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Abstract

Bisulfite sequencing (BS-seq) is the gold standard for studying genome-wide DNA methylation. We developed
MOABS to increase the speed, accuracy, statistical power and biological relevance of BS-seq data analysis. MOABS
detects differential methylation with 10-fold coverage at single-CpG resolution based on a Beta-Binomial hierarchical
model and is capable of processing two billion reads in 24 CPU hours. Here, using simulated and real BS-seq data,
we demonstrate that MOABS outperforms other leading algorithms, such as Fisher’s exact test and BSmooth.
Furthermore, MOABS analysis can be easily extended to differential 5hmC analysis using RRBS and oxBS-seq.
MOABS is available at http://code.google.com/p/moabs/.
Background
DNA methylation, an epigenetic modification affecting
organization and function of the genome, plays a critical
role in both normal development and disease. Until re-
cently, the only known DNA methylation was 5-
methylcytosine (5mC) at CpG dinucleotides, which is
generally associated with transcriptional repression [1].
In 2009, another form of DNA methylation termed 5-
hydroxymethylcytosine (5hmC) [2] was found to be in-
volved in active demethylation [3] and gene regulation
[4]. Understanding the functional role of DNA methyla-
tion requires knowledge of its distribution in the gen-
ome [5,6]. Bisulfite conversion of unmethylated Cs to Ts
followed by deep sequencing (BS-Seq) has emerged as
the gold standard to study genome-wide DNA methyla-
tion at single-nucleotide resolution. The most popular
protocols include RRBS (Reduced Representation Bisul-
fite Sequencing) [7] and WGBS (Whole Genome Bisul-
fite Sequencing) [8] for the combination of 5mc and
5hmc, oxBS-Seq (Oxidative Bisulfite Sequencing) [9] for
5mc and TAB-Seq (Tet-assisted Bisulfite Sequencing) [10]
for 5hmc, respectively. After mapping BS-seq reads to the
genome, the proportion of unchanged Cs is regarded as
the absolute DNA methylation level. Due to random sam-
pling nature of BS-seq, deep sequencing (e.g. >30 fold) is
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usually required to reduce the measurement error. Techno-
logical advances and reduced costs have seen a significant
increase in interest in BS-seq among biologists. Currently,
BS-seq is widely used by small laboratories to profile cell
lines and animal models [11], as well as by large consor-
tiums such as the NIH ENCODE, Roadmap Epigenomics,
The Cancer Genome Atlas (TCGA), and European BLUE-
PRINT to profile thousands of cell populations. Hence, it is
expected that BS-seq data will continue to grow exponen-
tially. However, despite recent progress [7,12-14], computa-
tional methods designed for issues specific to BS-seq are
much less developed than those for other sequencing appli-
cations such as ChIP-Seq and RNA-seq.
The most fundamental aspects of BS-seq data analysis

include read mapping and differential methylation detec-
tion. We previously developed one of the most widely
used BS mapping programmed BSMAP [15]. After read
mapping, the most common task is the identification of
differentially methylated regions (DMRs) between sam-
ples, such as disease versus normal. Based on the bio-
logical question, DMRs can range in size from a single
CpG (DMC: differentially methylated CpG) to tens of mil-
lions of bases. Although several statistical methods have
been applied to DMR detection [12], among which Fisher’s
exact test p-value (FETP) method [16] is the most popular,
several challenges remain to be addressed. 1) Statistical
Power: most previous methods are very conservative in
power and require deep sequencing (e.g. 30 fold). For
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example, Hansen [13] recently calculated that for single
CpG methylation level “even 30× coverage yields standard
error as large as 0.09”. As a compromise, many studies as-
sumed that neighboring CpGs have similar methylation
levels, thus can be combined together within a genomic
region (e.g. 1 kb) to increase the statistical power [17]. For
example, BSmooth [13] performs local smoothing fol-
lowed by t-test for DMR detection. While this strategy
may be applicable in many cases, regional average analysis
will unfortunately miss low-CpG-density DMRs that are
abundant in the genome and critical for gene expression,
such as TFBSs. Most TFBSs are small (i.e. < 50 bp) as im-
plied by high-resolution ChIP-seq and ChIP-exo experi-
ments [18] and contain few or even a single CpG(s) that
are in general differentially methylated compared to sur-
rounding ones, thus are very likely to be “overlooked” by
the regional average analysis. 2) Biological Significance:
previous methods use p-value for statistical significance of
DMR. This p-value metric only tells whether a region is
differentially methylated, but does not directly measure
the magnitude of the methylation difference. A similar
problem also exists in gene expression profiling, where the
p-value does not directly measure the expression fold-
change [19]. Since sequencing depth in BS-seq experi-
ments can fluctuate by an order of magnitude in different
loci, a very small methylation difference, although not bio-
logically meaningful, can easily return a significant p-value
if the underlying sequencing depth is deep enough. On
the other hand, the nominal methylation difference, i.e.
direct subtraction of two methylation ratios, suffers signifi-
cantly from the random sampling error such that a large
difference with low sequencing depth is not likely to be
statistically meaningful. 3) Biological Variation is an essen-
tial feature of DNA methylation [20], and should be han-
dled carefully to detect reproducible DMRs that represent
the common characteristics of the sample group. How-
ever, most previous methods fail to account for biological
variation between replicates, and simply pool the raw data
from replicates for DMR detection. Some of the resulting
DMRs may have significant differences at the mean level
but might not be reproducible between replicates, and
hence are “false-positives”. To our knowledge, BSmooth
[13] is the first replicate-aware program that accounted
for biological variation using a modified t-test.
In response to these challenges, we developed a power-

