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Abstract Metabolites are biomarkers for a broad range of
central nervous system disorders serving as molecular drivers
and byproducts of disease pathobiology. However, despite their
importance, routine measures of brain tissue metabolomics are
not readily available based on the requirements of rapid tissue
preservation. They require preservation by microwave irradia-
tion, rapid freezing or other methods designed to reduce post
mortem metabolism. Our research on human immunodeficien-
cy virus type one (HIV-1) infection has highlighted immediate
needs to better link histology to neural metabolites. To this end,
we investigated such needs in well-studied rodentmodels.First,
the dynamics of brain metabolism during ex vivo tissue prep-
aration was shown by proton magnetic resonance spectroscopy
in normal mice. Second, tissue preservation methodologies
were assessed using liquid chromatography tandem mass spec-
trometry and immunohistology to measure metabolites and

neural antigens. Third, these methods were applied to two
animal models. In the first, immunodeficient mice reconstituted
with human peripheral blood lymphocytes then acutely infected
with HIV-1. In the second, NOD scid IL2 receptor gamma
chain knockout mice were humanized with CD34+ human
hematopoietic stem cells and chronically infected with HIV-1.
Replicate infected animals were treated with nanoformulated
antiretroviral therapy (nanoART). Results from chronic infec-
tion showed that microgliosis was associated with increased
myoinostitol, choline, phosphocholine concentrations and with
decreased creatine concentrations. These changes were partially
reversed with nanoART. Metabolite responses were contingent
on the animal model. Taken together, these studies integrate
brain metabolomics with histopathology towards uncovering
putative biomarkers for neuroAIDS.

Keywords Focused beammicrowave irradiation . Neural
antigens . Human immunodeficiency virus type one .

neuroAIDS . Antigen preservation . Magnetic resonance
spectroscopy . Metabolomics

Introduction

Histopathologic assessments of neural integrity are com-
monly used to study neuropathogenesis following human
immunodeficiency virus (HIV) infection. Both liquid
chromatography tandem mass spectrometry (LC-MS/MS)
analyses of metabolites, proteins applied to cerebrospinal
fluids (CSF) (Bonneh-Barkay et al. 2008; Wikoff et al.
2008; Velazquez et al. 2009) and proton magnetic reso-
nance spectroscopy (1H MRS) tests have sought bio-
markers for HIV-associated neurocognitive disorders
(HAND) in humans (Lentz et al. 2011; Valcour et al.
2012) and in relevant animal models (Boska et al. 2004;
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Ratai et al. 2011; Dash et al. 2011). Nonetheless, such ap-
proaches have fallen short in providing diagnostic information
for several reasons. First, LC-MS/MS analysis of CSF only
indirectly reflects ongoing brain metabolic activity (Laspiur et
al. 2007; Rozek et al. 2007; Angel et al. 2012). Second, while 1H
MRS is capable of visualizing regional brain metabolites, its
sensitivity is limited (Choi et al. 2007; Holt et al. 2012). There is
thus a need for precise investigations into relationships between
metabolites and tissue pathologies. We posit that this can be
realized by combining targeted LC-MS/MS and tissue immu-
nohistochemistry with efforts that seek optimal metabolite pres-
ervation. Such an approach would be most useful when applied
to appropriate model systems in HIV-affected brain subregions.

To these ends, we combined investigations of tissue
immunohistology with metabolite profiling for the characteriza-
tion of disease-related events in rodent models of HIV infection
and HAND. Focused beam microwave irradiation (FBMI) and
rapid tissue freezing techniques were validated for their abilities
to preserve brain metabolites. FBMI heat distribution was opti-
mized for murine brain irradiation through the use of phantoms
infused with temperature sensitive dyes. Flash tissue freezing
was cross-validated against FBMI. We next reasoned that yet
another confounder could be the animal system itself and its
abilities to reflect human disease. Taking this also into consider-
ation, we used both an acute model of HIV-1 infection using
immunodeficient mice reconstituted with human peripheral
blood lymphocytes (PBL) (Koyanagi et al. 1997; Gorantla et
al. 2010b) and NOD scid IL2 receptor gamma chain knockout
humanized mice transplanted with CD34+ hematopoietic stem
cells (HSC) then chronically infected (Gorantla et al. 2010a;
Dash et al. 2011) to test the genesis of virus-induced brain
disease. These models tested the effects of HIV-1 infection on
brain immunopathology and metabolite levels. Both models
supported HIV-1 infection and showed changes in brain metab-
olism with concomitant astro- and micro- gliosis associated
pathologies. However, only CD34+ humanized animals demon-
strated associations between time-dependent losses in CD4+ T
lymphocytes, virus infection, metabolite concentrations and glial
activation. Importantly, each of these parameters were affected
by antiretroviral therapy and supporting a wealth of prior data
gathered from our laboratories during past investigation (Dash et
al. 2012; Roy et al. 2012). Taken together, these studies demon-
strate important technical and methodological considerations
needed in assessing metabolic biomarkers of HIV-associated
neuropathology.

Materials and methods

Animals, human cell reconstitutions and HIV-1 infection

NOD scid IL2 receptor gamma chain knockout, NOD.Cg-
Prkdcscid Il2rgtm1Wjl/SzJ, (NSG) mice (The Jackson

Laboratories, Bar Harbor, Maine, USA; stock number
005557) were obtained from an established breeding colony
and housed under pathogen-free conditions in accordance
with ethical guidelines for care of laboratory animals at the
National Institutes of Health and the University of Nebraska
Medical Center. All animal manipulations were performed
in laminar flow hoods.

