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The adoption of multiple antennas both at the transmitter and the receiver will explore additional spatial resources to provide
substantial gain in system throughput with the spatial division multiple access (SDMA) technique. Optimal multiuser MIMO
linear precoding is considered as a key issue in the area of multiuser MIMO research. The challenge in such multiuser system
is designing the precoding vector to maximize the system capacity. An optimal multiuser MIMO linear precoding scheme with
LMMSE detection based on particle swarm optimization is proposed in this paper. The proposed scheme aims to maximize the
system capacity of multiuser MIMO system with linear precoding and linear detection. This paper explores a simplified function
to solve the optimal problem. With the adoption of particle swarm optimization algorithm, the optimal linear precoding vector
could be easily searched according to the simplified function. The proposed scheme provides significant performance improvement
comparing to the multiuser MIMO linear precoding scheme based on channel block diagonalization method.
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1. Introduction

In recent years, with the increasing demand of transmit-
ting high data rates, the (Multiple-Input Multiple-Output)
MIMO technique, a potential method to achieve high
capacity has attracted enormous interest [1, 2]. When
multiple antennas are equipped at both base stations (BSs)
and mobile stations (MSs), the space dimension can be
exploited for scheduling multi-user transmission besides
time and frequency dimension. Therefore, the traditional
MIMO technique focused on point-to-point single-user
MIMO (SU-MIMO) has been extended to the point-to-
multipoint multi-user MIMO (MU-MIMO) technique [3,
4]. It has been shown that time division multiple access
(TDMA) systems can not achieve sum rate capacity of MU-
MIMO system of broadcast channel (BC) [5] while MU-
MIMO with spatial division multiple access (SDMA) could,
where one BS communicates with several MSs within the
same time slot and the same frequency band [6, 7]. MU-
MIMO based on SDMA improves system capacity taking
advantage of multi-user diversity and precanceling of multi-
user interference at the transmitter.

Traditional MIMO technique focuses on point-to-point
transmission as the STBC technique based on space-time
coding and the VBLAST technique based on spatial mul-
tiplexing. The former one can efficiently combat channel
fading while its spectral efficiency is low [8, 9]. The latter
one could transmit parallel data streams, but its performance
will be degraded under spatial correlated channel [10, 11].
When the MU-MIMO technique is adopted, both the multi-
user diversity gain to improve the BER performance and
the spatial multiplexing gain to increase the system capacity
will be obtained. Since the receive antennas are distributed
among several users, the spatial correlation will effect less
on multi-user MIMO system. Besides, because the multi-
user MIMO technique utilizes precoding at the transmit
side to precanceling the cochannel interference (CCI), so
the complexity of the receiver can be significantly simplified.
However multi-user CCI becomes one of the main obstacles
to improve MU-MIMO performance. The challenge is that
the receiving antennas that are associated with different
users are typically unable to coordinate with each other.
By mitigating or ideally completely eliminating CCI, the BS
exploits the channel state information (CSI) available at the
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transmitter to cancel the CCI at the transmitter. It is essential
to have CSI at the BS since it allows joint processing of
all users’ signals which results in a significant performance
improvement and increased data rates.

The sum capacity in a multiuser MIMO broadcast
channel is defined as the maximum aggregation of all the
users’ data rates. For Gaussion MIMO broadcast channels
(BCs), it was proven in [12] that Dirty Paper Coding (DPC)
can achieve the capacity region. The optimal precoding of
multi-user MIMO is based on dirty paper coding (DPC)
theory with the nonlinear precoding method. DPC theory
proves that when a transmitter has advance knowledge
of the interference, it could design a code to compensate
for it. It is developed by Costa which can eliminate the
interference by iterative precoding at the transmitter and
achieve the broadcast MIMO channel capacity [13, 14].
The famous Tomlinson-Harashima precoding (THP) is the
non-linear precoding based on DPC theory. It is first
developed by Tomlinson [15] and Miyakawa and Harashima
[16] independently and then has become the Tomlinson-
Harashima precoding (THP) [17–20] to combat the multi-
user cochannel interference (CCI) with non-linear precod-
ing. Although THP performs well in a multi-user MIMO
scenario, deploying it in real-time systems is difficult because
of its high complexity of the precoding at the transmitter.
Many suboptimal MU-MIMO linear precoding techniques
have emerged recently, such as the channel inversion method
[21] and the block diagonalization (BD) method [22–24].
Channel inversion method [25] employs some traditional
MIMO detection criterions, such as the Zero Forcing (ZF)
and Minimum Mean Squared Error (MMSE), precoding
at the transmitter to suppress the CCI Channel inversion
method based on ZF can suppress CCI completely; however
it may lead to noise amplification since the precoding
vectors are not normalized. Channel inversion method
based on MMSE compromises the noise and the CCI,
and outperforms ZF algorithm, but it still cannot obtain
good performance. BD method decomposes a multi-user
MIMO channel into multiple single user MIMO channels
in parallel to completely cancel the CCI by making use
of the null space. With BD, each users precoding matrix
lies in the null space of all other users channels, and the
CCI could be completely canceled. The generated null space
vectors are normalized vectors, which could avoid the noise
amplification problem efficiently. So BD method performs
much better than channel inversion method. However, since
BD method just aims to cancel the CCI and suppress the
noise, its precoding gain is not optimized.