ful differential methylation analysis algorithm termed
MOABS: Model-based Analysis of Bisulfite Sequencing
data. Its source code is available as Additional file 1.
MOABS uses a Beta-Binomial hierarchical model to cap-
ture both sampling and biological variations, and accord-
ingly adjusts observed nominal methylation difference by
sequencing depth and sample reproducibility. The result-
ing credible methylation difference (CDIF) is a single
metric that combines both biological and statistical
significance of differential methylation. Using both simu-
lated and real whole-genome BS-seq data from mouse
brain tissues and stem cells, we demonstrate the superior
performance of MOABS over other leading methods, es-
pecially at low sequencing depth. Furthermore, one prac-
tical challenge is that BS-seq data analysis is usually
computational intensive, and requires multiple steps. We
therefore seamlessly integrate several major BS-seq pro-
cessing procedures into MOABS, including read mapping,
methylation ratio calling, identification of hypo- or hyper-
methylated regions from one sample, and differential
methylation from multiple samples. MOABS is imple-
mented in C++ with highly efficient numerical algorithms,
and thus is at least 10 times faster than other popular
packages. For example, it takes only 24 CPU hours to de-
tect differential methylation from 2 billion aligned reads.
Together, MOABS provides a comprehensive, accurate, ef-
ficient and user-friendly solution for analyzing large-scale
BS-seq data.

Results and discussion
Beta-Binomial hierarchical model for both sampling and
biological variations
For a single CpG locus in the j-th biological replicate of
condition i, we denote the number of total reads, the
number of methylated reads and methylation ratio as nij,
kij and pij, respectively. For a typical two group compari-
son, i = 1,2 and j = 1, 2,…,N, where N is the number of
replicates in each condition. The nij and kij are observa-
tions from experiments, while the pij is unknown with
kij/nij as its nominal estimation. Given pijand nij, the
number of methylated reads kij is characterized by the
sampling variation from sequencing and can be modeled
by a Binomial distribution: kij ~ Binomial(nij, pij). The
posterior distribution of the methylation ratio pij will
then follow a Beta distribution Beta(αij, βij) and can be
estimated using an Empirical Bayes approach. The prior
distribution will be estimated from the whole genome, in
which most CpGs are either fully methylated or fully un-
methylated, resulting in a bimodal distribution. The Em-
pirical Bayes approach will automatically incorporate
such bimodal information in the methylation ratio esti-
mation and hence increases the power of our analysis.
When biological replicates are available, we will refine