Human peripheral blood mononuclear cells (PBMC) were
separated into a monocyte-and peripheral blood lymphocyte
(PBL)-enriched fractions. PBL (30×106 cells in 0.5 ml PBS)
were injected intraperitoneally (i.p.) into 4 week old NSG mice
(hu-PBL) (Gorantla et al. 2010b). HIV-1 infection group were
administered HIV-1ADA (a CCR5 strain, (Gendelman et al.
1988)) i.p. at 104×50 % tissue culture infective dose (TCID50)
on day 7 after PBL engraftment (hu-PBL-NSG HIV-1). Human
pan-CD45, CD3, CD4, CD8, CD14 and CD19 markers were
assayed as a six-color combination (BD Pharmingen, San Diego,
California, USA) using a fluorescence-activated cell sorting
(FACS) Diva (BD Immunocytometry Systems, Mountain
View, California, USA) system. The percentages of CD4+ and
CD8+ cells were obtained from the gate set on human CD3+

cells. Blood collected in EDTA-containing tubes, for immune
cell reconstitution profiles, were determined by FACS. All mice
demonstrated hu-PBL reconstitution (Roy et al. 2012). Animals
were sacrificed at 21 days after virus infection.

CD34+ HSCs were obtained from fetal liver (University of
Washington, Laboratory of Developmental Biology supported
by NIH Award Number 5R24HD000836) using magnetic
beads CD34+ selection kit (Miltenyi Biotec Inc., Auburn,
California, USA). Animals were transplanted as previously
described (Gorantla et al. 2010a; Dash et al. 2011). Animals
were infected with HIV-1ADA i.p. at a dose of 104 TCID50 per
mouse at 22 weeks following FACS validation of human
immune cell reconstitution. Blood samples were collected at
2-week intervals during HIV infection in all animal groups to
monitor human CD4/CD8 and viral load. The levels of viral
RNA copies per ml in plasma were monitored by automated
COBAS Amplicor System v1.5 (Roche Molecular
Diagnostics, Basel, Switzerland). Animals were sacrificed at
18 weeks following HIV infection.

Nanoformulations using the excipient poloxamer-188
(P188; Sigma-Aldrich, St Louis, Missouri, USA), atazanavir
(ATV)-sulfate (Gyma Laboratories of America Inc. Westbury,
New York, USA) and free-base ritonavir (RTV) (Shengda
Pharma-ceutical Co., Zhejiang, China) were prepared by
high-pressure homogenization as described (Balkundi et al.
2010; Balkundi et al. 2011). Lyophilized nanoART particles
were resuspended in saline and injected subcutaneous in HIV-
1-infected animals at 16 weekly doses of 250 mg/kg of ATV
and RTV (Dash et al. 2012; Roy et al. 2012). NanoART was
initiated following 12 weeks HIV infection.

Spleen and brain were collected after euthanasia and
dissected over ice. Brains were initially split with left
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hemisphere for paraffin embedding and right hemisphere
dissected into sub-regions for LC-MS/MS. Sub-regional
dissection followed anatomical boundaries to separate
hemi-brains into cerebellum, brainstem, cortex, hippo-
campus, striatum, and midbrain. Cortex was further
divided into frontal and middle sections. Control NSG
mice non-reconstituted with human cells and not HIV-
infected serve for testing heat stabilization of brain
tissue processing.

Agar-saline-thermochromic ink mouse (ASTIM) phantoms

A single 20-gram mouse was euthanized, coated in petroleum
jelly and covered in plaster to make the primary mold
(ArtPlaster™, Activa Products, Inc. Marshall, TX). After dry-
ing overnight the animal was removed from the mold and latex
replicas were cast from the primary plaster mold (407 Latex
Casting Rubber®, EnvironMolds, Summit, NJ). These latex
molds were used to make replicate agar phantoms of 2 % agar
in water with 0.9 % NaCl brought to boil. When molten agar
cooled to 50° concentrated thermochromic ink was added to a
dilution of 5 % (Chromax Black NH K60C, LCR Hallcrest,
Glenview, IL). Phantoms were made by pouring molten agar
mix into the latex molds and cooled over ice.

FBMI euthansia and heat stabilization

Mice were anesthetized by inhalation of 1–2 % isoflurane in
oxygen and aligned in water-jacketed animal holder for
microwave irradiation in a Muromachi Microwave
Fixation System (10 kW model). For phantom testing irra-
diation times from 400 to 700 ms were varied at 50 ms
intervals at constant 4.9 kW for each buffer solution tested
in the water jacket (distilled water, 0.5×, 1×, 2×, 3×, 4×
PBS). Finally, these irradiation settings were tested on rep-
licate animals followed by 1H MRS validation.

Quantitative 1H MRS measurements

Single voxel localized spectra were acquired using point
resolved spectroscopy (PRESS) with high bandwidth pulses
to optimize sequence performance. Spectra were acquired
with a repetition time of 4 s, echo time of 33 ms, 256
averages, using volume coil transmit and surface coil re-
ceive on a 7 T/16 cm Bruker Pharmascan (Karlsure,
Germany) MRI/MRS system. Single-scan, localized,
unsuppressed water signals were acquired as a reference
for metabolite quantification. Spectroscopic data were
processed by fitting in the time domain using the QUEST
algorithm (Ratiney et al. 2005) with spectra (basis set)
composed of GAMMA computer models of spectra (Smith
et al. 1994) using published values of frequency and cou-
pling constants from 22 abundant metabolites found in the

brain by 1H MRS (Govindaraju et al. 2000). These were
normalized to water without correction for relaxation.
Metabolite concentrations reported were semiquantitative.
To preclude concentration corrections for relaxation, water
normalized signal amplitudes were presented in institutional
units (IU).

