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Abstract

Background: The identification and characterisation of differentially methylated regions (DMRs) between
phenotypes in the human genome is of prime interest in epigenetics. We present a novel method, DMRcate, that fits
replicated methylation measurements from the Illumina HM450K BeadChip (or 450K array) spatially across the
genome using a Gaussian kernel. DMRcate identifies and ranks the most differentially methylated regions across the
genome based on tunable kernel smoothing of the differential methylation (DM) signal. The method is agnostic to
both genomic annotation and local change in the direction of the DM signal, removes the bias incurred from
irregularly spaced methylation sites, and assigns significance to each DMR called via comparison to a null model.

Results: We show that, for both simulated and real data, the predictive performance of DMRcate is superior to those
of Bumphunter and Probe Lasso, and commensurate with that of comb-p. For the real data, we validate all array-derived
DMRs from the candidate methods on a suite of DMRs derived from whole-genome bisulfite sequencing called from
the same DNA samples, using two separate phenotype comparisons.

Conclusions: The agglomeration of genomically localised individual methylation sites into discrete DMRs is currently
best served by a combination of DM-signal smoothing and subsequent threshold specification. The findings also
suggest the design of the 450K array shows preference for CpG sites that are more likely to be differentially
methylated, but its overall coverage does not adequately reflect the depth and complexity of methylation signatures
afforded by sequencing.
For the convenience of the research community we have created a user-friendly R software package called DMRcate,
downloadable from Bioconductor and compatible with existing preprocessing packages, which allows others to
apply the same DMR-finding method on 450K array data.
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Background
DNA methylation is widely regarded as the most sta-
ble epigenetic mark and, for explaining patterns of gene
expression, cell differentiation and phenotype, one of
the most informative [1-3]. Much interest has focused
recently on the development of principled methods for
combining information from multiple nearby methyla-
tion sites to aid biological inference [4,5]. Effort has been
primarily focused on detecting differentially methylated
regions (DMRs). These are contiguous genomic regions
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that differ between phenotypes [6-8]. DMRs may occur
throughout the genome, but have been identified par-
ticularly around the promoter regions of genes, within
the body of genes, and at intergenic regulatory regions
[9-13]. We focus here on DMRs, but it is also of much
interest to detect other types of regions, for example, vari-
ably methylated regions (VMRs) and regions of hyper- or
hypomethylation for unlabelled samples.
The methylation status of a tissue sample can be inter-

rogated at the individual CpG level in two chief ways
[14]. Firstly, it can be assayed via whole-genome bisul-
fite sequencing (WGBS) [15]. This method uses bisulfite
conversion and DNA sequencing to assess the methy-
lation status of every CpG dinucleotide in the genome.
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Secondly, various methods are available for determining
the methylation status of specific selected fractions of
the genome. One such method is reduced representa-
tion bisulfite sequencing [16,17] in which DNA restriction
enzyme digestion and fragment size selection are followed
by bisulfite conversion and sequencing. Other methods,
such as the Agilent SureSelectXT Human Methyl-Seq and
Nimblegen SeqCap Epi System, can be used to target
specific sections of the genome for methylation profiling.
Another cost-effective approach is via a microarray

specifically designed for a particular genome. For the
human genome, one such platform, which is currently
very widely used, is the Illumina Infinium Human Methy-
lation 450 BeadChip (hereinafter referred to as the 450K
array or simply 450K). This platform uses hybridisation of
bisulfite-treated DNA to arrayed probes, combined with a
single nucleotide extension to measure methylation at the
genomic hybridisation site for a single CpG dinucleotide.
Methylation values from the 450K array are shown to have
excellent concordance with those from bisulfite sequenc-
ing [18-20]. This article will concentrate on data from the
450K array, although the methodology is equally appli-
cable to any genomic assay, reduced representation or
WGBS.
The 450K array measures the methylation status of

485,512 methylcytosine sites in the human genome at a
single nucleotide resolution, representing approximately
1.5% of total genomic CpG sites [21,22].While the assayed
CpG sites are concentrated around promoter regions and
gene bodies, approximately 25% are located in intergenic
regions [21]. The array uses two types of probes (types
I and II), each with a different biochemistry. This com-
plicates the preprocessing of the array data, but various
normalisation methods are available [23,24] to remedy
this. We assume for this study that any required normal-
isation and other preprocessing have been carried out
before further data analysis.
Usually, knowledge about the methylation status of an

individual CpG site is of limited value unless it is contex-
tualised by the status of neighbouring CpG sites. Clusters
of hypermethylated CpG sites in the promoter region of a
gene are usually associated with silencing of the gene [10],
and coordinated hypermethylation in intragenic regions
with upregulation [11]. A method informed by spatial
information is needed to define and characterise these
regions. Many DMR-finding methods are available to the
bioinformatics community [25-41]. A good overview of
the available methods can be found in Robinson et al.
[42]. Most are specific to a platform (with the notable
exception of Bumphunter [25]), and, in addition, many
different approaches to incorporating information from
neighbouring CpG sites, and controlling the region-wise
false discovery rate (FDR), are available. A possible bias-
ing factor is that some genomic regions are more richly