It is obvious that the CCI, the noise, and the precod-
ing gain are the factors affecting on the performance of
the preprocessing MU-MIMO. The above linear precoding
methods just take one factor into account without entirely
consideration. A rate maximization linear precoding method
is proposed in [26]. This method aims to maximize the sum
rate of the MU-MIMO system with linear preprocessing.
However, the optimized function in [26] is too complex to
compute. In this paper, we solve the optimal linear precoding
with linear MMSE receiver problem in a more simplified
way.
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Figure 1: The configuration of MU-MIMO system

An optimal MU-MIMO linear precoding scheme with
linear MMSE receiver based on particle swarm optimization
(PSO) is proposed in this paper. PSO algorithm has been
used in many complex optimization tasks, especially in
solving the optimization of continuous space [27, 28]. In this
paper, PSO is firstly introduced into MIMO research to solve
some optimization issues. The adoption of PSO to MIMO
system provides a new method to solve the MIMO processing
problem. In this paper, we first analyze the optimal linear
precoding vector with linear MMSE receiver and establish a
simplified function to measure the optimal linear precoding
problem. Then, we employ the novel PSO algorithm to
search the optimal linear precoding vector according to the
simplified function. The proposed scheme obtains significant
MU-MIMO system capacity and outperforms the channel
block diagonalization method.

This paper is organized into seven parts. The system
model of MU-MIMO is given in Section 2. Then the analysis
of optimal linear precoding with linear MMSE receiver
is given in Section 3. The particle swarm optimization
algorithm is given in Section 4. In Section 5, the proposed
optimal linear precoding MU-MIMO scheme with LMMSE
detection based on particle swarm optimization is intro-
duced. In Section 6, the simulation results and comparisons
are given. Conclusions are drawn in the last section. The
channel block diagonalization algorithm is given in the
appendix.

2. SystemModel of MU-MIMO

The MU-MIMO system could transmit data streams of
multiple users of the same cellular at the same time and the
same frequency resources as Figure 1 shows.

We consider an MU-MIMO system with one BS and K
MS, where the BS is equipped with M antennas and each
MS with N antennas, as shown in Figure 2. The point-to
multipoint MU-MIMO system is employed in downlink
transmission.

Because MU-MIMO aims to transmit data streams of
multiple-users at the same time and frequency resources, we
discuss the algorithm at single-carrier, for each subcarrier
of the multicarrier system, and it is processed as same as
the single-carrier case. Since OFDM technique deals the
frequency selective fading as flat fading, we model the
channel as the flat fading MIMO channel:

Hk =

⎡
⎢⎢⎢⎣

h1,1 · · · h1,M

...
. . .

...

hN ,1 · · · hN ,M

⎤
⎥⎥⎥⎦ (1)
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Figure 2: The block diagram of MU-MIMO system

whereHk is the MIMO channel matrix of user k. hi, j indicates
the channel impulse response coupling the jth transmit
antenna to the ith receive antenna. Its amplitude obeys
independent and identically Rayleigh-distribution.

Data streams of K (K ≤ M) users are precoded by their
precoding vectors Tk (k = 1 · · ·K) before transmission. Tk

is the M × 1 normalized precoding vector for user k with
TH
k Tk = 1. The received signal at the kth user is

yk = HkTk
√
pksk + Hk

K∑

i=1,i /= k

Ti
√
pisi + nk

K∑
k=1

pk = p0

(2)

where yk is the received signal of user k. The elements
of additive noise nk obey distribution CN(0,N0) that are
spatially and temporarily white. pk is the transmit signal
power of the kth data stream, and p0 is the total transmit
power.

