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Abstract Ubiquitous and networked sensors impose a huge challenge for privacy protec-
tion which has become an emerging problem of modern society. Protecting the privacy of
visual data is particularly important due to the omnipresence of cameras, and various protec-
tion mechanisms for captured images and videos have been proposed. This paper introduces
an objective evaluation framework in order to assess such protection methods. Visual pri-
vacy protection is typically realised by obfuscating sensitive image regions which often
results in some loss of utility. Our evaluation framework assesses the achieved privacy pro-
tection and utility by comparing the performance of standard computer vision tasks, such
as object recognition, detection and tracking on protected and unprotected visual data. The
proposed framework extends the traditional frame-by-frame evaluation approach by intro-
ducing two new approaches based on aggregated and fused frames. We demonstrate our
framework on eight differently protected video-sets and measure the trade-off between the
improved privacy protection due to obfuscating captured image data and the degraded util-
ity of the visual data. Results provided by our objective evaluation method are compared
with an available state-of-the-art subjective study of these eight protection techniques.
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1 Introduction

Privacy concerns have been raised by the rapidly increasing number of visual data captur-
ing devices. Not only surveillance cameras threaten privacy but also other video-capable
multimedia devices such as smart phones, tablets and wearable smart technology including
Google Glass and Microsoft HoloLens when used in public areas. Web cameras also pose
privacy threats—especially when abused through spy-ware. Domestic IP cameras designed
for home surveillance can also lead to privacy loss due to careless installation [38]. Further-
more, an emerging privacy threat is posed by camera-equipped unmanned aerial vehicles
(UAVs) also known as drones [2, 10, 16, 48]. Traditional CCTV (closed-circuit television)
and other old-fashioned surveillance camera systems are continuously replaced recently by
visual sensor networks (VSNs) which consist of smart cameras [43, 44]. Due to networking
and on-board processing capabilities of the above mentioned visual data capturing devices,
sophisticated artificial vision tasks can be performed. Therefore, privacy is at an even higher
risk nowadays.

So-called privacy filters are often applied to protect visual data by obfuscating the sen-
sitive parts of the captured data or replacing them with a de-identified representation—both
of which entails some loss of utility. By the term utility we refer to certain system properties
(e.g., the operating speed of a filter) and to intelligibility which represents the amount of
useful information that can be extracted from the visual data. For example in case of a retail
surveillance camera, privacy protection means that the identity of monitored people cannot
be disclosed, and utility refers to the ability of still being capable to recognise the behaviour
of monitored people such as detecting shoplifting. The privacy protection performance and
the utility of the protected visual data represent two important (and inter-dependent) design
aspects of various video applications. Finding an acceptable trade-off between privacy pro-
tection and utility is therefore an essential issue in the development and deployment of
privacy protection methods. Therefore, it is essential to have a tool by which privacy filters
can be evaluated and compared in terms of privacy and utility. Furthermore, privacy is sce-
nario dependent and an ideal privacy-preserving method should be able to adapt to various
scenarios by automatically selecting the most useful protection filter and hence selecting a
Pareto-optimal point in the privacy-utility trade-off [18]. In order to support such automatic
protection selection, the ability to evaluate the actual effectiveness of the privacy protection
filters in use is essential. Such evaluation can be realised by subjective or objective methods.
This paper focuses on an objective evaluation method due to its advantages over a subjective
evaluation such as the support for automatic operation (no human assessment required), the
reduced costs of implementation, and the increased reproducibility. Many techniques have
been proposed for visual privacy protection [3, 5, 15, 18–20, 22, 29, 30, 34–36, 40, 41, 49,
59], but only a few papers have been published on how to evaluate, assess or compare these
techniques [6, 11, 17, 27, 31, 45, 51, 52]. The main motivation behind this work was there-
fore to comprehensively explore the objective evaluation of the privacy-utility design space
for visual privacy filters. Exploiting sequences of frames or the fusion of frames can reveal
significant identifying information, however this aspect has not intensively been studied in
related evaluation approaches so far (e.g., in [6, 17, 31]).