annotated than others, which may persuade researchers
to concentrate on these at the expense of more enig-
matic regions. Methods such as IMA [28] and COHCAP
[29] use pre-annotated regions a priori, which comprise
only a subset of the 450K probes as the primary back-
bone for DMR detection, biasing their results. Similarly,
QDMR [30] requires genomic regions to be defined by
the user prior to evaluation, forcing artificial DMR end-
points. For these reasons, we do not consider this family
of methods for our comparison in the Results section. As
mentioned, approximately one-quarter of the CpG sites
assayed by the 450K array are intergenic, so are simply
not accompanied by a gene association in the annotation
provided by Illumina. Regions associated with these CpG
sites may contain trans-acting enhancers or other regula-
tory regions [13], and deserve to be considered alongside
those with an explicit gene association.
As an alternative, we propose a data-driven approach

that is agnostic to all annotations except for spatial
ones, specifically chromosomal coordinates. Critical to
our method are robust estimates of differential methyla-
tion (DM) at individual CpG sites derived from limma
[43], arguably the most widely used tool for microarray
analysis. We pass the square of the moderated t statis-
tic calculated on each 450K probe to our DMR-finding
function. We then apply a Gaussian kernel to smooth this
metric within a given window, and also derive an expected
value of the smoothed estimate (in other words, one with
no experimental effect) from the varying density of CpGs
sites incurred by reduced representation and irregular
spacing. DMRcate validations were performed on both
simulated and real 450K data.

Simulations
We generated 100 simulated data sets, each with 20
columns and one row for each 450K probe. The first ten
columns were considered as control samples and the last
ten columns as treatment samples. In each simulated data
set, 2,162 promoter-associated regions were randomly
assigned as true DMRs, half being hypermethylated in the
treatment samples and half hypomethylated. For each of
these DMRs, two beta levels were randomly chosen with a
beta difference of exactly 0.2. Simulated beta values within
the DMR were generated by sampling from a beta dis-
tribution with mode equal to the given level, and with
a realistic amount of variability. Outside the true DMRs,
each probe was classified as unmethylated (beta values
near zero) or fully methylated (beta values near 1), based
on a representative array produced from healthy human
leukocytes. Beta values for these probes were generated
by sampling from one of two manually chosen beta distri-
butions, each empirically matching the two main modes
in typical 450K arrays derived from leukocyte samples.
Finally, values were adjusted to lie in the range 0.01 to
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0.99. The logit-transform of the beta value (M) was used
for all 450K statistical analyses. Amore thorough explana-
tion of the data synthesis can be found in Additional file 1:
Supplementary material.

In-house 450K data
With regards to real data, we used two experimental
comparisons to validate our method, both designed with
paired biological replicates. Methylation of purified vis-
ceral adipocytes (VAs) was compared to, firstly, purified
subcutaneous adipocytes (SAs) and secondly, to the unpu-
rified tissue from which they were derived, visceral adi-
pose tissue (VAT), matched from the same patients. All
DNA samples were taken from three lean, healthy females
between the ages of 36 and 47, and form part of the
EpiSCOPE research program [44].
For all 450K data, the nine tissue DNA samples were run

on the same physical chip, to eliminate any potential for a
batch effect between samples. For each comparison, sam-
ples were normalised separately using the dasen method
from the R package wateRmelon [23]. Again, M values
were used for all 450K statistical analyses. To avoid cor-
ruption of the analysis from bad quality or confounded
data, any row (probe) in the data matrix that contained
a detection P value (quality control indicator) above 0.05
was discarded, as was any probe whose represented CpG
site was two or fewer nucleotides from a known SNP
(see Additional file 1: Figure S1) for which that SNP had
a minor allele frequency above 0.05. Since all samples
were female, cross-hybridising probes (which are pre-
dominantly promiscuous on sex chromosomes [45]) and
the sex chromosome probes themselves were retained in
the analysis. This process was carried out separately for
each group of six samples pertinent to the comparison
of interest, and resulted in 466,190 candidate methylcy-
tosine sites for the VA vs SA comparison, and 466,263
for the VA vs VAT comparison. The VA vs SA compari-
son showed a much stronger biological effect than VA vs
VAT (Figure 1a) when analysed with limma, confirmed by
the fact that 71,535 probes (approximately 15% of those
assayed) returned a Benjamini–Hochberg (BH) adjusted
P < 0.05 for the former, but none was returned for the
latter.

Whole-genome bisulfite sequence data
Our 450K samples showed high concordance with WGBS
assays on the same DNA, highly preserving their relative
position to each other within the first multidimentional
scaling (MDS) dimension (Figure 2a,b). Each individ-
ual sample, where 450K beta values were compared to
sequencing count ratios for matched CpG sites, gave cor-
relation coefficients within the range of 0.95 to 0.96. We
obtained good coverage for the majority of CpG sites for
all nine samples, with 95% of all genomic CpGs sequenced

at a minimum depth of 4, and 90% at a minimum depth of
9 (Additional file 1: Figure S2).
Adipocyte methylomes are largely unexplored, and so

in the absence of a ground truth for validation, group-
wise DMRs were called from the WGBS assays using
the BSmooth algorithm [46] and defined as ground truth.
More specifically for the sequencing-derived DMRs, a
series of values for the argument cutoff (the mini-
mum absolute t statistic) was passed to the function
dmrFinder() from the Bioconductor package bsseq,
after CpG sites were filtered for a minimum coverage of
two reads. Subsequently, a series of lists of sequencing-
derived DMRs for each cutoff was produced, with the
values of cutoff passed in increments of 0.1 from 0.1 to
20 for the VA vs SA comparison, and from 0.1 to 10 for
VA vs VAT; the difference in maximum thresholds owing
to the total DMR coverage in VA vs SA being much larger
than that for VA vs VAT (Figure 1b).