LC-MS/MS analyses

Nine Amino acids and myo-inositol (mInos) in mouse brain
were quantified by LC-MS/MS conforming to previously
published procedures (Bathena et al. 2012). The LC-MS/MS
analyses were completed on a Waters ACQUITY ultra-
performance liquid chromatography (UPLC) system
(Waters, Milford, MA) coupled with a 4500 or 5500 Q
TRAP® hybrid quadrupole linear ion trap mass spectrome-
ter (Applied Biosystems, MDS Sciex, Foster City, CA, no).
Briefly, brain tissues were homogenized in methanol.
Aliquots of homogenate were serially diluted with HPLC
grade water, spiked with internal standard (IS) solution
(Glu-d5), and extracted by protein precipitation using meth-
anol. Samples were vortexed and centrifuged at 20,000 g for
10 min. The supernatants were aspirated and evaporated
under vacuum, the resulting residues were reconstituted in
50 % ACN and 10 μL of 10,000-fold diluted sample ex-
tracts were then subjected to LC-MS/MS analyses. The
chromatographic separation was carried out with Atlantis®
HILIC silica column (150 mm×2.1 mm ID, 5 μm particles).
Mobile phase A consisted of 0.1 % formic acid in water and
mobile phase B comprised of acetonitrile. The multiple
reaction monitoring (MRM) transitions used for each ana-
lyte and IS were: glutamine (Gln) 147.0/129.9, mInos
178.9/160.9, gamma-aminobutyric acid (GABA)
104.0/68.9, glutamate (Glu) 148.0/84.0, N-acetylaspartate
(NAA) 176.0/133.9, aspartate (Asp) 133.9/73.9, taurine
(Tau) 125.9/107.8, choline (Cho) 104.0/60.0, creatine
(Cre) 131.9/87.1, phosphocholine (PCho) 184.0/86.0, and
Glu-d5 (IS) 153.0/88.0. Experiments performed on AB
Sciex 5500 Q TRAP utilized the following optimized
MRM transitions: mInos 178.8/117.1, GABA 104.0/86.9,
Glu 146.1/101.9, NAA 173.9/87.9, Asp 132.0/88.1, Cho
104.1/60.0, and Cre 132.1/90.0.

Immunohistochemistry (IHC)

Brain hemispheres were extracted and then either post fixed
overnight in 4 % paraformaldehyde (PFA) before paraffin em-
bedding or immediately processed through the alcohol/xylene
dehydration steps in preparation for paraffin embedding.
Sections 5 μm thick were cut from paraffin blocks, mounted
on glass slides and labeled separately with HLA-DQ/DP/DR,
HIV-1 p24, glial fibrillary acidic protein (GFAP), and ionized
calcium binding adaptor molecule 1 (Iba1) for brightfield
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imaging (Table 1). The polymer-based HRP-conjugated anti-
mouse and anti-rabbit Dako EnVision systems were used as
secondary detection reagents and developed with 3,3′-
diaminobenzidine (DAB). All paraffin-embedded sections were
counterstained with Mayer’s hematoxylin.

Adjacent slide specimens of paraffin-embedded mouse
brain were selected for immunofluoresent staining. Brain
sections were treated with primary mouse monoclonal anti-
bodies to microtubule-associated protein 2 (MAP-2), vesic-
ular glutamate transporter 1 (VGlut1), synapsin 1 (Snp1),
neurofilament (NF), and vesicular GABA transporter
(VGAT). Highly cross-adsorbed secondary anti-mouse, anti
guinea pig and anti-rabbit antibodies conjugated to the fluo-
rescent probes Alexa Fluor® 488, Alexa Fluor® 488 and
Alexa Fluor® 594 respectively (Invitrogen, Carlsbad, CA)
were used (Table 1). Cell nuclei were labeled with 4′,6-
diamidino-2-phenylindole (DAPI). Slides were cover
slipped with ProLong Gold anti-fade reagent (Invitrogen,
Carlsbad, CA), allowed to dry for 24 h at room temp and
then stored at −20 °C for future use.

Quantitative IHC

Images were captured at multiple wavelengths (420–
720 nm) capturing the bandwidth of chromagens and
the emission spectra of the fluorescent tags. All sections
were imaged with 20× objective and synaptic-related
stains were acquired using 40× objective. The spectra for
each chromogen or fluorophore was determined on control
slides and tissue sections were analyzed by multispectral
imaging/image analysis, with a brightfield/fluorescence

microscope (Nikon Eclipse 55i) and Nuance FX multispectral
imaging system (Cambridge Research Instruments, Worburn,
MA). A spectral un-mixing algorithm (Nuance system) quan-
titatively separated the grayscale images representing each
spectral component. The grayscale images representing opti-
cal density (OD) for brightfield chromagen intensity or fluo-
rescence signal counts per area (mm2) (same exposure times
for samples compared) was quantified as mean pixel intensity
(12-bit grayscale). Area-weighted average intensity was cal-
culated for all antibodies in triplicate for multiple regions in
the brain (cortex, hippocampus, caudate, midbrain) by divid-
ing the sum of the product of area and mean intensity, for each
partitioned area, by the sum of the partitioned areas.

Statistics

Group metabolite data were examined for outliers or
unequal variances. Group metabolite means were tested
for significant differences using one-way univariate
ANOVA with PROC MIXED of SAS. Significance of
HIV infection and nanoART treatment variable was
evaluated by F-tests; differences among pairs of means
were then evaluated with T-Tests (p≤0.05 was as-
sumed). If deemed necessary, an unequal variance
ANOVA model was specified. Pairwise comparisons of
means were computed and significance and confidence
intervals for individual comparisons were adjusted for multi-
plicity with the Tukey method. All statistical significance tests
were two-sided. Statistical analyses were generated with
SAS/STAT software, Version 9.3 (© 2002–2010) of the SAS
System for Windows (Cary, NC).