The received signal at the kth user can also be expressed
as

yk = HkWs + nk

W = [T1 T2 · · · TK ]

s =
[√

p1s1
√
p2s2 · · · √

pKsK
]T

(3)

where s is the transmitted symbol vector withK data streams,
W is the precoding matrix withK precoding vectors, and [·]T
denotes the matrix transposition:

H̃k = HkW (4)

The channel matrix H̃k can be assumed as the virtual channel
matrix of user k after precoding. At the receiver, a linear
receiver G̃k is exploited to detect the transmit signal for the
user k. The detected signal of the kth user is

ŝk = G̃kyk. (5)

The linear receiver G̃k can be designed by ZF or MMSE
criteria, and linear MMSE will obtain better performance.

In order to simplify the analysis, the power allocation is
assumed as equal β = pk/N0 = p0/KN0, and linear MMSE
MIMO detection is used in this paper as

G̃k = h̃Hk
(
H̃kH̃H

k + βIN
)−1

, (6)

where (·)−1 indicates the inverse of the matrix, (·)H denotes
the matrix conjugation transposition, and IN is the N × N
identity matrix:

h̃k = HkTk =
[
H̃k

]
k
= [HkW]k, (7)

where [·]k denotes the kth column of the matrix. Then the
detected SINR for the user k with the linear detection is

SINRk =
β
∣∣∣G̃kHkTk

∣∣∣2

∑K
i=1, i /= k β

∣∣∣G̃kHkTi

∣∣∣2
+
∥∥∥G̃k

∥∥∥2

2

=
β
∣∣∣G̃kHkTk

∣∣∣2
/
∥∥∥G̃k

∥∥∥2

2∑K
i=1, i /= k β

∣∣∣G̃kHkTi

∣∣∣2
/
∥∥∥G̃k

∥∥∥2

2
+ 1

,

(8)

where ‖ · ‖2 denotes the matrix two-norm.
Because the nonnormalized precoding vector will amp-

lify the noise at the receiver, the precoding vectors Tk are
assumed to be normalized as follow:

‖Tk‖2 = 1 (9)

for k = 1, . . . ,K .

3. Optimal Multiuser MIMO Linear Precoding

We assume that the MIMO channel matrices Hk (k =
1, . . . ,K) are available at the BS. It can be achieved either by
channel reciprocity characteristics in time-division-duplex
(TDD) mode or by feedback in frequency-division-duplex
(FDD) mode. And the channel matrix Hk is known at the
receiver k through channel estimation. We just discuss the
equal power allocation case in this paper. The optimal power
allocation is achieved through water-filling according to the
SINR of each user.

The MIMO channel of user k can be decomposed by the
singular value decomposition (SVD) as

Hk = UkΣkVH
k . (10)

If we apply Tk = [Vk]1 to precode for user k, it obtains
the maximal precoding gain as follow.

Lemma 1. One has

‖HkTk‖2 =
∥∥Hk[Vk]1

∥∥
2 = λmax

k , (11)

where [Vk]1 denotes the first column of Vk, and λmax
k denotes

the maximal singular value of Hk.
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Proof. One has

‖HkTk‖2 =
√

(HkTk)H(HkTk)

=
√

(Hk[Vk]1)H(Hk[Vk]1)

=
√(

λmax
k [Uk]1

)H(
λmax
k [Uk]1

)
.

(12)

So

‖HkTk‖2 = λmax
k , (13)

where [Uk]1 denotes the first column of unitary matrix Uk.

Thus, precoding with the singular vector corresponding
to the maximal singular value is an initial thought to obtain
good performance. However, if the singular vector is directly
used at the transmitter as the precoding vector, the CCI
will be large, and the performance will be degraded severely.
Only for the special case that the MIMO channel among all
these users are orthogonal that the CCI will be zero if we
directly use the singular vector of each user as its precoding
vector. But in realistic case, the transmit users’ channels are
always nonorthogonal, and so the singular vector could not
be utilized directly. We have drawn some analysis as follow.