Publicly available data
Finally, for biological provenance of DMRcate outputs,
we used publicly available 450K assays forming part of a
study comparing methylomes of various tissue types from
11 healthy individuals [47] (Gene Expression Omnibus
accession [GEO:GSE48472]).

Results
Differential methylation by annotation
As mentioned earlier, DMRcate intentionally avoids dis-
tinguishing between probes that have an explicit gene
and/or CpG-island annotation (as provided by Illumina)
and those that do not. As evidence of non-trivial DM in
genomic regions lacking this annotation, for the 71,535
differentially methylated probes in the VA vs SA compar-
ison, non-CpG-island probes (often referred to as ‘open
sea’ probes) were enriched in this subset with an odds
ratio of 1.97 compared to their representation on the 450K
array, and non-annotated intergenic probes enriched with
an odds ratio of 1.59. Despite that these probes are
arranged in sparser genomic neighbourhoods on the 450K
array, we still see them modestly enriched as constituents
of DMRcate-derived DMRs for part of the significance
threshold domain (Additional file 1: Figure S3a,c). This
effect is stronger when the 450K probes are mapped to
BSmooth-derived DMRs from theWGBS data (Additional
file 1: Figure S3b,d).

Biological inference
To test the outputs of DMRcate for biological rele-
vance, we called tissue-specific DMRs for six different
tissue types (blood, buccal, liver, muscle, pancreas and
spleen) from 450K assays obtained from Slieker et al. [47]
(see Results) by comparing each individual tissue group to
the remaining five tissue groups, accounting for matched
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Figure 1 Effect size for VA vs SA, VA vs VAT comparisons. (a)Moderated t distribution of all 450K probes from the VA vs SA and VA vs VAT
comparisons, derived from their respective limma top tables. (b) Log-scaled total width of DMRs called by BSmooth on the VA vs SA and VA vs VAT
comparisons from WGBS data, for varying values of the |t| cutoff. DMR, differentially methylated region; SA, subcutaneous adipocyte; VA, visceral
adipocyte; VAT, visceral adipose tissue; WGBS, whole-genome bisulfite sequencing.
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a

b

Figure 2Multidimensional scaling plots of adipocyte and adiposemethylome samples. (a)MDS plot of smoothed WGBS count ratios derived
from the nine samples used in this study. (b)MDS plot of the matched 450K data from the same DNA samples. Probe count represents the number
of probes whose detection P < 0.05 for all nine samples in the plot. MDS, multidimensional scaling; SA, subcutaneous adipocyte; VA, visceral
adipocyte; VAT, visceral adipose tissue; WGBS, whole-genome bisulfite sequencing.
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samples from the same patients. Gene associations (if
any) from the top 150 DMRs for each comparison (all
being statistically significant) were tested for function-
ally enriched gene ontology terms for biological process
(GO:BP) using the goseq package from Bioconductor [48].
We followed the goseq protocol suggested by Geeleher
et al. [49] to offset the bias incurred by the variable probe
count for associations with each represented gene.
Unique ontological terms that were both statistically sig-

nificant (FDR < 0.05) and biologically consonant with
the specific tissue tested were found for blood, liver and
muscle. For example, significant terms for blood included
leukocyte activation (FDR = 1.8 × 10−7), immune sys-
tem process (1.52 × 10−5), lymphocyte activation (1.38 ×
10−4), T cell activation (2.54 × 10−3) and B cell activation
(4.12 × 10−2). Liver-associated terms included comple-
ment activation (2.6 × 10−4), lipid homeostasis (5.86 ×
10−3) and cholesterol efflux (7.09 × 10−3). Five of the six
muscle-associated significant terms were unequivocally
muscle specific, including muscle structure development
(1.26 × 10−2) and myofibril assembly (4.76 × 10−2). No
significant terms were found for buccal cells, but highly
ranked biologically relevant terms such as morphogenesis
of an epithelium (ranked fourth out of 12,447 total terms)
and epithelium development (ranked 6th) were obtained.
A similar profile was observed for pancreas-associated
terms, including exocrine pancreas development (ranked
seventh) and type B pancreatic cell fate commitment
(ranked 16th). Ranked lists of GO:BP terms for each tissue
can be found in Additional file 2: Table S1.

Competing methods
To assess the performance of DMRcate relative to three
other DMR-finding methods, we looked for other meth-
ods whose implementations either satisfied, or were ver-
satile enough to make use of, the following criteria:

• Usage of limma-derived statistics for calculation of
individual CpG site methylation differences.

• Ability to assess all 450K probes as candidates for
DMR constituents.

The three other candidate DMR-finding methods we
tested were:

• Bumphunter [25]: A method that also uses smoothed
methylation values to detect DMRs

• comb-p [26]: Finds regions of enrichment from
spatially assigned P values

• Probe Lasso [27]: A method that offsets CpG density
bias via moderating the candidate window in which
DMRs are defined against the local density of their
constituent CpG sites. Probe Lasso forms part of the
ChAMP package in Bioconductor. Despite both
occurring in the field of high-dimensional data, this
method is unrelated to LASSO feature selection [50].