Table 1 IHC Primary and Secondary Antibodies (Ab)

Name Target 1° Ab Company 2° Ab

HLA-DQ/DP/DR human PBLs Mouse monoclonal
clone CR3/43, 1:100

DakoCytomation,
Carpinteria, CA

HRP-conjugated anti-
mouse IgG

HIV-1 p24 HIV-1 core Ag Mouse monoclonal
clone Kal-1, 1:10

DakoCytomation,
Carpinteria, CA

HRP-conjugated anti-
mouse IgG

Glial fibrillary acidic protein
(GFAP)

Astrocytes Rabbit polyclonal,
1:1000

DakoCytomation,
Carpinteria, CA

HRP-conjugated anti-
rabbit IgG

Ionized calcium binding
adaptor molecule 1 (Iba1)

Microglia, macrophages Mouse monoclonal,
1:500

Wako Chemicals USA,
Inc., Richmond, VA

HRP-conjugated anti-
mouse IgG

Microtubule-associated
protein 2 (MAP-2)

Neuronal soma and
dendritic microtubulin

Rabbit polyclonal, 1:500 Millipore Corporation,
Temecula, CA

Alexa Fluor ® 594 anti-
rabbit IgG

200 kDa+68 kDa
neurofilaments (NF)

Neuronal axon
intermediate filaments

Mouse monoclonal
clone 2 F11, 1:200

DakoCytomation,
Carpinteria, CA

Alexa Fluor ® 488 anti-
mouse IgG

Vesicular glutamate
transporter1 (VGlut1)

Pre-synaptic excitatory
neurotranmission

Guinnea Pig polyclonal,
1:1000

Synaptic Systems,
Göttingen, Germany

Alexa Fluor ® 488 anti-
guinnea pig IgG

Vesicular GABA transporter1
(VGAT)

Pre-synaptic inhibitory
neurotransmission

Rabbit polyclonal, 1:500 Synaptic Systems,
Göttingen, Germany

Alexa Fluor ® 594 anti-
rabbit IgG

synapsin1 conjugated to
Oyster© 650 (Snp1)

Pre-synaptic marker Mouse monoclonal,
1:200

Synaptic Systems,
Göttingen, Germany

None
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Results

FBMI for brain tissue preservation

Euthanasia by FBMI fixes brain tissue by heat inactivation of
enzymes at temperatures above 65 °C (Hampson et al. 1982).
Achieving adequate heat is necessary to stabilize in vivo
metabolite levels but excessive heating causes boiling in water
compartments of tissues resulting in altered morphology or
tissue destruction. To prevent such outcomes, we developed a
heat distribution testing system for FBMI using mouse-shaped
phantoms. Similar to systems designed to calibrate conven-
tional microwaves for laboratory use (Login et al. 1998) we
made agarmolds shaped to the size of a 20 gmouse to produce
phantoms modeling tissue using 2 % agar and 0.9 % NaCl in
water (Fig. 1c). Additionally, the phantom was loaded with
thermo-sensitive dye that becomes permanently black at tem-
peratures above 60º C. Using this system we tested FBMI
parameters for uniform heat distribution above 60 °C without
reaching the melting point of agar at approximately 88 °C.

(Fig. 1d). The water-jacketed animal holder in the FBMI
system provides a chamber around the head for buffer
solution. The ionic concentration of buffer solution al-
ters the field distribution and heat induction. Through
phantom testing across a range of irradiation times we
studied the effects of buffer ionic concentrations and
irradiation time at a power setting of 4.9 kW without
over-heating. To improve reproducibility and accommodate
for differences in mouse size and fat distribution animal
position within the irradiation chamber was further optimized
using male and female adult NSGmice with ex vivoMRI and
1H MRS validation. The optimal irradiation settings for this
type and size of mice were: power=4.9 kW, time=650 ms and
buffer=distilled water. For future experiments ASTIM phan-
toms were molded with 50 mL conical tubes and wrapped in
latex for monitoring intra- and inter-day heat distribution
reproducibility. Such variations are anticipated due to techni-
cal factors such as electrical power fluctuations and magne-
tron aging, which we detected and corrected at initiation of
these experiments.

Fig. 1 FBMI euthanasia design and testing. (a) FBMI euthanasia was
performed in a Muromachi 10 kW Microwave fixation system. (b)
Mice are anesthetized and placed in an animal holder. The holder
includes a water compartment filled with ionic buffer solution that
aligns the mouse brain in the center of the waveguide. (c) An ASTIM

phantom was manufactured in order to develop standard operating
microwave irradiation protocols that enable adequate heat distribution
in the brain without boiling. (d) The ASTIM phantoms were used to
test the effect of irradiation time and buffer solution for the rodents
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FBMI and 1H MRS

Employing 1H MRS allows the degree of metabolic stability to
be determined by comparing post-mortem metabolite levels to
those in live animals. Furthermore, the acquired metabolite pro-
file provides confirmation of FBMI affects following previous
works where 1H-MRS scanning of halothane-euthanized rat
brain tissue compared to FBMI treatment demonstrated increased
lactate, GABA, alanine and reduced NAA levels, representing
residual enzymatic activities of energy respiration due to post
mortem metabolism (de Graaf et al. 2009). Additionally, MRI
also allows visualization of the tissue architecture, providing
validation of the integrity of brain tissue after FBMI.