(1)Ideal channel case. The ideal channel case is that the
MIMO channels of transmitting users’ are orthogonal. There
is

∣∣∣([Vk]1)H[Vi]1

∣∣∣ = 0 (i /= k) (14)

If we apply Tk = [Vk]1 to precode for user k, the maximal
precoding gain will be obtained as (13) shows, and the CCI
will turn to zero as follow.

Lemma 2. One has

∑K
i=1, i /= k β

∣∣∣G̃kHkTi

∣∣∣2

∥∥∥G̃k

∥∥∥2

2

= 0. (15)

Proof. One has

K∑

i=1,i /= k

∣∣∣G̃kHkTi

∣∣∣2 =
K∑

i=1,i /= k

∣∣∣G̃kHk[Vi]1

∣∣∣2
, (16)

G̃k = (HkTk)H
(
H̃kH̃H

k +
1
β
IM

)−1

, (17)

HkTk = Hk[Vk]1 = λmax
k [Uk]1, (18)

G̃k =
(
λmax
k [Uk]1

)H(
(HkW)(HkW)H +

1
β
IM

)−1

, (19)

(HkW)(HkW)H = UkΣkVH
k WWHVkΣkUH

k . (20)

Because we assume that |[Vk]H1 [Vi]1| = 0 (i /= k), and
[Vk]1 is the unit vector with |[Vk]H1 [Vk]1| = 1, so W =
[[V1]1, [V2]1, . . . , [VK ]1] is an unitary matrix with

WWH = IM ,

G̃k = (HkTk)H
(
H̃kH̃H

k +
1
β
IM

)−1

=
(
λmax
k [Uk]1

)H(
UkΣ

2
kU

H
k +

1
β
IM

)−1

= λmax
k [Uk]H1

(
Uk

(
Σ2
k +

1
β
IM

)
UH

k

)−1

.

(21)

Since ([Uk]1)H(UH
k )
−1 = [1, 0, . . . , 0], so

G̃k = λmax
k [Uk]H1

(
UH

k

)−1
(
Σ2
k +

1
β
IM

)−1

U−1
k

= λmax
k

(λmax
k )2 + 1/β

[
UH

k

]1

= λmax
k

(λmax
k )2 + 1/β

[Uk]H1 ,

(22)

where [UH
k ]

1
denotes the first row of UH

k .
Also

K∑

i=1,i /= k

∣∣∣G̃kHkTi

∣∣∣2

=
K∑

i=1,i /= k

∣∣∣∣∣
λmax
k

(λmax
k )2 + 1/β

[Uk]H1 HkTi

∣∣∣∣∣
2

=
K∑

i=1,i /= k

∣∣∣∣∣
λmax
k

(λmax
k )2 + 1/β

[Uk]H1 UkΣkVH
k [Vi]1

∣∣∣∣∣
2

.

(23)

Since |([Vk]1)H[Vi]1| = 0, so VH
k [Vi]1 = [0, a1, . . . , aK−1]T .

Combining ([Uk]1)HUk = [1, 0, . . . , 0], there is

K∑

i=1,i /= k

∣∣∣G̃kHkTi

∣∣∣2 =
K∑

i=1,i /= k

∣∣∣G̃kHk[Vi]1

∣∣∣2 = 0. (24)

so
∑K

i=1, i /= k β
∣∣∣G̃kHkTi

∣∣∣2

∥∥∥G̃k

∥∥∥2

2

= 0. (25)

After linear MMSE detection at the receiver, user k
obtains the maximal SINR as follows.

Lemma 3. One has

SINRk =
β
∣∣∣G̃kHkTk

∣∣∣2

∥∥∥G̃k

∥∥∥2

2

= β
(
λmax
k

)2
. (26)
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Proof. One has

SINRk =
β(G̃kHkTk)

H(
G̃kHkTk

)
∣∣∣G̃kG̃H

k

∣∣∣
. (27)

According to (13) and (22)
(
G̃kHkTk

)H(
G̃kHkTk

)

=

⎛
⎜⎝ λmax

k(
λmax
k

)2
+ 1/β

[Uk]H1 λ
max
k [Uk]1

⎞
⎟⎠

H

×

⎛
⎜⎝ λmax

k(
λmax
k

)2
+ 1/β

[Uk]H1 λ
max
k [Uk]1

⎞
⎟⎠

=

⎛
⎜⎝

(
λmax
k

)2

(
λmax
k

)2
+ 1/β

⎞
⎟⎠

2

∣∣∣G̃kG̃H
k

∣∣∣ =

⎛
⎜⎝ λmax

k(
λmax
k

)2
+ 1/β

⎞
⎟⎠

2

SINRk = β
(
λmax
k

)2
.