Our justification for the use of limma is that it shrinks
sample variances towards a pooled estimate, giving more
stable results when the sample size is small [43], as is the
case with our test data. For the second criterion, since the
WGBS DMR-finding method itself retains all candidate
CpG sites regardless of their accompanying annotation (or
lack of), we used only those 450K DMR-finding meth-
ods that do the same. It should be noted that although
Probe Lasso arranges probes into candidate DMRs by their
annotation prior to DMR finding, we have included it
in our testing both because it does so exhaustively (that
is, including those probes without a gene or CpG-island
association).
All reasonable efforts were made to standardise each

method towards a parametric parity, while staying as close
to their defaults as possible. Crucially, the definition of a
minimum of 1,000 nucleotides for DMR separation was
passed to the appropriate argument of each implementa-
tion. Each method is able to return a ranked list of DMRs.
Various metrics describing the parameter specifications
and computational speed of each candidate method can
be found in Table 1.
Each method takes a slightly different approach to mul-

tiple testing. DMRcate performs a BH correction on the
P values corresponding to all points at which the χ2

statistic is calculated, and takes the minimum adjusted P
value in the region as representative, since all CpG sites
within the specified window contribute to the support at
that point. Very similarly, the P values from Bumphunter
regions are the minimum probe FDRs at which the asso-
ciated area may be called significant, but Storey’s optimal
discovery procedure [51] is used as a correction routine
instead. comb-p uses a one-step Šidák correction [52] on
the estimated region-wise Stouffer–Liptak P value. Very
similarly to comb-p, Probe Lasso assigns P values to each
of the ‘lassoed’ regions via Stouffer’s method [53], and
then performs a region-wise BH correction. Hence, to
avoid confounding due to unstandardised multiple testing
procedures, we used quantile thresholding, commensu-
rate with genomic coverage of DMRs called, for each
validation point on the tuning domain. This was done
by titrating values of the tuning parameter α (Table 1)
appropriately to ensure complete coverage along the recall
domain for each validation curve drawn. We generated
200 GRanges [54] objects from the resultant lists of DMRs
for the 200 values of α, each corresponding to a point on
the precision–recall curve.

Performance measure: area under the precision–recall
curve
We chose to represent the performance of each candidate
method via the area under the precision–recall curve
(AUCPR), since receiver operating curves are susceptible
to class skew [55,56]. In studies such as this, where an
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Table 1 Usage of the four candidate methods in this study

Method Implementation
language

Relevant parameters used in calla Computational time (to
nearest second)b

DMRcate v1.2.0 R lambda = 1000, C=2, p.adjust.method =
"BH", pcutoff = α

129

Bumphunter from
minfi v1.10.2

R cluster = NULL, maxGap = 1000,
smooth = TRUE, smoothFunction =
loessByCluster, cutoff = α

58

comb-p v0.35 Python -dist 1000 -seed α 96

Probe Lasso from
ChAMP v1.2.7

R filterXY = F, mafPol.lower = 0,
mafPol.upper = 1, lassoRadius =
1000, minDmrSep = 1000, adjPVal = 1,
minSigProbesLasso = 1, DMRpval = α

6,867

aArgument α indicates the tuned parameter for which sets of called DMRs were produced. Any omissions imply function defaults. bComputational time is for the VA
vs SA comparison, which is the time needed to fit the whole 450K methylome (using parameters in the previous column) with a single core of a clean Dual Xeon
eight-core E5-2650 compute node, using 64 GB of virtual memory.

overwhelming proportion of the genome is evaluated as
true negative in the confusion matrix, precision–recall
statistics can be a preferred option for genomic region
prediction [57,58].
For the 100 simulations, overlaps with ground truth

DMRs were calculated across α for each candidate
method at a nucleotide resolution using GRanges objects,
and the resulting precision–recall curves were drawn.
The performance of each candidate method is shown
in Figure 3. DMRcate’s performance is comparable to
comb-p’s for its default option; however, this is improved
by increasing the C parameter (see Methods), which
shrinks the kernel size. This is because DMRcate incurs
false positives in regions flanking the ground truth when

the kernel is too large, due to the support extending past
ground truth bookends.
However, when validating on real (WGBS) data, we

needed an estimate of the optimal kernel size, due to the
greater number of CpGs interrogated by sequencing. A
parameter value of C = 2 (kernel size = 500 bp) was
found to be near optimal for both the VA vs SA and VA
vs VAT comparisons, for moderately sized BSmooth |t|
cutoffs (red series, Figure 4a,b). Kernel size (σ ) seems to
matter little when large areas of the methylome are called
as ground truth (low BSmooth |t| cutoff ), a σ value of
approximately 500 bp (C = 2, see Methods) is optimal
for modest cutoffs, but for high-stringency cutoffs, very
small kernels are optimal. If the DMRs called are too large

DMRcate
C=2

DMRcate
C=5 bumphunter comb−p probe lasso

0.
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0.
2

0.
4

0.
6

0.
8

Method performance, 100 simulations

A
U

C
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Figure 3 Box plots of AUCPR representing method performances for 100 simulations of 450K data. AUCPR, area under the precision–recall
curve.
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Figure 4 DMRcate bandwidth validation. (a) AUCPR (log scale) for different values of the DMRcate bandwidth, validated on WGBS DMRs from the
VA vs SA comparison. (b) The same plot for the VA vs VAT comparison. AUCPR, area under the precision–recall curve; DMR, differentially methylated
region; SA, subcutaneous adipocyte; VA, visceral adipocyte; VAT, visceral adipose tissue; WGBS, whole-genome bisulfite sequencing.

