derivation starting

from our manifestly O(D,D) covariant formulation. If we follow the ad hoc procedure

in [65, 66], H(r) → 1 as r → ∞, we obtain the known ADM mass for the 522-brane

background,

Q[∂t] = 2πσ VT3456789 = l−1
s

R3 · · ·R7(R8R9)
2

g2s l
9
s

. (5.5)

We intend to report our further progress in the above directions in future works.
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A DFT-Noether potential

Here, we obtain explicit expressions for the DFT-Noether potential defined in (3.27):

KAB[X] = 4
(
P̄C[A PB]D − PC[A P̄B]D

) (
∂CXD + ΓCDE XE

)
. (A.1)

Using the identity,

4
(
P̄AC PBD − PAC P̄BD

)
ΓCDE

= 8
(
P̄AC PBD − PAC P̄BD

) [(
P ∂CPP̄

)
[DE]

+
(
P̄[D

F P̄E]
G − P[D

F PE]
G
)
∂FPGC

]

= 4
[
2P̄C[A

(
P∂CPP̄

)B]
E+2PC[A

(
P∂CPP̄

)
E
B]−HE

C
(
P∂CPP̄

)[AB]
+
(
P∂EPP̄

)(AB)]

= −2HC[AHB]D ∂CHDE + 2 ∂[AHB]
E −HE

C H[A
D ∂CHB]D + ∂EHAB , (A.2)

the DFT-Noether potential becomes

KAB[X] = −2HC[A
(
∂CX

B] + ∂B]XC

)
− 2HC[AHB]D ∂CHDE XE

+ 2 ∂[AHB]
E XE −HE

C H[A
D ∂CHB]D XE . (A.3)

Then, further using a parametrization (4.7) and the strong constraint, ∂̃µ = 0, we obtain

Kµν [X] = −2Hρ[µ
(
∂ρξ

ν] +Hν]D ∂ρHDE XE
)
−HE

ρH[µ
D ∂ρHν]D XE . (A.4)

Lastly, from the parametrization of the generalized metric (2.48), we can obtain the ex-

pression of (4.6).
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B Fall-off behaviour at infinity in the asymptotically flat case

Here, we show that the left-hand side of (3.35), e−2dΘ̂A(d, P, δd, δP ), indeed vanishes in

the asymptotically flat background. Using the fall-off behaviour (4.5) and the explicit form

of e−2dΘ̂A(d, P, δd, δP ),

e−2dΘ̂A(d, P, δd, δP ) = −4 ∂B(e
−2dHAB) δd+ e−2d ΓBC

A δHBC , (B.1)

we obtain

e−2d Θ̂A(d, P, δd, δP ) = O(r2α−1) . (B.2)

Further, since the integral measure at the spatial infinity behaves as dD−2xAB ∼ O(rD−2)

for a background with coordinates (4.2) (which includes the Schwarzschild black hole),

assuming α = −(D − 3), we obtain

2

∫

∂M
dD−2xAB e−2dX [A Θ̂B](d, P, δd, δP ) = O(r−(D−3)) . (B.3)

On the other hand, for a background with coordinates (4.3) (which includes the p-brane or

the null-wave background), we have dD−2xAB ∼ O(rD−p−2). Assuming α = −(D − p− 3),

we get

2

∫

∂M
dD−2xAB e−2dX [A Θ̂B](d, P, δd, δP ) = O(r−(D−p−3)) . (B.4)

Therefore, in both asymptotically flat backgrounds, e−2dΘ̂A(d, P, δd, δP ) does not give any

contribution to the global charge. This validates the approximation (3.46).

C Conserved global charge in Einstein frame

Our formula (3.42) for the conserved global charge, restricted on the section, can be sum-

marized as

Q[X] =

∫

∂M
dD−2xµν

√
|G| e−2Φ

(
Kµν [X] + 2X [µBν]

)
, (C.1)

Kµν [X] = 2 ξ[µ;ν] −Hµνρ ζρ , Bµ = 2Gµν
(
2∂νΦ− ∂ν ln

√
|G|

)
− ∂νG

µν , (C.2)

where we parametrized the O(D,D)-covariant DFT field variables in terms of the conven-

tional Riemannian fields in string frame. In this appendix, we obtain the corresponding

expression in terms of the Einstein frame metric.

In order to obtain the expression, we use the definition of the Einstein frame metric,

G(string)
µν = e

4
D−2

ΦG(E)
µν , (C.3)

to rewrite the DFT-Noether potential, Kµν , and 2X [µBν]. The DFT-Noether potential

can be rewritten as

[
2 ξ[µ;ν] −Hµνρζρ

](string)
= e−

4
D−2

Φ

[
2 ξ[µ;ν] − e−

8
D−2

ΦHµνρζρ +
8

D − 2
ξ[µ∂ν]Φ

](E)
, (C.4)
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where an extra dilaton term appeared inside the bracket. On the other hand, rewriting of

2X [µBν] also produces an additional dilaton term, and they are cancelled with each other.

We then obtain the expression of conserved global charge in the Einstein frame:

Q[X] =

∫

∂M
dD−2xµν

√
|G(E)|

(
Kµν

(E)[X] + 2X [µB
ν]
(E)

)
, (C.5)

Kµν
(E)[X] :=

[
2 ξ[µ;ν] − e−

8
D−2

ΦHµνρ ζρ
](E)

, Bµ
(E) := −2Gµν

(E) ∂ν ln
√
|G(E)| − ∂νG

µν
(E) .

(C.6)
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