the posterior distribution of pij with biological variation
from the Bayesian perspective. Specifically, αi and βi will
be treated as random variables with a prior distribution
estimated from all the CpGs in the genome similar to
the Empirical Bayes priors. We will then use maximum
likelihood approach to generate the posterior distribu-
tion of pi. Typical posterior distributions of four CpGs
are shown in Figure 1a, in which all CpGs have the same
average methylation ratios and the same total number of
reads. Their methylation ratios would have identical Beta
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Figure 1 Overview of the MOABS algorithm. (a) Posterior distribution of methylation ratio inferred from biological replicates. Each curve represents
the inferred methylation ratio Beta distribution of a CpG. The symbols at the bottom indicate the observed methylation ratios of all replicates. The values
on the top right corner indicate number of methylated reads over number of total reads in each replicate. (b) An example of Credible Methylation
Difference (CDIF). Dash curves indicate inferred methylation ratio Beta distributions from low (Sample #1) or high sequencing depth (Sample #2). The black
curve is the exact distribution of the methylation difference between two samples. The CDIF is shown as the lower bound of the 95% confidence interval.
(c) Ranking of three CpG examples by CDIF, FETP p-value and nominal difference, i.e. direct subtraction of two methylation ratios. The three curves are the
exact distributions of methylation differences. The corresponding CDIF values are show as vertical dash lines.
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distributions (black curve on CpG #1) if biological variation
was not considered. Our method is able to adjust the poster-
ior distribution of pi based on observed biological variation.
For example, highly variable replicates on CpG #2 results in
a bimodal distribution, whereas reproducible replicates on
CpG #3 leads to a normal-like distribution. Furthermore, in-
creasing the number of reproducible replicates from 2 to 3
on CpG #4 will reduce the variation of the resulting poster-
ior distribution. Taken together, the posterior distribution of
the methylation ratio in condition i will be determined by its
prior distribution, sequencing depth, and the degree of vari-
ation between replicates.

Credible methylation difference (CDIF) is a single metric
for both statistical and biological significance of
differential methylation
We illustrate the idea of CDIF using a simple experi-
mental design, in which only one sample (N = 1) is
sequenced for each of the two conditions: kij ~ Binomial
(ni, pi) and pi ∼ Beta(αi, βi), i = 1, 2. The Empirical Bayes
priors α0i ; β

0
i of pi will be estimated from all the CpGs in

the genome by maximizing a marginal likelihood func-
tion using the quasi-Newton optimization method [21].
In this case, there is no biological variation, so Beta(αi,
βi) will be only determined by the prior distribution and
sequencing depth: αi ¼ ki þ α0i and βi ¼ ni−ki þ β0i . An
example is shown in Figure 1b. Due to low sequencing
depth (k1 = 9; n1 = 10), sample #1′s Beta distribution has
higher variance than that of sample #2 with high se-
quencing depth (k2 = 12; n2 = 80). The methylation ratio
difference between two samples is denoted as t = p1 - p2.
One immediate question is how to estimate the confi-
dence interval CI(a,b) of t. Many methods have been
proposed but their merits have been subject to debate
[22]. We therefore propose to use the exact numer-
ical solution [23] to solve CI(a,b). CDIF is then
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defined as the distance between 0 and the 95% CI
(a,b) (Figure 1b):

CDIF≡
a; if a≥0
0; if a < 0 < b
b; if b≤0

8<
:

In practice, CDIF represents the conservative estimation of
the true methylation difference, i.e. for 97.5% of chance the
absolute value of true methylation difference is greater than or
equal to that of CDIF. The CDIF value will be assigned to 0 is
there is no significant difference. Constructed in this way, the
CDIF value, if greater than the resolution defined as min(1/n1,
1/n2), guarantees a significant p-value from Fisher’s exact test,
and at the same time represents the magnitude of methylation
difference. The sequencing depth will largely influence CDIF,
since bigger ni will make a smaller 95% CI of the methylation
difference, normally resulting in greater CDIF value.
We believe CDIF is a better metric to capture the methy-