(28)

(2)Ill channel case The ill channel case is that all these
transmitting users’ channels are highly correlated. There is

∣∣∣([Vk]1)H[Vi]1

∣∣∣ = 1 (i /= k). (29)

If we still apply Tk = [Vk]1 to precode for user k, the
multiuser CCI will be very large, and the system performance
will be degraded severely. The SINR after MMSE detection
with equal power allocation for user k is as follows.

Lemma 4. One has

SINRk =
β
(
λmax
k

)2

∑K
i=1,i /= k β(λmax

k )2 + 1
. (30)

Proof. Since we have proven that whenTk = [Vk]1 to precode

for user k, then β|G̃kHkTk|
2
/‖G̃k‖

2
2 = β(λmax

k )2, so

SINRk =
β
∣∣∣G̃kHkTk

∣∣∣2
/
∥∥∥G̃k

∥∥∥2

2
∑K

i=1,i /= k β
∣∣∣G̃kHkTi

∣∣∣2
/
∥∥∥G̃k

∥∥∥2

2
+ 1

=
β
(
λmax
k

)2

∑K
i=1,i /= k β

∣∣∣G̃kHkTi

∣∣∣2
/
∥∥∥G̃k

∥∥∥2

2
+ 1

.

(31)

According to (19)

G̃k =
(
λmax
k [Uk]1

)H

×
(
UkΣkVH

k WWHVkΣkUH
k +

1
β
IM

)−1

.

(32)

Since we assume that |[Vk]H1 [Vi]1| = 1 (i /= k ), so W =
[[V1]1, [V2]1, . . . , [VK ]1] is

W =

⎡
⎢⎢⎢⎢⎣

1 · · · 1

...
. . .

...

1 · · · 1

⎤
⎥⎥⎥⎥⎦
. (33)

Let the diagonal matrix Σk = ΣkVH
k WWHVkΣk, and so there

is

G̃k =
(
λmax
k [Uk]1

)H(
Uk

(
Σk +

1
β
IM

)
UH

k

)−1

. (34)

Since ([Uk]1)H(UH
k )
−1 = [1, 0, . . . , 0], so

G̃k =
λmax
k

λk + 1/β

[
UH

k

]1

= λmax
k

λk + 1/β
[Uk]H1 ,

(35)

where λk indicates the first diagonal element of the diagonal
matrix Σk. So there is

G̃kHkTi =
λmax
k

λk + 1/β
[Uk]H1 HkTi

= λmax
k

λk + 1/β
[Uk]H1 UkΣkVH

k [Vi]1.

(36)

Since |([Vk]1)H[Vi]1| = 1, so VH
k [Vi]1 = [1, a1, . . . , aK−1]T .

Combining ([Uk]1)HUk = [1, 0, . . . , 0], there is

∣∣∣G̃kHkTi

∣∣∣2 =

⎛
⎜⎝

(
λmax
k

)2

λk + 1/β

⎞
⎟⎠

2

,

∥∥∥G̃k

∥∥∥2

2
=
∣∣∣G̃kG̃H

k

∣∣∣ =
(

λmax
k

λk + 1/β

)2

,

∑K
i=1,i /= k β

∣∣∣G̃kHkTk

∣∣∣2

∥∥∥G̃k

∥∥∥2

2

=
K∑

i=1,i /= k
β
(
λmax
k

)2
.

(37)

So the SINR for user k is

SINRk =
β
(
λmax
k

)2

∑K
i=1,i /= k β

(
λmax
k

)2
+ 1

(38)

(3) Practical case. The practical case is that the transmit-
ting users’ channels are neither orthogonal nor ill. There is

∣∣∣([Vk]1)H[Vi]1

∣∣∣ /= 0 (i /= k)

∣∣∣([Vk]1)H[Vi]1

∣∣∣ /= 1 (i /= k).
(39)

The practical case is usually in realistic environment.
If we apply Tk (Tk /= [Vk]1) to precode for user k, then
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Figure 3: The system capacity CDF comparison of the two schemes.