The contribution of this paper includes (1) a formal definition of privacy protection and
utility in visual data based on the performance of standard computer vision tasks, (2) the
introduction of aggregated and fused frames based evaluation approaches, (3) a concrete
implementation to realise an objective evaluation framework, and (4) an extensive compar-
ison of the results of our framework prototype with the results of a recent subjective study
[7] on privacy protection mechanisms.
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The remainder of this paper is structured as follows. Section 2 discusses related work in
the area of privacy protection methods and their evaluation. In Section 3 we introduce our
proposed objective evaluation framework and a formal definition is provided in Section 4.
Section 5 presents implementation details and the evaluation results of eight different pri-
vacy protection filters. Section 6 concludes this paper with a summary and a brief discussion
of future work.

2 Related work

We start our discussion of related work with highly abstracted and multidisciplinary aspects
of privacy in general and continue then with the evaluation of visual privacy protection
methods.

A traditional approach of protecting privacy is called privacy enhancing technologies
(PET) meaning that already existing systems are patched with protective mechanisms
retroactively. Privacy by design (PbD) on the other hand pursues that privacy should be
considered as an indispensable part of system design. PbD is built upon seven foundational
principles [12]. According to these principles, privacy should be protected in a proactive
instead of a reactive manner, and a default protection level should always be provided
without any extra intervention. The protection of privacy should not restrict the original
functionality of a system and make unnecessary trade-offs. Furthermore, privacy protection
should be extended throughout the entire life-cycle of the data involved from start to finish.
It has to be done transparently so that all stakeholders can be assured that the stated promises
and objectives are actually kept. A privacy-preserving system should also respect user-
privacy by being user-centric and keeping the interests of individuals uppermost. Cavoukian
[13] also stated that privacy does not equal secrecy, but privacy equals control. The problem
with this statement regarding visual privacy is that most people do not even know they are
being observed by visual surveillance devices. If they are unaware of the existence of these
devices, how could they have control over the captured data. Furthermore, people do not
really feel the value of privacy until they have problems as a consequence of privacy loss.
In addition, people usually do not live up to their self-reported privacy preferences and they
regularly share sensitive information. This is called privacy paradox. More details about the
issues around awareness and the so-called privacy paradox can be found in [37].

A multidisciplinary framework to include privacy in the design of video surveillance
systems is described in [33]. It covers the field of privacy from political science to video
technologies and points out that there are grey areas posing serious privacy risks. Further-
more, it raises the question of the definition of personal and sensitive information. Table 1
summarises a possible answer to this question with regard to visual privacy. Chaaraoui et al.
[14] also describe a new approach called privacy by context (PbC) which supports the idea
that privacy is scenario/context dependent.

Over the last decade various methods have been developed to protect visual privacy.
These privacy-preserving techniques basically rely on image processing algorithms such as
scrambling by JPEG-masking [35], in-painting [15], pixelation [22], blanking [3], replace-
ment with silhouettes [59], blurring [36], warping or morphing [29]. In a recent workshop
dedicated protection methods have been proposed in order to solve the specified visual pri-
vacy task [5, 19, 20, 30, 34, 40, 41, 49]. A comprehensive discussion on the state of the art
in this field can be found in the surveys of Winkler et al. [58] and Padilla-López et al. [39].

Due to the steadily increasing number of protection approaches as well as high variabil-
ity of visual tasks and scenes, an evaluation methodology for comparing the approaches
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Table 1 The types of information that can be extracted out of image sequences and the related visual clues
that can provide this information [14]

Information Related visual clues

Who is the person? (identity) Face, hair, skin, height, clothes, gait

How is the person displayed? (appearance) Face expressions, hair (e.g., colour, hairstyle,
etc.), body (e.g., nudity), posture, shape, colour

Where is the person? (location) Room, spatial position (e.g., on the floor, on the
bed, etc.), room signs