lation difference than statistical p-value or nominal met-
hylation difference. Three CpG examples are shown in
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Figure 2 Overview of the MOABS software pipeline. (a) Comprehensive
region. (c) A descriptive figure for global methylation distribution of a mouse
the right is the average of local CpG density at each specified methylation rat
Figure 1c. According to p-value 1.4e-10, CpG #3 is the most
significant one. However, this significant p-value, which is
largely driven by the high sequencing depth, does not cor-
rectly represent the actual biological difference of 0.3, which
is the smallest among three CpGs. On the other hand, if we
use nominal difference, CpG #2 would be the most signifi-
cant. However, its low sequencing depth makes this high
nominal difference unreliable. CDIF is able to penalize the
nominal difference according to its statistical significance
and ranks CpG #1 as the most significant followed by CpGs
#2 and #3, although CpG #1 does not have the most signifi-
cant p-value or nominal difference. Taken together, CDIF
reaches a well balance between statistical and biological sig-
nificance and gives a more stable and biological meaningful
interpretation and ranking of differential methylation.
Functions and performance of the MOABS pipeline
We have implemented MOABS as a comprehensive soft-
ware pipeline (Figure 2a), including read alignment, quality
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Figure 3 Comparison between MOABS and FETP in detecting
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density of the methylation ratios fits a bimodal distribution (Additional file
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Y-axis shows the percentage of true DMCs predicted at 5% FDR.
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control (QC), single sample analysis and multiple sample
comparative analysis. 1) The read alignment model is a
wrapper of popular bisulfite mapping programs, such as
BSMAP [15], which allows the trimming of low quality
band adaptor sequences, as well as supports parallel com-
puting on a cluster. 2) The QC module adjusts biases in
PCR amplification, end-repair, bisulfite conversion failure,
and etc. [24]. In addition, it can also estimate bisulfite con-
version rate based on cytosines in the non-CpG content. 3)
Single sample analysis reports CpG or CpH methylation ra-
tios with corresponding confidence intervals, detects hypo-
or hyper- methylated regions (e.g. Trp53 gene in Figure 2b)
in the genome [25], and provides general statistics with de-
scriptive figures (an example of the mouse methylome [25]
is shown in Figure 2c). 3) For multiple sample comparative
analysis, MOABS detects de novo DMCs, which can be fur-
ther grouped into DMRs using a Hidden Markov Model.
MOABS can also examine the differential methylation
levels of pre-defined regions, such as promoters.
All the modules are wrapped in a single master script

such that users can specify the input BS-seq reads and
run all the modules one by one automatically. The
MOABS pipeline is developed using C++ with highly ef-
ficient numerical algorithms, native multiple-threading
and cluster support so that multiple jobs can run in par-
allel on different computing nodes. Several mathematical
and computational optimizations have made MOABS
pipeline extremely efficient. For example, it takes only
one hour on 24 CPUs (IBM power7 4 Ghz) to detect dif-
ferential methylation for approximately 30 million CpGs
in the human genome based on 2 billion aligned reads.
MOABS is significantly faster than other software. For
example, a benchmark (Additional file 2: Table S1) based
on public BS-seq data in mouse hematopoietic stem cell
(HSC) [26] reveals that MOABS is roughly 3.3, 1.7, and
1.4 times faster than BSmooth in bisulfite mapping,
methylation call and differential methylation analysis, re-
spectively. In summary, MOABS is a comprehensive, ac-
curate, efficient and user-friendly solution for analyzing
large-scale BS-seq data.