ξk = |TH
k [Vk]1|can be the parameter to measure the

precoding gain, and ρi = |TH
k [Vi]1| can be the parameter to

measure the CCI. The SINR for user k according to the above
analysis can be approximated denoted as

SINRk ≈
β
(
λmax
k ξk

)2

∑K
i /= k,i=1 β

(
λmax
k ρi

)2
+ 1

=
∣∣∣λmax

k (TH
k [Vk]1)

∣∣∣2

∑K
i /= k,i=1

∣∣∣λmax
k (TH

k [Vi]1)
∣∣∣2

+ 1/β
.

(40)

The system capacity is related to SINR of the transmit
users k, (k = 1, . . . ,K). So in order to obtain the system
capacity, we should obtain the SINRk. Thus, when the
optimal precoding vector is obtained by the PSO algorithm,
the system capacity could be calculated by (41).

The system capacity of the MU-MIMO system can be
indicated as

CMU =
K∑

k=1

log2(1 + SINRk). (41)

We aim to maximize the system capacity of the MU-
MIMO system in this paper. The optimal MU-MIMO linear
precoding vector for the MU-MIMO system is the vector that
can maximize the SINR at each receiver as

Tk = arg max
Tk∈U

K∑

k=1

log2

⎛
⎜⎝1 +

∣∣∣λmax
k (TH

k [Vk]1)
∣∣∣2

∑K
i /= k,i=1

∣∣∣λmax
k (TH

k [Vi]1)
∣∣∣2

+ 1/β

⎞
⎟⎠

(42)

where U denotes the unitary vector that UHU = I. From
the above equation, it is clear that if we want to maximize

the system capacity of MU-MIMO, then the SINR of each
user should be maximized. The SINR of user k is associated
with three parameters as the singular vector correspond to
the maximal singular value of all users and the noise.

4. The Particle SwarmOptimization Algorithm

Particle swarm optimization algorithm was originally pro-
posed by Kennedy and Eberhart[27] in 1995. It searches
the optimal problem solution through cooperation and
competition among the individuals of population.

Imagine a swarm of bees in a field. Their goal is to
find in the field the location with the highest density of
flowers. Without any prior knowledge of the field, the bees
begin in random locations with random velocities looking
for flowers. Each bee can remember the location that is found
the most flowers and somehow knows the locations where
the other bees found an abundance of flowers. Torn between
returning to the location where it had personally found the
most flowers, or exploring the location reported by others
to have the most flowers, the ambivalent bee accelerates in
both directions to fly somewhere between the two points.
There is a function or method to evaluate the goodness of
a position as the fitness function. Along the way, a bee might
find a place with a higher concentration of flowers than
it had found previously. Constantly, they are checking the
concentration of flowers and hoping to find out the absolute
highest concentration of flowers.

Suppose that the size of swarm and the dimension of
search space are C and D ,respectively. Each individual in the
swarm is referred to as a particle. The location and velocity
of particle i (i = 1, . . . ,C) are represented as the vector
xi = [xi1, xi1, . . . , xiD]T and vi = [vi1, vi2, . . . , viD]T . Each bee
remembers the location where it personally encountered the
most flowers which is denoted as Pi = [pi1, pi2, . . . , piD]T ,
which is the flight experience of the particle itself. The
highest concentration of flowers discovered by the entire
swarm is denoted as Pg = [pg1, pg2, . . . , pgD]T , which is the
flight experience of all particles. Each particle is searching
for the best location according to Pi and Pg . The particle i
updates its location and velocity according to the following
two formulas [27]:

vt+1
id = wvtid + c1ϕ1

(
ptid − xtid

)
+ c2ϕ2

(
ptgd − xtid

)

xt+1
id = xtid + vt+1

id

(43)

where t is the current iteration number; vtid and xtid + 1
denote the velocity and location of the particle i in the dth
dimensional direction. ptid is the individual best location
of particle i in the dth dimensional direction, ptgd is the
population best location in the dth dimensional direction. ϕ1

and ϕ2 are the random numbers between 0 and 1, c1 and c2

are the learning factors, and w is the inertia factor. Learning
factors determine the relative “pull” of Pt

i and Pt
g that usually

content c1 = c2 = 2. Inertia factor determines to what extent
the particle remains along its original course unaffected by
the pull of Pt

g and Pt
i that is usually between 0 and 1. After

this process is carried out for each particle in the swarm, the
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process is repeated until reaching the maximal iteration or
the termination criteria are met.