To characterize the effect of FBMI on mouse brain metabo-
lites and to develop a method of assessing FBMI heating effec-
tiveness, we collected a series of localized 1H MRS spectra to
generate a time course ofmetabolite levels. In vivo levels of brain
metabolites followed by series of ex vivo scans over 16 h at room
temperature in the same animal determined the capability of
FBMI to maintain the integrity of in vivo metabolite levels
through complete inactivation of enzymes (Fig. 2). Results are
shown in retrospective groupings using lactate levels, one group
representing insufficient heating (closed circles, n=5) and one
with sufficient heating (open circles, n=4). The sufficient-heating
group was defined as those with lactate levels matching in vivo
levels after FBMI. Insufficient heating demonstrated a sharp 2-
fold increase in lactate in the first scan after FBMI. Lactate levels
mirror NAA stabilization during the post-FBMI scanning period.
Inadequate FBMI heating results in a sharp decrease in NAA.
Lactate also correlated with increased GABAwhereas no group
differences were seen for Tau and Cre (data not shown). These
data demonstrate the role ofmetabolite profiling to confirm tissue
preservation where a single ex vivo scan session provides an
assessment of heat stabilization to exclude samples where resid-
ual enzymatic activity remains active post mortem.

LC-MS/MS measures of brain metabolites and preservation

LC-MS/MS can be used to quantify brain metabolites in-
cluding amino acids and mInos (Bathena et al. 2012). We
performed targeted LC-MS/MS analysis to test the effect of
tissue preservation in brain samples flash-frozen from mice
sacrificed by decapitation compared to FBMI-treatment.
Specific alterations in metabolite levels in the flash-frozen
brains compared to FBMI-treatment were observed. Glu,
GABA, mInos, and Cho significantly increased, whereas
PCho decreased during flash-freezing relative to FBMI-
treatment (Fig. 3). In order to control for the possible effects
of heating on tissue weight, concentrations were normalized
to total protein. However, elimination of this normalization
factor maintained the significant differences reported for all
metabolites except Glu. Furthermore, contralateral samples
from each brain were kept at room temperature for 60 min

before freezing to evaluate individual sample stability. This
assay provided 2 important results: (1) an FBMI-treated
sample was excluded from the FBMI group due to inade-
quate stabilization following GABA increase and NAA
decrease (data not shown); and (2) post-mortem metabolite
dynamics (increased GABA and Cho with decreased PCho)
due to residual metabolism in the flash frozen group were
amplified during the processing delay (data not shown).

Fig. 2 1H MRS evaluations of brain metabolites. (a) Region of interest
selected for single voxel 1H MRS of the mouse brain in vivo and post-
microwave fixation. Results shown here demonstrate the effect of
adequate and inadequate heat stabilization on metabolites determined
retrospectively by comparing individual ex vivo to in vivo lactate
levels (12 scans, 16 hs). (b) Lactate is stabilized with adequate heat
(open circles, n=4) and does not change significantly over a 16 hour
scan series, but levels double by the first scan interval (60 min) with
inadequate heat. (c) Residual anaerobic respiration causes a sharp
decrease in NAA levels by the first scan interval when adequate heat
is not applied (closed circles, n=5). Metabolite concentrations are
reported as institutional units (IU). Means at each timepoint are
displayed with error bars indicating standard error of the mean
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Concentrations of amino acids determined by LC-
MS/MS after FBMI of a duration of less than 1 s have been
demonstrated to preserve metabolite concentrations of labile
compounds in brain tissue (Delaney and Geiger 1996). In
order to validate this in our studies, we have compared the
results of the non-reconstituted NSG mice with values from
in vivo quantitation of metabolite profiles in mouse brain
from other laboratories (Table 2) (Schwarcz et al. 2003;
Tkac et al. 2004). Considering the variability in normal
concentrations in different mouse strains (Schwarcz et al.
2003), the concentrations are within range of literature
values determined using non-invasive in vivo measures.
Discrepancies between previous reports of brain metabolites
measured by 1H MRS and the LC-MS/MS results in our
study are seen in Tau and Cre concentrations (Table 2). The
reason for these discrepancies are not clear, however several

causes may be responsible including the possibility that a
percentage of these metabolites are bound to enzymes, pro-
teins or membranes in vivo, decreasing 1H MRS visibility
due to line broadening.

Quantitative immunohistochemistry

Studies of neurodegenerative disease have relied on immuno-
histochemical techniques to identify morphological indicators
of neuroinflammatory processes. The effect of FBMI on neu-
ral antigen preservationwas investigated for markers of gliosis
and neuronal integrity (Fig. 4). We compared quantitative
immunohistochemistry (IHC) detection in typically prepared
(decapitation followed by 4 % PFA immersion overnight)
brains to those processed with FBMI, with and without PFA
immersion. Tissue histology and cellular morphology was

Fig. 3 LC-MS/MS measured
metabolites of heat stabilized
brain tissues. (a) Metabolite
levels measured with LC-MS/MS
demonstrate increased Glu,
GABA and Cho and reduced
PCho when flash frozen (solid
bars) relative to FBMI fixed
tissue levels (open bars). Values
shown are calculated as
percentage of FBMI group mean.
Error bars show standard error of
the mean. *statistically significant
group differences with p<0.05

Table 2 Comparisons between brain metabolite concentrations from NSG mice with previously reported strains

Metabolite LC-MS/MS
Concentration
(mmol/kg)