Simulated BS-seq data reveals the superior performance
of MOABS
To assess the performance of MOABS on differentially
methylated CpGs (DMCs), we simulated 0.1 million true
positive CpGs with large methylation difference and 0.9
million true negative CpGs (Additional file 3: Figure S1)
from a H1 methylome [16], and then compared MOABS
with FETP at 5% false discovery rate (FDR) (Figure 3).
Note that this evaluation is at single CpG resolution
without local smoothing, therefore BSmooth [13] cannot
be used. The results indicate that MOABS clearly out-
performs FETP with the most dramatic difference ob-
served at low sequencing depth. For example, with
sequencing depth at 5–10 fold, MOABS can recover 55-
75% true positives while FETP only predicts 13-51% true
positives. To further evaluate the performance of
MOABS at different methylation levels, we re-simulated
the 0.1 million true positive CpGs with different baseline
methylation levels (0% -100%) and methylation differ-
ences (20% - 100%). The results (Additional file 3: Figure
S2) indicate that MOABS is more accurate than FETP at
any sequencing depth and at any methylation difference.
Notably, the difference between the two methods is large
when sequencing depth is low or when methylation dif-
ference is moderate (50% ~ 70%). In contrast, the differ-
ence between methods is small when sequencing depth
is high or when the methylation difference is either very
high (80% ~ 100%) or very low (~20%). Although FETP
is well suited for the analysis of discrete data, it has less
power for DNA methylation, which by its nature is a
continuous rather than discrete random variable. The
improved power of MOABS results from the modeling
of DNA methylation using a Beta-Binomial hierarchical
model and the Empirical Bayes approach to borrow in-
formation from all the CpGs in the genome. The testing
data used for the method validation above is included in
Additional file 4.
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MOABS improves the detection of allele specific DNA
methylation
To assess how MOABS performs on DMRs for real BS-
seq data, we compared MOABS with FETP and
BSmooth [13] using allele-specific mouse methylomes
[25], in which a list of well-known imprinted DMRs can
serve as gold standard for method evaluation. Xie et al.
[25] used FETP followed by clustering of DMCs for
DMR detection. They confirmed 32 known experimen-
tally verified imprinted DMRs (Additional file 5: Table
S2) and reported 20 novel ones by pooling two biological
replicates without considering sample variation. We no-
ticed that two known DMRs (Ndn and Igf2r) are weak,
exhibiting a very small methylation difference of ap-
proximately 10%. We also found that 3 novel DMRs they
reported (Vwde, Casc1 and Nhlrc1) are differentially
methylated in only one of the two replicates, and thus
are likely to be false positives (Additional file 3: Figure
S3). Since the remaining 17 novel DMRs have yet to be
experimentally verified, we decided to remove them
from our analysis. In our method evaluation, we used
the 32 known DMRs as true positives and the remaining
genome (with 17 reproducible novel DMRs removed) as
true negatives. To allow for a fair comparison, we used
the same method to calculate FDR for all three methods.
In addition, we used the same procedure to cluster
DMCs into DMRs for MOABS and FETP. The resulting
ROC-like curves (Figure 4a) clearly indicate that
MOABS is superior to the other two methods. MOABS
successfully reports all 32 known DMRs including the
two weak ones at 11% FDR, and 4 “false positive” new
DMRs (Cdh20, Trappc9, Pcdhb20 and Pfdn4). Manual
inspection (Additional file 3: Figure S4) confirms that
these 4 “false positive” are indeed regions showing differ-
ential methylation in both replicates. Hence the 11%
FDR (square root scaled)
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superior in DMR detection, especially at low sequencing
depth.

MOABS reliably reveals differential methylation
underlying TFBSs
Since the previous benchmark is based on a small num-
ber of experimentally verified DMRs, we sought to fur-
ther evaluate the performance of MOABS based on
larger scale datasets. The link between differential
methylation and TFBSs provides such a good sys-
tem. TFBSs are usually hypo-methylated compared to
surrounding genome background; therefore, a tissue
specific TFBS is expected to be a tissue specific hypo-
methylated-DMR (hypo-DMR). To test this hypothesis,
we performed deep (46-fold) WGBS of the mouse
hematopoietic stem cell (HSC), and compared the HSC
methylome with that of a publically available mouse em-
bryonic stem cell (ESC) [27]. The HSC methylome data
is accessible at NCBI GEO Accession GSE47815. The
HSC-specific hypo-DMR were then compared with ap-
proximately 58,000 in vivo ChIP-seq TFBSs of 10 major
HSC specific TFs [28], including Erg, Fli1, Gata2, Gfi1b,
Lmo2, Lyl1, Meis1, Pu.1, Runx1 and Scl. Figure 5a illus-
trates the hypo-methylation of a TFBS in Runx2 gene. At
the center of the TFBS co-bound by Runx1, Gata2 and
Scl, there are 2 CpGs fully methylated in mouse ESC but
unmethylated in HSC, while the surrounding regions
are almost fully methylated in both HSC and ESC.
Additional file 3: Figure S5 shows more examples of tis-
sue specific hypo-DMR coupled with tissue specific
TFBSs. Such TFBS associated hypo-methylated regions are
usually very small and abundant in the genome. Using
Runx1 as an example, 71% of the 4793 Runx1 TFBSs show
hypo-methylation, while the remaining TFBSs are either
fully methylated or have no underlying CpGs. Toge-
ther, ~34% of TFBS associated hypo-methylated regions
contain no more than 3 CpGs with a median length of
51 bp (Figure 5b). Furthermore, 14% of such regions even
have a single CpG. For such small DMRs, single CpG level
differential analysis is essential since regional averaging is
very likely to overlook most of them.
We then used TFBSs to evaluate DMC detection as-