What is the person doing? (activity) Behaviour (i.e., movement, gesture, action,
activity), gaze, spatial position, objects and
interactions

When is the activity taking place? (time) Temporal clues (e.g., a wall clock, weather)

is urgently needed. Privacy impact assessments (PIAs) are an integral part of the above
mentioned privacy by design approach [26]. Existing evaluation methods usually consider
two aspects, namely privacy and utility. The levels of privacy protection and utility can
be assessed by subjective and objective evaluation methods. Subjective methods are quite
common and include techniques such as questionnaires and user studies [9–11, 27, 45, 52].
Naturally, they are tedious and expensive to implement, and the assessment may depend on
the study group.

Objective evaluation of privacy-preserving techniques in the field of visual surveil-
lance is a challenging issue because privacy is highly subjective and depends on various
aspects such as culture, location, time and situation. Nevertheless, a couple of techniques
have been developed which are mostly based on computer vision algorithms. Dufaux and
Ebrahimi [17] proposed an evaluation method that uses the face identification evaluation
system (FIES) of Colorado State University (CSU), which provides standard face recog-
nition algorithms and standard statistical methods for assessment. Principal components
analysis (PCA) [53] and linear discriminant analysis (LDA) [8] are used as face recognition
algorithms together with the grey-scale facial recognition technology (FERET) dataset. A
more comprehensive evaluation framework is described in [6], where Badii et al. carried out
both subjective and objective evaluation along the following five crucial categories.

– Efficacy – The ability to effectively obscure privacy-sensitive elements.
– Consistency – In order to successfully and continuously track a moving subject, the

details of its shape and appearance have to be maintained on a reasonable and consistent
level.

– Disambiguity – The degree by which a privacy filter does not introduce additional
ambiguity in cross-frame trackability of same persons/objects.

– Intelligibility – The ability to only protect the privacy-sensitive attributes and retain
all other features / information in the video-frame(s) in order not to detract from the
purpose of the surveillance system.

– Aesthetics – To avoid viewers’ distraction and unnecessary fixation of their attention on
the region of the video-frame to be obscured by the privacy filter, it is important for the
privacy filter to maintain the perceived quality of the visual effects of the video-frame.

Subjective and objective evaluations are cross-validated and the authors claim that the
results indicate the same trend. Unfortunately, this paper does not provide sufficient details
of the study.
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Sohn et al. [51] have also carried out objective and subjective evaluations together. They
assessed their JPEG XR based privacy filter in four aspects: spatial resolution, visual qual-
ity, replacement attack and non-scrambled colour information. In their objective evaluation
Sohn et al. [51] used various face recognisers and the subjective evaluation was conducted
with 35 participants whose task was to match 45 privacy protected face images against the
12 original ones. Privacy evaluation was exclusively focused on face recognition.

Korshunov et al. [31] evaluated privacy protection methods by measuring the amount of
visual details (such as facial features) in the sample images as a metric of privacy and the
overall shape of faces as a metric for intelligibility. In their demonstration they used three
different datasets with various resolutions and face sizes, and three different privacy filter
methods, namely blurring, pixelation and blanking. For measuring the level of privacy, the
failure rates of automatic face recognition methods (PCA [53], LDA [8], LBP [1]) were
considered, while the accuracy rate of a face detector (Viola-Jones [54]) were used to mea-
sure intelligibility. In these experiments only faces were considered, which is insufficient
for proper privacy protection taking into account the above mentioned privacy by context
approach or the secondary (implicit) privacy channels described by Saini et al. [46].

Our paper focuses on establishing an objective evaluation framework by exploiting
various evaluator functions to measure privacy and utility in various aspects. The main dif-
ference to the related work lies in its generalisation and flexibility. Our framework does not
restrict the evaluation to a particular algorithm (e.g., a face detector) but rather uses a set
of evaluator functions which can be easily adapted to the specific application.1 It further
does not impose constraints to the visual data and the privacy filters. The privacy and util-
ity evaluation is based on the performance of the evaluator functions on the provided visual
data. While state-of-the-art evaluation frameworks [6, 17, 31] usually assess only individual
frames, we also consider aggregated and fused frames for the evaluation.