(Pfeuffer et al. 1999)
Concentration (mmol/kg) other
species

(Tkac et al. 2004) concentration
(mmol/kg) regional variations

(Schwarcz et al. 2003)
concentration (mmol/kg)
mice

Aspartate 2.3±0.4 1.5–2.8 2 NR

Total Choline
(Cho+GPC+
PCho)

0.3±0.03 (free Cho) 0.5 1.5–2 1.6–2.8

Creatine
(including
phosphoCre)

14.9±2.0 8-9 8–13 7.2–9.2

Gamma-
aminobutyric
acid

2.9±0.7 0.8–2.3 2–3 NR

Glutamate 12.2±2.0 7.5–12.5 9–12.5 NR

Glutamine 3.7±0.7 2.1–5.6 3.5–4 NR

myo-Inositol 5.9±0.9 4.4–10.5 5–9 5.2–6.6

N-acetylaspartate 4.9±0.6 6.0–7.1 7–9 6.5–7.9

Phosphocholine 0.5±0.06 0.35 (included in Cho) (included in Cho)

Taurine 13.9±1.6 1.6–6.6 8–13 NR

NR=Not reported. Values in this report are means and standard deviations of values obtained from all brain regions from n=4 unmanipulated
control NSG mice as seen in Fig. 4
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Fig. 4 Morphology of FBMI prepared brain tissue. Immunohisto-
chemical analyses of astroglial (GFAP), microglial (Iba1), neuronal
(MAP-2 and NF) and synaptic antigens (VGlut1, VGAT, and Snp1).
These are readily observed in brain tissues recovered after FBMI and
following with or without PFA fixation and paraffin embedding. GFAP,
VGlut1 and Snp1 demonstrate increase signal with FBMI alone.

Antibodies against Iba1 and synaptic antigens are preserved and en-
hanced with FBMI and PFA compared to no FBMI. FBMI reduces NF
and nuclear staining with both hematoxylin and DAPI. *significant
differences (p<0.05) compared to non-FBMI. # significant differences
(p<0.05) compared to FBMI alone
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intact in FBMI stabilized tissue. IHC detection demonstrated
greater signal for brain tissue from FBMI euthanized animals
over standard PFA preparation for GFAP, MAP-2, VGlut1 and
Snp1 proteins (Fig. 4, Table 1). Analysis of the density of Iba1
and VGATwere increased for FBMI and PFA tissue preparation
as compared to standard PFA preparation. NF signal increased
with FBMI unlike previous reports of FBMI-induced ultrastruc-
tural damage studied by electron microscopy, as reviewed in
(Login et al. 1998). Nonetheless, FBMI improved antigen de-
tection levels over decapitation and therefore provides a method
of brain tissue preservation that excludes the need for chemical
fixation when warranted.

FBMI facilitates measures of neural antigens
and metabolites in hu-PBL mice

FBMI euthanasia allows multiple investigations of brain tissue
due to metabolic and protein stability at room temperature for
prolonged periods, facilitating dissection. We hypothesized
that FBMI followed by ex vivo 1H MRS validation of lactate
and NAA stability preceding combined metabolomics and
histology applied in a murine systemic HIV-infection model
(hu-PBL-NSG HIV-1) would demonstrate the relationship of
metabolites with neuropathogenic events. Hu-PBL
reconstituted mice as controls and mice infected with HIV
for 3 weeks were euthanized with FBMI, 1H MRS scanned
and dissected with opposing hemispheres of the brain from
each animal for IHC antigen detection and LC-MS/MSmetab-
olite measurements. Though 1H-MRSmeasurements validated
stabilization of Lac and NAA levels (data not shown), LC-
MS/MS metabolite measurements of brain subregions did not
yield any group differences for HIVinfected animals compared
to hu-PBL-NSGmice (Fig. 5). Indeed, IHC analysis for CD45+
human immune cells demonstrated profound variability in cir-
culating numbers of human lymphocytes and brain infiltrations
among brain regions and between animals. Accordingly, each
animal, regardless of HIV infection status demonstrated vari-
ability in neuroimmune reactions as seen with IHC measure-
ments of GFAP and Iba1 levels (Fig. 6). These results were
confounded by a number of experimental variables that includ-
ed: (1) delayed freeze time following 1HMRS scanning; (2) the
variabilities of hu-PBL engraftments; (3) graft-versus-host dis-
ease; (4) levels of viral infection and neuroinflammation seen in
brain subregions; (5) circulating HIV-1 viral load; (6) human
donor cell variabilities; and (7) levels of neuroimmune reactions
including micro- and astrogliosis.

Flash freezing preservation of neural antigens
and metabolites in humanized HIV-1 infected mice

In response to the issues identified in the experiment using hu-
PBL-NSG HIV-1 mouse model, combined with identified
issues with the reproducibility of FBMI at that time (see

Results/FBMI for Brain Preservations), we constructed an
experiment limiting confounding variables. HIV-1 infection
of humanized mice (hu-CD34-NSG HIV-1) provides a model
of chronic infection over many months with evidence of
neuroinflammation and neuropathogenesis (Gorantla et al.
2010a; Dash et al. 2011). Humanized mice were maintained
for 18 weeks following HIV-1 infection. Additionally, a group
of HIV-1 infected humanized mice were treated for the final
6 weeks with nanoformulated antiretroviral therapy
(nanoART). After decapitation opposing hemispheres from
the same animals were processed for IHC analysis or dissected
for LC-MS/MS analysis. The time from decapitation to flash
freezing were minimized and controlled as to prevent vari-
ability of post mortem metabolism. Measurements of hippo-
campal metabolites showed significant changes consisting of
increased mInos, Cho, PCho and decreased Cre (Fig. 7).
Interestingly, nanoART reduction of viral load led to recovery
of mInos near control levels. IHC analysis revealed similar
group effects where microgliosis was present in the hippo-
campus of HIV infected mice and decreased with nanoART
treatment and reductions of viral loads (Fig. 8).