5. The Optimal Linear Precoding
Multiuser MIMOwith LMMSEDetection
Based on Particle SwarmOptimization

With the adoption of PSO algorithm and the simplified
function (40), the optimal linear precoding vector Tk (k =
1, . . . ,K) could be easily searched.

The proposed optimal MU-MIMO linear precoding
scheme based on PSO algorithm will search the optimal
precoding vector for each user following 6 steps.

(1) The BS obtains λmax
k , [Vk]1 and β of each user.

(2) The BS employs the PSO algorithm to search the
optimal linear precoding vector for each user. For
user k, the PSO algorithm sets the maximal iteration
number I and a group of M dimensional particles

with the initial velocity v1
i,k = [v1

i1,k, v1
i2,k, . . . , v1

iM,k]
T

and the initial location x1
i,k = [x1

i1,k, x1
i2,k, . . . , x1

iM,k]
T

for particle i (i = 1, . . . ,C). In order to accelerate
the searching process, the initial location x1

i,k could be
initialized as [Vk]1, while the initial velocity v1

i,k could
be produced randomly. The real and imaginary parts
of the initial velocity obey a normal distribution with
mean zero and standard deviation one.

(3) The BS begins to search with the initial location x1
i,k

and velocity v1
i,k. The goodness of the location is

measured by the following equation:

f ti,k =
∣∣∣λmax

k [(xti,k)H[Vk]1]
∣∣∣2

∑K
j=1, j /= k

∣∣∣λmax
k [(xti,k)H[V j]1]

∣∣∣2
+ 1/β

, (44)

where the fitness function f ti,k indicates the obtained
SINR for user k precoded by xti,k. The PSO algorithm
finds Pt

i,k and Pt
g,k that are individual best location

and population best location measured by (44) for
the next iteration. Pt

i,k denotes the individual best
location which means the best location of particle
i at the tth iteration of the kth user. Pt

g,k denotes
the population best location which means the best
location of all particles at the tth iteration of the kth
user.

(4) For the tth iteration, the algorithm finds a Pt
i,k and a

Pt
g,k. The location and velocity for each particle will

be updated according to (43) for the next iteration.
In order to obtain the normalized optimal precoding
vector to suppress the noise, the location xti,k should
be normalized in each iteration.

(5) When reaching the maximal iteration number I , the
algorithm stops, and PI

g,k is the obtained optimal
precoding vector for user k.

(6) For an MU-MIMO system with K users, the scheme
will search the precoding vectors according to the
above criteria for each user.
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Figure 4: The system capacity CDF comparison of the two schemes.

6. Simulation Results

We simulated the proposed MU-MIMO scheme, the BD
algorithm in [22] (Coordinate Tx-Rx BD), and the channel
inversion algorithm in [25] in this paper to compare their
performance under the same simulation environment.

Figure 3 is the system capacity comparison of the cumu-
lative distribution function (CDF) of the channel inversion
algorithm with ZF precoder and MMSE precoder and the
proposed MU-MIMO algorithm when M = 4,N = 2,
p0/N0 = 5dB with equation power allocation and MMSE
detection at the receiver. For channel inversion method, the
BS transmits 4 date streams and 2 users simultaneously with
2 date stream for each user. For the proposed MU-MIMO,
the BS transmit 4 data streams and 4 users simultaneously
with 1 data stream for each user.

Figure 4 is the system capacity comparison of the CDF of
the coordinated Tx-Rx BD algorithm and the proposed MU-
MIMO algorithm when M = 4, K = 4, N = 2, p0/N0 =
5dB with equation power allocation and MMSE detection at
the receiver.

Figure 5 is the system capacity comparison of the CDF of
the coordinated Tx-Rx BD algorithm and the proposed MU-
MIMO algorithm when M = 4, K = 4, N = 4, p0/N0 =
5dB with equation power allocation and MMSE detection at
the receiver. Both the simulation results of the proposed MU-
MIMO scheme with PSO algorithm from Figure 3 to Figure 5
are based on the PSO parameters with the particle number
C = 20 and the iteration number I = 20. It could be seen that
the proposed MU-MIMO scheme can effectively increase the
system capacity compared to the BD algorithm and channel
inversion algorithm.