(such as when C = 0.2 and σ = 5, 000), then their poor
precision will penalise overall performance.
DMRcate clearly makes the best DMR predictions for

the VA vs SA comparison for approximately the top 75% of
the BSmooth |t| cutoff domain (Figure 5a). For the VA vs
VAT comparison (Figure 5b), DMRcate and comb-p show
near-equal performance for the lower half of this domain,
with comb-p outperforming the other methods as DMR
lengths attenuate (Figure 5b,d).
Despite accepting all candidate CpG sites for finding

DMRs, as per our previously stated criterion, even when

cutoff = 0 is specified, Bumphunter only calls DMRs
comprising a subset of the original corpus of CpG sites, for
all validations performed. Seemingly, Bumphunter inter-
nally filters out regions where the CpG site density is
too sparse. In fact, for both data sets, fewer than 20%
of the original candidate CpG sites (92,524/466,190 and
92,505/466,263 probes for the VA vs SA and VA vs VAT
data sets, respectively) are retained as constituents of
DMRs. Similarly low representations were observed for
the simulated data sets. Hence, its performance is greatly
affected by false negatives.
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a b

c d

Figure 5 DMR caller candidate performance and accompanying ground truth DMR size. (a) AUCPR for four 450K-DMR-calling methods (log
scale), validated on a series of DMRs called fromWGBS from the same DNA samples, called by varying the BSmooth |t| cutoff parameter, for the VA vs
SA comparison. (b) AUCPR (log scale) on the candidate methods for the VA vs VAT comparison. (c) BSmooth-called DMR widths (log scale) from the
WGBS data, for the VA vs SA comparison. Yellow dots indicate the median length in this and the following panel. (d) BSmooth-called DMR widths
(log scale) from the WGBS data, for the VA vs VAT comparison. AUCPR, area under the precision–recall curve; DMR, differentially methylated region;
SA, subcutaneous adipocyte; VA, visceral adipocyte; VAT, visceral adipose tissue; WGBS, whole-genome bisulfite sequencing.

By contrast, Probe Lasso is more sensitive to the
WGBS-derived DMRs than the other three methods (see
Additional file 1: Figure S4), but its performance is chiefly
hindered by false positives (for specific examples see
Additional file 3: Table S2).

Computational time
The version of Bumphunter used in this study (Table 1)
is the best performing method in terms of computa-
tional time, being able to fit a whole 450K methylome in
serial on a Xeon eight-core E5-2650 (CSIRO GPU cluster,
Top500 rank 180, June 2014) in 58 seconds, followed by
comb-p at 96 seconds and DMRcate in just over 2 min-
utes. Probe Lasso took considerably longer to call DMRs,
needing approximately 114 minutes. This is largely the

result of method standardisation and maintaining para-
metric parity. When the parameters adjPVal and min-
SigProbesLasso are decreased and increased respectively,
the time Probe Lasso requires to call DMRs shortens
drastically and becomes comparable to the other three
methods.

Discussion
Analysis of results
The performance profiles of each method are partly
influenced by the extent of genomic coverage its DMRs
call. Intuitively, since the 450K array has a reduced
representation, DMRs called from it that have flank-
ing regions may infer nearby true DM, detectable by
WGBS, where the 450K probe coverage is sparse. Probe
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Lasso’s increased sensitivity, and its superior perfor-
mance for predicting low-stringency DMRs, are because
its DMR bookends are defined not by CpG sites them-
selves, but the size of the lasso encompassing them.
Hence, the flanks of these DMRs can predict nearby
sequencing-derived DMRs.
As the sequencing-derived DMR definition becomes

more stringent, Probe Lasso’s precision begins to drop
away more quickly than the other methods. This is likely
because the 450K-derived DMR flanks become a liabil-
ity, reporting false positives, as the sequencing-derived
DMRs become sparser. As described earlier, this phe-
nomenon is more pronounced in the VA vs VAT compar-
ison (Figure 5b), likely because of the smaller biological
effect. Since the effect shift is more subtle, then the DMRs
called from theWGBS assays are shorter than those called
from the VA vs SA comparison, and hence the preci-
sion drops more quickly for generously flanked DMR
estimates. In addition, Probe Lasso’s DMR definitions are
tethered to the annotation of their constituent CpGs, in
that they divide genomic regions along both the CpG-
island-relation axis (e.g. shore, shelf and island) and the
gene-relation axis (e.g. promoter, gene body and 5′ UTR).
True DMRs that straddle multiple annotations are split
and called separately, likely penalising the sensitivity of the
method as well.
As mentioned earlier, Bumphunter does not call DMRs