suming tissue-specific TF binding is associated with
tissue-specific hypo-methylation. For a fair comparison,
we calculated FDR for each method based on a method-
specific null distribution obtained through permutation
of read sample labels. At FDR of 5%, MOABS, FETP and
BSmooth predicted 32,867, 32,047 and 18,021 differen-
tially methylated TFBSs respectively (Figure 5c). We also
used a method similar to Gene Set Enrichment Analysis
(GSEA [29]) to test enrichment of TFBS moving down
the lists of DMCs ranked by different methods. MOABS
shows the highest enrichment score (Figure 5d) of TFBS.
For example, with the same 4,000 most significant
DMCs, MOABS recovers 1,000 TFBSs while FETP only
predicts ~600 TFBSs (i.e., 40% less).
In this instance, the sequencing depth is sufficient to en-

able MOABS and FETP to recover very similar number of
TFBSs. However, when we randomly sampled reads to a
depth of 4-fold, MOABS recovered many more TFBS
(15,349) than FETP (7,520) and BSmooth (4,028) (Figure 5e).
Again, at this low sequencing depth, MOABS not only re-
covers 2–3 fold more TFBSs, but also exhibit more signifi-
cant score of TFBS enrichment in the most significant
DMCs. In both high and low sequencing depths, BSmooth
recovers fewer TFBSs mainly because its smoothing func-
tion easily ignores small region with a few CpGs. Together,
using tissue specific in vivo TFBSs, we demonstrate that
MOABS can better recover differential methylation in small
regulatory regions with a few CpGs, especially at low se-
quencing depth (e.g. 4-fold).

MOABS detects differential 5hmc in ES cells using RRBS
and oxBS-Seq
To demonstrate the broad utility of MOABS, we ana-
lyzed 5hmc data using RRBS and oxBS-seq [9]. RRBS
measures both 5mc and 5hmc together while oxBS-Seq
[9] detects 5mc directly. The 5hmc level can then be in-
ferred by the difference between RRBS and oxBS-Seq of
the same sample. The 5hmc level is often very small (e.g.
at 5%) and hence its detection requires hundreds of fold
coverage using FETP [9]. Our simulation study indicates
that MOABS can significantly reduce the depth require-
ment (Figure 6a). For example, to detect 5hmc at 5%
when 5mc is at 0%, MOABS requires 80-fold coverage
while FETP needs ~200-fold. However, when the 5mc
level is close to 50%, significantly more reads will be
needed for both methods (~120-fold for MOABS and
>500-fold for FETP). The differential 5hmc between two
samples can be inferred by the difference of two CDIF
values, each of which is the difference between RRBS
and oxBS-Seq of the same sample. The similar numerical
approach can then be used to infer the distribution of
the difference of the difference between two Beta distri-
butions, which are used to model BS-seq data. Figure 6b
shows an example, in which 5hmc is measured by both
RRBS and oxBS-Seq in two samples. FETP shows more
significant p-value for 5hmc in sample #1 than in #2,
whereas MOABS CDIF is bigger in sample #2 than in
#1. However, the significance of FETP on sample #1 is
largely driven by the high sequencing depth, thus does
not correctly represent the actual biological difference.
In contrast, MOABS CDIF reaches a balance between
statistical and biological significance and gives a bio-
logically meaningful differential 5hmc at CDIF value of
0.06 (0.29-0.23).
When applied to RRBS and oxBS-seq data derived

from ES cell lines with different passages [9], MOABS
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reported 299 genes with decreased 5hmc and 125 genes
with increased 5hmc (Additional file 6: Table S3) in pro-
moters in the later passage P20, which is consistent with
the mass spectrometry data [9] that shows overall re-
duced 5hmc in later passage. This result implies that the
epigenetic stability of ES cells is impacted by prolonged
in vitro culture. This is an important issue for both the
safety and efficacy of stem cell-derived tissues in cell-
replacement therapies as well as the appropriate in-
terpretation of experimental models. Mono-allelic gene
expression, including genomic imprinting, is primarily
regulated through epigenetic mechanisms and thus can
serve as a useful model of epigenetic stability. As ex-
pected, our analysis identified five imprinted genes with
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decreased 5hmc: Plagl1, Sfmbt2, Gpr1, Kcnq1 and
Kcnq1ot1, as well as one imprinted gene with increased
5hmc, Pcdha4-g.
The role of 5hmc in disease remains unclear. A recent

study suggests that genome-wide loss of 5hmc is an epi-
genetic feature of neurodegenerative Huntington’s disease
[30]. The authors identified 559 genes with decreased
5hmc in the diseased mice compared to healthy controls.
A considerable fraction of these disease-specific genes were
uncovered in our differential 5hmc analysis in ES cells.
This included 26 of 299 and 11 of 125 genes (overlapping
p-value < 8e-5) with decreased and increased 5hmc, re-
spectively. These results suggest that one potential conse-
quence of decreased epigenetic stability over time in ES
cells is the acquisition of pathological epimutations.
The observed bias toward loss of 5hmc in ES cells upon