Figure 6 is the average BER performance of the proposed
MU-MIMO scheme and the coordinated Tx-Rx BD algo-
rithm with M = 4,K = 4,N = 4. Figure 7 is the average BER
performance of the proposed MU-MIMO scheme and the
coordinated Tx-Rx BD algorithm with M = 4,K = 4,N = 2.
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Figure 6: The BER comparison of the two schemes.

Both the schemes adopt equal power allocation, MMSE
detection, QPSK, and no channel coding. The proposed MU-
MIMO scheme, with PSO algorithm from Figures 6 and 7
are based on the PSO parameters with the particle number
C = 20 and the iteration number I = 20.

From the simulation results, it is clear that the proposed
MU-MIMO linear precoding with LMMSE detection based
on particle swarm optimization scheme outperforms the
BD algorithm and the channel inversion algorithm. The
reason lies in that the BD algorithm just aims to utilize
the normalized precoding vector to cancel the CCI and
suppress the noise. The channel inversion algorithm also
aims to suppress CCI and noise. So the users’ transmit
signal covariance matrices of these schemes are generally not
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Figure 7: The BER comparison of the two schemes.
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Figure 8: The BER comparison of the two schemes with different C
and I.

optimal that are caused by the inferior precoding gain. The
proposed MU-MIMO optimal linear precoding scheme aims
to find the optimal precoding vector to maximize each users’
SINR at each receiver to improve the total system capacity.

Figure 8 shows the BER performance of the proposed
MU-MIMO scheme with the same particle size and different
iteration size when M = 4, K = 4, N = 4. It adopts equal
power allocation, MMSE detection, QPSK, and no channel
coding. The particle number C is 20, and the iteration num-
ber scales from 5 to 30. We could see that when the iteration
number is small, the proposed scheme could not obtain the
best performance. With the increase of the iteration number,
more performance as well as the computational complexity
will increase too. However, when the iteration number is
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larger than 20 for this case, the algorithm could not obtain
more performance gain. Generally, for different case, the best
iteration number is different. The iteration number is related
to the transmit antenna number M at the BS and the transmit
user number K (K ≤M). With the increasing of M or K , the
iteration number should increase in order to obtain the best
performance.

7. Conclusion

This paper solves the optimal linear precoding problem
with LMMSE detection for MU-MIMO system in downlink
transmission. A simplified optimal function is proposed
and proved to maximize the system capacity. With the
adoption of the particle swarm optimization algorithm, the
optimal linear precoding vector with LMMSE detection for
each user could be searched. The proposed scheme can
obtain significant system capacity improvement compared
to the multi-user MIMO scheme based on channel block
digonolization under the same simulation environment.

Appendix

Coordinated Tx-Rx BD Algorithm

Coordinated Tx-Rx BD algorithm is the improved BD
algorithm. It could solve the antenna constraint problem
in traditional BD algorithm and extends the BD algorithm
to arbitrary antenna configuration. For a coordinated Tx-
Rx BD algorithm with M transmit antennas at the BS, N
receive antennas at the MS, and K users to be transmitted
simultaneously, the algorithm follows 6 steps.

(1) For j = 1, . . . ,K , compute the SVD

H j = U jΣ jVH
j . (A.1)

(2) Determine mj , which is the number of subchannels
for each user. In order to compare the two schemes
fairly, mj = 1 for each user.

(3) For j = 1, . . . ,K , let A j be the first mj columns of U j .
Calculate H j = AH

j H j .

H̃ j =
[
H

T
1 · · · H

T
j−1 H

T
j+1 · · · H

T
K

]T
(A.2)

(4) For j = 1, . . . ,K , compute Ṽ(0)
j , the right null space

of H̃ j as

H̃ j = Ũ j Σ̃ j

[
Ṽ(1)

j Ṽ(0)
j

]H
, (A.3)

where Ṽ(1)
j holds the first Lj right singular vectors, Ṽ(0)

j holds
the last N − Lj right singular vectors and Lj = rank(H j).

(5) Compute the SVD

H jṼ
(0)
j = U j

⎡
⎣Σ j 0

0 0

⎤
⎦
[
V(1)

j V(0)
j

]H
. (A.4)

(6) The precoding matrix W for the transmit users with
average power allocation is

W =
[
Ṽ(0)

1 V(1)
1 Ṽ(0)

2 V(1)
2 · · · Ṽ(0)

K V(1)
K

]
. (A.5)
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