where the CpG coverage is sparse. This is possibly because
the smoothing function (loess) is shift-invariant, and
hence estimation of DM at CpG interstices in these
regions is unreliable. In contrast, the degrees of free-
dom b (see Methods) on which DMRcate’s χ2 statistic is
calculated simply tends to 1 when there are few or no
methylation sites to be fitted, giving less power. Regard-
less, DMRcate still arranges every candidate CpG into a
DMR, even if it is a singleton (as do Probe Lasso and
comb-p).
In addition, DMRcate uses unsigned weights (limma’s

t2s) to pass to the kernel estimator, whereas Bumphunter
retains the sign of the DM for smoothing. This reten-
tion may result in a loss of DM sensitivity, due to sig-
nal cancelling, where the direction of effect changes
abruptly, as described in Day et al. [59]. comb-p’s and
Probe Lasso’s DMRs are exempt from this complication,
since they are derived from the unsigned individual CpG
site P values themselves. Even though the BSmooth algo-
rithm takes a similar approach to Bumphunter, in that it
smooths signed methylation values, the finer granularity
of sequencing data and the subsequent smaller running
mean of the smoothing engine (101 nucleotides) means
that it adjusts much more quickly to these abrupt sign
changes. It is possible that even in the regions where
the 450K probe density is high enough for Bumphunter
to call DMRs, often they are still not dense enough to

sensitise Bumphunter to the crossovers quickly enough,
compared to the other three methods. From a biological
perspective, given that promoter methylation is associ-
ated with silencing, and genic methylation is involved in
upregulation (see Background), it follows that a region
of short-range methylation sign change is of high inter-
est for the epigenetic control of gene regulation. Example
DMR-calling patterns associated with the HOXC4 locus
from all four candidate methods (plus BSmooth) from
the VA vs SA comparison are shown in Additional file 1:
Figure S5.
comb-p’s performance seems to be highly contingent on

the degree of effect shown in the comparison tested. For
the subtle effect seen in VA vs VAT, it is able to predict
DMRs with a high degree of precision, essentially match-
ing DMRcate’s performance for lower-stringency DMRs
(Figure 5b). The pattern of DMRs found by both in this
instance is likely very congruous, given the similar amount
of genomic coverage of their DMRs (see Additional file 1:
Figure S4), that they both define DMR bookends by CpG
sites, and that they both use a peak-hunting heuristic.
The very similar performance profiles also suggest an
upper limit to which DMRs can be detected in data from
reduced representation platforms, when the biological
effect is small. comb-p’s relative performance improves as
the median DMR length starts to decrease rapidly after
the BSmooth |t| cutoff rises above 6 (Figure 5b,d). At this
point, DMRcate likely incurs more false positives due to
kernel support inferring false DM beyond the flanks of
these very small true DMRs, as seen with the simulated
data. However, this effect can be minimised by shrinking
the kernel size (Figure 4b).
Conversely, for a comparison with a larger effect (VA

vs SA), the WGBS-derived DMR length distribution
remains relatively constant throughout the cutoff domain
(Figure 5c), reflecting real biological differences even
at high values of the |t| threshold. With these DMRs,
comb-p’s predictions are not as compatible as DMRcate’s
are, and hence are more susceptible to both false posi-
tives and false negatives at the given BSmooth |t| cutoff
(Figure 5a). Thus DMRcate is relatively robust to biolog-
ical effect size. We would recommend comb-p for DMR
finding in cases where the effect size is very small –
such as, for example, where no differential probes with
P < 0.05 are returned by limma after BH correction –
and if DMRcate’s output is unsatisfactory. In addition,
DMRcate has the following practical advantages over
comb-p:

• A tunable kernel size parameter for optimum
performance

• Readily annotated results for each list of DMRs
• R implementation, facilitating data integration

pipelines with other Bioconductor tools
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Future directions
The DMRcate method template of modelling the local
statistic Yi as a scaled χ2 random variable is versatile
enough to extend into distributions other than t2. For
example, Cox proportional hazard coefficients can be
modelled as such [60], given appropriate specifications.
For a general linear model with d parameters, we can
test the significance of the model overall by specifying
μ = d − 1 and Yi = Fi, where Fi is the robust limma
F statistic (see Table 2). For the variability option, we
can also introduce a k-level blocking factor, to measure
within-group variation across the sample group. In this
scenario, Vi would be calculated for each CpG site as the
sample within-block variance, with the F statistic degrees
of freedom being (n − k,∞).
DMRcate’s implementation also has scope for expan-

sion into fitting data from platforms beyond the 450K
array. With the proliferation and decreasing cost of next-
generation sequencing technology and data generation
[61-63], fitting WGBS data is a likely future application.
This will need both greater code flexibility with regards to
annotation and, most likely, parallelisation incorporated
into the implementation to cope with the large amount of
data input. Themethod need not be restricted to methyla-
tion data either, nor human; any data that seeks to identify
local genomic regions by fitting points spatially, for exam-
ple SNP data [64], is a candidate for this type of modelling.
As the wealth of available genomic data grows exponen-
tially, methods that reduce, generalise and interpret data
are in greater demand than ever, and as such we see pro-
lific application of this form of genomic inference in the
future.