long-term culture may also suggest stem cell properties, such
as pluripotency, are affected. Ficz and colleagues [31] showed
that knockdown of Tet1/Tet2 in mouse ES cells down regu-
lates epigenetic reprogramming and pluripotency-related
genes such as Esrrb, Klf2, Tcl1, Zfp42, Dppa3, Ecat1 and
Prdm14. Decreased expression was concomitant with both
decreased 5hmC and increased 5mC at the gene promoters.
In our differential 5hmc analysis in ES cells, we observed de-
creased 5hmc at three of these genes: Ecat1, Esrrb, and
Zfp42. Together, we conclude that MOABS can be used ef-
fectively to infer differential 5hmc using RRBS and oxBS-
Seq.

Conclusions
While progress in next-generation sequencing allows in-
creasingly affordable BS-seq experiments, the resulting
data generated poses significant and unique bioinformat-
ics challenges. The lack of efficient computational
methods is the major bottleneck that prevents a broad
adoption of such powerful technologies. In response to
this challenge, we developed MAOBS, an accurate, com-
prehensive, efficient, and user-friendly pipeline for BS-
seq data analysis. The MOABS analysis is novel and sig-
nificant in two major aspects: 1) MOABS CDIF value
provides an innovative strategy to combine statistical p-
value and biological difference into a single metric,
which will bring biological relevance to the interpret-
ation of the DNA methylation data. 2) MOABS does not
sacrifice resolution with low sequencing depth. By rely-
ing on the Beta-Binomial Hierarchical Model and Empir-
ical Bayes approach, MOABS has enough power to
detect single-CpG-resolution differential methylation in
low-CpG-density regulatory regions, such as TFBSs, with
as low as 10-fold. The low-depth BS-seq experimental de-
sign enables remarkable cost reduction per sample. In
Figure 3 simulated data, we showed that MOABS achieved
roughly 80% sensitivity with 5% FDR at 10-fold sequen-
cing depth. In Figure 4b real data, we showed that as se-
quencing depth decreased to 11-fold by sampling,
MOABS recovered roughly 90% of known DMRs. The
MOABS sensitivity starts to drop dramatically when se-
quencing depth is further reduced. Based on the above
two observations, we would recommend low-depth (e.g.
10-fold) BS-seq on more biological samples with the same
limited budget, which in most scenarios will provide
greater biological insights than high-depth BS-seq on
fewer samples.
Copy Number Variation (CNV) is a common issue in

many disease related bisulfite sequencing. The sequen-
cing depth is normally higher or lower in high (or low)
copy-number regions and this depth bias has an impact
on our CDIF calculation. To correct this bias, we have
included a separate script ‘redepth.pl’ in the MOABS
package. Users can select their favorite CNV detection
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tools [32], such as CNV-Seq, Control-FREEC and VarS-
can, to predict the CNV region from genome sequencing
or bisulfite sequencing. Nearly all these tools output a
bed file of CNV regions with predicted copy number
based on a p-value cutoff. The script ‘redepth.pl’ manip-
ulates the read alignment BAM files according to the
CNV prediction. If a read is located in a CNV region
with a predicted copy number of X in a diploid genome,
the read will have a probability of 2/X to be kept in the
new BAM files. Reads in the non-CNV regions will keep
unchanged. This process will result in CNV bias free
BAM files for downstream analysis.
Large-scale case–control epigenome-wide association

study (EWAS) is a powerful strategy to identify disease-
associated epigenetic biomarkers. Currently, most stud-
ies use Illumina bisulfite arrays (e.g. 450 K) mainly due
to the cost constraint. MOABS in theory can also be ap-
plied to such studies when EWAS bisulfite sequencing
data are publicly available.
In summary, as DNA methylation is increasingly rec-

ognized as a key regulator of genomic function, deci-
phering its genome-wide distribution using BS-seq in
numerous samples and conditions will continue to be a
major research interest. MOABS significantly increase
the speed, accuracy, statistical power and biological rele-
vance of the BS-seq data analysis. We believe that
MOABS’s superior performance will greatly facilitate the
study of epigenetic regulation in numerous biological
systems and disease models.