Discussion

In the current report, we developed techniques to preclude
brain enzymatic activities leading to preservation of both
neural antigens and metabolites. Such findings, have notable
value for studies of neural metabolism and to develop met-
abolic biomarkers of tissue injury and disease pathologies.
Specifically, the metabolite profiles found in specific brain
regions provide early predictive monitoring of HAND as
well as to follow therapeutic interventions. As a diagnosis of
HAND is currently made by the exclusion of other co-
morbid conditions of the CNS, these works are certainly
timely and of clinical relevance (Valcour et al. 2011).

Quantitative LC-MS/MS evaluation of amino acids and
mInos in brain tissues was made possible by both FBMI-
treatment and flash freezing tissue preservation techniques.
This provides a metabolite signature comparable to 1H MRS
metabolite stability measurements (de Graaf et al. 2009) and
validated by high resolution magic angle spinning NMR
(Detour et al. 2011). Importantly, the targeted metabolite profil-
ing assays performed show the role of tissue preservation depen-
dent on processing techniques. Furthermore, comparisons
between histochemical assessments of neuroinflammation and
metabolite profiling provided confirmation of disease processes,
yet specific correlations between IHC and LC-MS/MS data did
not yield specific correlations (data not shown). Indeed, such
findings indicate the sensitivity of metabolomic research to
neuroinflammatory processes where cell processes are disrupted
before structural alterations are evident.Moreover, themetabolite
concentrations are representative of entire brain regions while
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IHC is limited to individual slices. Future studies would explore
other methods to link molecular biochemical processes during
neuroinflammation utilizing methods such as in situ hybridiza-
tion, laser capture microdissection and/or cytokine profiling for
measurements of cell phenotype across many brain sections.
Additionally, we anticipate that future studies will even better
validate metabolite quantitation between these methodologies to
refine the quantitative potential of 1H MRS and provide even
more exact measurements of a broad range of brain metabolites
with post-mortem LC-MS/MS validation at the experimental
endpoint in rodent models of disease.

FBMI was pursued as a lead technique to preserve brain
metabolites as it has been proven effective in preventing the
degradation of compounds after animal sacrifice. Indeed,
studies linking behavior changes with energy metabolism
and neurotransmitter deficits in animal models of
Huntington Disease (Lucas et al. 2012; Mochel et al. 2012)
and Alzheimer’s (Francis et al. 2012) have relied on FBMI
euthanasia to identify early disease events. Moreover, it has

proven successful in stabilizing one of the most labile com-
pounds in the brain, adenosine triphosphate (ATP). Indeed,
efforts to obtain accurate ATP levels from brain tissue have led
to the conclusion that ATP level stability can be seen in vivo
only by high power (10 kW) FBMI and through freeze-blow
procedures (Delaney and Geiger 1996). However the freeze-
blow technique, which involves blowing the brain tissue onto
a very cold plate that prevents enzyme degradation, does not
allow subsequent histological analyses. Apropos of the FBMI
procedures and as performed in rats heated to 85 °C, high
power were believed needed to keep total heating time ≤1 s
(Delaney and Geiger 1996). In the current study and as
performed in mice, irradiation times of 0.6 s were below this
threshold. Comparisons of the quantitative values obtained by
LC-MS/MS showed that they were within the range of what
was previously reported (Table 2).

What was clear is that metabolomic studies require atten-
tion to post mortem metabolism. Specifically, neural enzy-
matic activities seen as a consequence of hypoxic injury

Fig. 5 HIV-hu-PBL LC-MS/
MS metabolite analyses. FBMI
was used in studies of HIV-1
infected human PBL
reconstituted immune deficient
mice. Metabolites were
measured post mortem by LC-
MS/MS in multiple subregions
following 1H MRS
confirmation of Lac and NAA
stability. Individual dissected
regions did not demonstrate
group differences results in (a)
cortex or (b) hippocampus in
mice reconstituted with human
lymphocytes (open bars, n=4)
compared with HIV-1 infected
hu-PBL mice (solid bars, n=4).
Error bars indicate standard
error of the mean
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clearly affect metabolomics results. Studies using any dis-
ease animal model system must thus be evaluated for
confounding effects due to tissue preparation (Nomura et
al. 2011). Prior metabolomic studies while relying on rapid
tissue preparations controlled for post mortem metabolism
but did not report effects of tissue preparations (Cho et al.
2012; Fujieda et al. 2012; Patti et al. 2012). This study
confirmed post-mortem metabolite dynamics and links be-
tween brain histology and metabolite profiles. This was
done in relevant animal models of HIV-1 infection of the
nervous system. Two model systems were used. In the first,
HIV infection of hu-PBL-NSG mice was chosen for initial
investigations. The model readily generates high levels of
viral infection but is limited in the fact that mice survive for
periods of several weeks due to lethal graft-versus-host
disease. Even utilizing FBMI and ex vivo 1H MRS we failed
to show substantive group metabolomic differences. Indeed,
histological analysis of these brains revealed significant
variation in regional neuroimmune responses within
reconstituted and in HIV infected animals. These variations
may be explained by the differential severities of graft

versus host disease with human PBL reconstitution (King
et al. 2009). While the model proved helpful for developing
the techniques employed, we also realized that if any disease
biomarker signature would be obtained from such
metabolomics approaches a more robust animal model
would need be developed and employed in study. This was
found by HIV infection of humanized mice. In this model
system human CD34+ cells are engrafted in newborn mice
and reconstitute both innate and adaptive arms of the human
immune system (Gorantla et al. 2012). Most importantly,
humanized mice maintain human cell engraftment for over a
year with minimal graft versus host disease. Furthermore,
HIV infection leads to neuroimmune response (Gorantla et
al. 2010a) and has been shown in our past works to provide
a model system for developing new antiretroviral therapies
(Dash et al. 2012; Nischang et al. 2012). Employing the
model we were able to demonstrate, for the first time, CNS
metabolite alterations in brain regions of infected mice.
Specific metabolite changes following chronic (18 weeks)
infection paralleled microglial profiles in the hippocampus