Conclusions
DMRcate calls DMRs derived from replicated 450K sam-
ples in a competitive manner compared to equivalent
implementations in the field, both in terms of predic-
tion and computational time. For the methods tested,
DMRcate and comb-p are the clear frontrunners in terms
of predictive performance. This has been validated on
WGBS assays performed on the same DNA samples.
The definition of region bookends appears to be crit-
ical to accurate prediction of DM. In addition, non-
agnostic approaches to either the direction of effect or
genomic annotation (such as CpG-island association) of

Table 2 Analysis options and local test statistics

Analysis Yi μ ν

Two groups (DMRs) Limma t2i 1 ν�

Contrast (DMRs) Limma contrast t2i 1 ν�

Variability (VMRs) Vi/V n − k ∞
DMR, differentially methylated region; VMR, variably methylated region.

methylation sites appear to hinder the detection of DMRs.
As such, the role of methylation in humans is likely
more diverse and more complex than current hypotheses
derived from 450K analyses attest, and the approach of
our method can serve as a valuable tool in elucidating this
complexity.

Methods
Our approach to determining DMRs or other genomic
regions of interest has the following steps:

• According to the analysis option chosen, calculate
variances or apply standard linear modelling to the
data using treatment labels and any other relevant
clinical data and covariates.

• Apply Gaussian smoothing to the resulting
per-CpG-site test statistics using a given bandwidth,
λ.

• Model the smoothed test statistics using the method
of Satterthwaite [65].

• Compute P values based on this model.
• Apply standard P value adjustment.
• Use a threshold on adjusted P values to give

FDR-corrected significant CpG sites.
• Agglomerate nearby significant CpG sites, again

using λ.

The agglomeration bandwidth, λ, is supplied by the user.
We use a default value of λ = 1, 000 bp, as do Bumphunter
and Probe Lasso.

Linear modelling: local F statistics
Our method has three different analysis options. These
correspond to the rows of Table 2. The first two options
begin with standard linear modelling using limma [43],
which uses selected factors and covariates, and variance
shrinkage, to fit a linear model to all CpG sites in parallel.
The first and default option is applicable to the simplest
design where there are two treatments. In this analysis,
limma produces a t value, ti, at each CpG site. This is a
signed statistic for assessing the difference between the
treatment effects at this CpG site. A key strategic deci-
sion in the design of our method is, in contrast to, say,
Bumphunter [25], to combine genomically nearby CpG
site effects without regard to direction of effect. This is
because local hypermethylation in one treatment relative
to others may be followed immediately in the genome by
coordinate hypomethylation as part of the same regula-
tory mechanism [59]. We therefore use Yi = t2i as our
local statistic. This is an F statistic with a single degree
of freedom in its numerator. The denominator degrees of
freedom, ν�, is estimated by limma; this is the degrees
of freedom of the shrunk per-CpG-site variance estimate,
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where the shrinkage factor is determined by an empirical
Bayes process. This shrinkage is usually quite strong, in
which case ν is relatively large.
The second analysis option is, in a statistical sense, very

similar. Here a more complex linear model is used, with
possibly many treatments and/or other factors, but we
specify a particular contrast that we want to test. Again
the output at each CpG site is a t value and we use Yi = t2i
which, as in the first option, is an F statistic with (1, ν�)

degrees of freedom.
The third option is simpler and does not use limma.

Here we are interested in genomic regions that are highly
variable. By default, this option computes the variance, Vi,
ofM values across the n samples. Under the null assump-
tion that all CpG sites have the same variance, τ 2, each Vi
is distributed as:

τ 2χ2
n−1/(n − 1).

We now let V be the mean of all the Vis and set:

Yi = Vi/V .

As there are over 450,000 CpG sites, i, V is a very pre-
cise estimate of the supposed common variance, τ 2, so
Yi is very close in its distribution to χ2

n−1/(n − 1), which
is equivalent to an F statistic with (n − 1,∞) degrees of
freedom.

Kernel smoothing
We now smooth the statistics Yi at the locations xi with
a Gaussian smoother. This and the other steps below are
done separately for each chromosome. Let x1 < · · · < xn
be the CpG sites for the current chromosome.
Gaussian kernel weights are defined as:

Kij = exp
(

− [
xi − xj

]2
2σ 2

)
.

The kernel scale factor σ should be proportional to the
bandwidth λ. For example, in the experiment shown in
Figure 4a,b, we set σ = λ/C and compared the perfor-
mance at different values of C.
We then use an efficient sparse computation to pro-

duce the following three sums at each CpG site xi in
(x1, . . . , xn):⎧⎪⎨

⎪⎩
SKY (i) = ∑n

j=1 KijYj
SK (i) = ∑n

j=1 Kij

SKK (i) = ∑n
j=1 K2

ij .

Model for smoothed data
The second and third of these sums, SK (i) and SKK (i),
depend only on the CpG sites, {xi}, not the statistics, {Yi}.
These are, from a statistical point of view, constants. They
are needed, however, as described below. The first term,
SKY (i), is the kernel-weighted local model fit statistic.

Each Yi is assumed to be an F statistic with (μ, ν) degrees
of freedom where μ and ν are known values (see Table 2).
We now model the distribution of SKY (i).
In the context of density estimation, Duong [66] uses the

central limit theorem to show that the equivalent of SKY (i)
is approximately normal in its distribution if the number
of points in the vicinity of xi (in this case, within about
1,000 bp of xi) is large. This approximation will be poor
in our case for the many CpG sites that have few nearby
CpG sites, or none. On the other hand, explicit modelling
of SKY (i) as a linear combination of F random variables
would be exact, but mathematically complex. We take an
intermediate approach in which we assume ν is large so
that the denominator in each F statistic is close to one.
This implies that:

Yi
approx.∼ χ2

μ/μ.