Materials and methods
The major portions of the methods for the model are
described here. In the Additional file 7, we provide more
details and additional methods to make the model
complete.

Distribution for difference of two Binomial proportions
In the Additional method section (Additional file 7) we
show that a methylation ratio p inferred from k methyl-
ated cytosines out of n total reads, follows a Beta distri-
bution from the Bayesian perspective. The probability
density function is

f p; n; kð Þ ¼ Be α; βð Þ ¼ pα−1 1−pð Þβ−1Z 1

0
pα−1 1−pð Þβ−1dp

; ð1Þ

where α = k + α0, β = n-k + β0, if Be(α0, β0) is priori distri-
bution for p. We also give formulas to numerically cal-
culate the confidence interval for the single Binomial
proportional p under observed (n, k).
The methylation ratio difference at a defined genomic

locus from two biological samples is the difference of
two Binomial proportions p1-p2. Many methods have
been proposed to estimate the confidence interval p1-p2 of
and their merits have been subject to decades of consider-
able debate [22,33-38]. No comprehensive comparison of
currently available methods is available. This motivated us
to turn to the direct and exact numerical calculation of
confidence interval from Bayesian perspective.
Let t = p1−p2, where pi is the proportion for the sample

i with observation ni and ki. Since the joint probability
density of such observation is f(p1, n1, k1) f(p2, n2, k2),
the PDF for t is

f tð Þ ¼
Z 1

0
dp2f 1 p2 þ tð Þf 2 p2ð Þ

¼
Z 1

0
dp1f 1 p1ð Þf 2 p1 � tð Þ; ð2Þ

where fi(pi) ≡ f(pi; ni, ki). Boundary conditions like the
proportional area condition, minimal length condition
can be applied to get unique solutions for (a, b).

Distribution for difference of difference
Let t = p1 − p2, where pi is the proportion for the assay i
with observation ni and ki. In the ox-BS experiments, p2
is the oxBS methylation ratio and p1 is the RRBS methy-
lation ratio, and t is the 5hmc methylation ratio. Since
the joint probability density of such observation is f(p1;
n1; k1)f(p2; n2; k2), the PDF for t is

f tð Þ ¼
Z 1

0
dp2f 1 p2 þ tð Þf 2 p2ð Þ

¼
Z 1

0
dp1f 1 p1ð Þf 2 p1−tð Þ; ð3Þ

where fi(pi) ≡ f(pi; ni, ki).
Let t

0 ¼ p
0
1−p

0
2 , where ′ denotes the other sample. To

be clear, call the two samples S and S′. In general we
want to know the difference of the two 5hmc ratios, i.e.,
t-t′. Let x = t–t′, we can immediately obtain the distribu-
tion of difference of 5hmc ratio between two samples by

f xð Þ ¼
Z 1

−1
f tð Þf 0 t−xð Þdt ¼

Z 1

−1
f t0 þ xð Þf 0 t0ð Þdt0; ð4Þ

where f(t) and f′(t′) are the distributions of 5hmc ratio
for sample S and S′ respectively. After distribution of
difference of 5hmc ratio between two samples is ob-
tained, similarly confidence interval, credible difference
and similarity test p-value can be calculated.

Distribution for measurements with replicates
Here we use the exact numerical approach to calculate
the distribution of p at observance (mi, li) of with mi as
total count for replicate i and li as methylated count for
replicate i. Let us start with 2 replicates. We try to fit
this unknown distribution of p at observance (m1, l1)
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and (m2, l2) into a Beta distribution f(p; α,β). The param-
eter estimation is based on the following formula

P ki; ni; α; βð Þ ¼
Z 1

0
f ki; ni; pð Þf p; α; βð Þdp; ð5Þ

where P(ki; ni, α, β) is the probability to observe (ni, ki)
under the Beta distribution f(p; α, β), and f(ki; ni, p) is
the Binomial distribution, i.e., the probability to observe
(ni, ki) under a specific true ratio p. For N number of
replicates, (α, β) may be estimated by maximizing the
log likelihood function

log L α; βð Þ ¼
XN
i¼1

log Cki
ni

B αþ ni; βþ ki−nið Þ
B α; βð Þ

� �
; ð6Þ

where the expression inside log is the probability P(ki; ni,
α , β ) defined in equation (5) and B (α, β)is the Beta
function.
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