Fig. 6 Brain pathology in HIV-1 infected hu-PBL mice. Neuropatho-
logic alterations in the cerebellum of an HIV-1 infected mouse. Human
lymphocytes invade the parenchyma adjacent to blood vessel with p24
positive HIV-infected cells. GFAP and Iba1 staining shows inflamma-
tory process in the vicinity. At this acute stage of inflammation gross
neuronal morphology visualized by NF and MAP-2 remains intact

Fig. 7 LC-MS/MS metabolomic profiling of brain tissue from HIV-1
infected humanized mice. Metabolomic profiles were generated for
flash frozen hippocampal tissues of humanized mice controls (C, n=
7), HIV-1 infection (H, n=6) and HIV-1 infection treated with
nanoART (N, n=6). Myo-Inositol (mInos), choline (Cho) and
phosphorylcholine (PCho) increased and creatine (Cre) decreased dur-
ing HIV-1 infection compared to humanized mice controls. NanoART
reduction of HIV-1 disease reduced mI levels below the increase with
HIV-1 infection. Error bars indicate standard deviation. *significant
mean differences (p<0.05) compared with uninfected humanized
mouse brain controls, #significant mean differences (p<0.05) between
HIV-1 infected and HIV-1 infected nanoART treated
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and were, in part, resolved by nanoART-induced suppres-
sion of viral loads (Fig. 7). Similar increases of mInos/Cre
and Cho/Cre were reported in brain subregions of HIV
infected humans (Lentz et al. 2011) and SIV infected ma-
caques (Greco et al. 2004). Additionally, hippocampal
neuroinflammation was reported in rats peripherally admin-
istered IL-2 in an anxiety model showing concordance be-
tween myoinositol and microgliosis (Schneider et al. 2012).

We have shown that reductions of viral load readily
observed by nanoART paralleled similar reductions of hip-
pocampal microgliosis and myoinositol. However, the levels
of Cho, PCho and Cre were reduced with HIV infection but
did not return to baseline as was present for uninfected
control animals. We suspect that such findings represent
more permanent neurological damage seen as a conse-
quence of the sustained high viral loads and acquired before
treatment. This is also reflective of patients where initial
neurocognitive deficits, although in part reversed by ART,
can affect later cognitive function (Gendelman et al. 1998;
Cysique et al. 2009). Additionally, the blood brain barrier
limits ATV and RTV efficacy for the brain and the mainte-
nance of the viral reservoir may limit neural recovery. This
has previously been shown in studies comparing ART reg-
imens according to a CNS penetrance index where
neurocognitive recovery is linked to the drug regimen
(Cysique et al. 2011). Though circulating levels of HIV

RNA are significantly reduced with 6 weekly injections of
nanoART (Dash et al. 2012) other inflammatory factors may
perpetuate the reactive phenotype of neural cells (Kraft-
Terry et al. 2009; Yadav and Collman 2009). Finally, such
limitations in metabolite recovery may reflect the hu-CD34-
NSG HIV-1 mouse model itself. Differences in donor hu-
man cells are one source of variability and levels of recon-
stitution are yet another. A third are immune effects seen by
the genetic non-obese diabetic background, scid mutation,
common cytokine gamma chain knockout, or within the
chimeric immune system itself (Gong et al. 2011).

This study, in part, employed rapid flash freezing while
controlling for tissue preparation dissection time. Future
studies including FBMI euthanasia and profiling metabolite
levels will be approached by targeted bioanalytical sample
analyses reported here to validate sample preparation before
untargeted metabolomic analyses (Maher et al. 2011;
Zgoda-Pols et al. 2011) in conjunction with tissue morpho-
logical changes. Such studies will identify the biochemical
neuroinflammatory pathways that influence synaptic dy-
namics. Moreover, such multidisciplinary studies including
early and late time points of infection, behavioral studies
and combinations of nanoART with neuroprotective adju-
vants are certain to yield further insights into neuroimmune
processes and the biochemical pathways mediating
neurodegeneration. All together, the combinations of rapid

Fig. 8 Hippocampal microgliosis follows HIV-1 infection of humanized
mice. Humanized NSG mice were infected with HIV-1ADA for 18 weeks.
Brains were acquired after cervical decapitation and flash freezing. Fol-
lowing immunohistochemical stains of hippocampal brain slices numbers

of Iba1 reactive cells were counted in the hippocampus in HIV-1 infected,
HIV-1 infected and nanoART-treated and uninfected (controls). Photo-
micrographs of Iba1-stained sections are shown at 20× with 40× magni-
fications in areas of the dentate gyrus. (scale bar=0.2 mm)
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tissue preparation for careful histological analyses that em-
ploy 1H MRS and LC-MS/MS conjointly permit the acqui-
sition of data not previously possible for biomarker
discoveries. Such approaches also go a long way in sub-
stantiating the humanized mouse model system for studies
of HIV neuropathogenesis as well as providing new predic-
tive insights for disease.
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