This is exactly true for the variability option and approx-
imately true for the other limma-based options where ν =
ν�, which is generally large due to variance shrinkage.
With this assumption we use the approximation of

Satterthwaite [65], in which we model SKY (1) by a scaled
chi-squared random variable, aiχ2

bi , where the constants
ai and bi are chosen to match the first two moments.
(See also Buckley and Eagleson [67] for an alternative
approach).
The mean and variance of aiχ2

bi are aibi and 2a2i bi
respectively, while if Yi ∼ χ2

μ/μ:
{
E (SKY (i)) = SK (i)
Var (SKY (i)) = 2 SKK (i)/μ.

Now ai and bi are defined by the moment matching
equations:{

aibi = SK (i)
2a2i bi = 2 SKK (i)/μ

and solving these leads to:{
ai = SKK (i)/(μSK (i))
bi = μS2K/SKK (i).

P values and differentially methylated region
segmentation
We can now compute a P value, Pi, for each location xi by
comparing:

SKY (i)
ai

= μSK (i) SKY (i)
SKK (i)

to a χ2 distribution with bi degrees of freedom. An exam-
ple of the χ2 value from chromosome 2 of our VA vs SA
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Figure 6 Observed and expected kernel function values. (a) χ2 statistic SKY
a for all probes from the VA vs SA comparison fitted to chromosome 2.

(b) Expected value ESKY for the same domain. SA, subcutaneous adipocyte; VA, visceral adipocyte.

comparison, compared with the expected value E SKY =
aibi = ν

∑
j
Kij, can be seen in Figure 6.

We then perform a BH correction [68] on the P values
Pi, giving adjusted P values, Qi, and retain the subset of
CpG sites xi where Qi is smaller than a given threshold
(usually 0.05). Finally, regions (DMRs or VMRs, depend-
ing on the analysis option) are defined by collapsing
groups of the remaining CpG sites that are at most λ

nucleotides from each other.

Implementation
DMRcate is the R package implementation of this method,
and is available from the Bioconductor repository [69].
All the user needs to provide to the DMRcate workflow
is an Illumina probe ID-indexed matrix of methylation
measurements and, for DMR finding, a model matrix
(optionally with an additional contrast matrix) reflecting
the experimental design. DMRcate’s experimental design
idiom is lifted wholesale from limma, hence it can fit
any given contrast from a limma model. The workflow
assumes that the user has already normalised the data
according to their preferred method, and removed bad-
quality probes via detection P values and low bead count.
As a further preprocessing option, DMRcate provides
an optional filtering function, removing probes whose
reported methylation level may be confounded by SNPs,
and/or by cross-hybridisation [45]. Further investigation

of a 450K data set used in this study reveals that SNPs
within two nucleotides of the target CpG site have a per-
turbed beta distribution (Additional file 1: Figure S1). If
the samples are from mixed-sex groups, the option of
removal of probes hybridising to X and Y chromosomes is
also provided.
Initial output consists of a data frame describing each

region, ranked by its corresponding P value. Useful infor-
mation such as genomic coordinates, gene associations
and number of constituent CpGs per region are also
reported. The user may specify any positive bandwidth
they like. Longer bandwidths allow for interrogation on
a broader, even chromosomal, scale, while shorter band-
widths potentially allow identification of focal regions
of DM. Post-fitting, the user has the option of filtering
out any region that does not have at least one con-
stituent CpG site with a beta fold change greater than a
specified threshold. As an alternative to using genomic
coordinates, DMRcate has a consecutive option that
assumes all assayed CpGs are equally spaced. Wrappers
for GenomicRanges object and whole-genome BedGraph
production are provided. For visualisation, a separate
plotting function for individual DMRs is also provided.
An example of the graphical output of DMRcate can be
found in the online vignette, and as part of Additional
file 1: Figure S5. A complete description of DMRcate’s
functionality and user options is available from the
manual [70].
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Additional files

Additional file 1: Supplementary material.

Additional file 2: Table S1. GO Biological Process terms, ranked by FDR,
obtained from goseq for tissue-specific DMRs from Slieker et al. for blood,
buccal cells, liver, muscle, pancreas and spleen. Gene associations (if any)
from the top 150 DMRs, as found by DMRcate, were denoted as
differentially expressed when calling goseq and can be found in the final
column of each sheet. Significantly enriched terms are highlighted in
green. (XLSX 4230 KB) DMR, differentially methylated region; FDR, false
discovery rate; GO, gene ontology.

Additional file 3: Table S2. True positives, false negatives and false
positives (in nucleotides) returned by DMRcate, Bumphunter, comb-p and
Probe Lasso for validations on simulated DMRs (Sheet 1), BSmooth calls on
the VA vs SA comparison at t cutoff = 10 (Sheet 2), and on the VA vs VAT
comparison at t cutoff = 5 (Sheet 3). (XLSX 70.4 KB) DMR, differentially
methylated region; SA, subcutaneous adipocyte; VA, visceral adipocyte;
VAT, visceral adipose tissue.
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