3 Objective evaluation framework

Our primary goal is to provide a framework that enables the evaluation of privacy protection
techniques along two inter-dependent dimensions: (i) the achieved privacy protection level
and (ii) the utility of the technique and the overall system. A particular protection technique
(or a particular strength of a protection filter) will therefore result in specific values for pri-
vacy and utility when using our framework. Figure 1 presents an overview of the proposed
framework. The “privacy protection filter” represents a computer vision algorithm which
transforms an input video into an output video stream where privacy sensitive elements are
protected.

The evaluator tools (Tools), the privacy-preserving algorithm under test A and the unpro-
tected visual data V together with the ground-truth GT serve as input to our framework.
The visual data is preferably captured in heterogeneous scenes such as indoor and outdoor,
day and night, empty and crowded environments in order to achieve a comprehensive eval-
uation. The unprotected visual data V is processed by the privacy protection filter which
is the algorithm under test. The unprotected V and the protected ˜V visual data along with
the ground-truth GT are then fed into the main component of the framework, namely the

1The output of the evaluator function is basically derived by comparing the performance of a specific com-
puter vision algorithm on the protected visual data with a “reference” performance. Such reference can be
provided either as (manually generated) ground truth data or as the output of the computer vision algorithm
on the unprotected visual data.
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Fig. 1 Our objective evaluation framework

evaluator. This evaluator relies on two major sets of evaluator functions Fprivacy and Futility

that are used to evaluate the examined privacy protection filter from the perspectives of pri-
vacy and utility. Each evaluation function provides a real number between zero and one as a
result. The implementation of these functions depends on the selected tools which are based
on computer vision algorithms. The output of the evaluation framework is given by the set
E which is determined by the results of the evaluation functions.

3.1 Notation

In this section we describe the notation used in our framework for the unprotected videos,
the protected videos, the ground-truth data and the evaluator functions.

3.1.1 Unprotected visual data

The unprotected visual data is specified by a set of video clips

V =
{

1V, . . . , NV
}

(1)

nV =
{

nv1, . . . , nv
nL

}

|n=1...N (2)

where

nV represents the nth unprotected video clip composed by a set of image frames,
N is the number of all video clips being used in the evaluation process,
nvi is a single image frame with index i from the unprotected video clip nV , and
nL is the length of the nth video clip in V .

3.1.2 Privacy protected visual data

The unprotected visual data is processed by the protection algorithm under test and is trans-
formed into the protected visual data. The protected visual data is thus given by the set of
video clips derived running the protection filter on V

˜V =
{

1
˜V , . . . , N

˜V
}

(3)

n
˜V =

{

nṽ1, . . . , nṽ
nL

}

|n=1...N (4)

where
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n
˜V represents the nth privacy protected video clip which is a set of filtered image frames,

and
nṽi is an image frame from the protected video clip n

˜V .

3.1.3 Ground-truth data

The ground-truth data contains the position and size of the objects of interest in form of
bounding boxes along with their classification in form of descriptors. Furthermore, each
object of interest has an identity in form of a globally unique number. The ground-truth data
for all input video clips is available as

GT =
{

1Ogt , . . . ,
NOgt

}

(5)

nOgt =
{

nO1
gt , . . . ,

nO
nL
gt

}

|n=1...N (6)

nOi
gt =

{

noi
gt1

, . . . , noi
gtJ

}

|n=1...N,i=1...nL (7)

noi
gtj

= (nbi
gtj

, ndi
gtj

)|n=1...N,i=1...Ln,j=1...J (8)

where

nOgt is a set that contains the ground-truth data for each frame of the nth video clip,
nOi

gt is the ground-truth of frame i in the nth video clip,
J is the number of distinct objects in GT ,
j is a globally unique identifier of an object running from 1 to J ,

noi
gtj

is a pair (b, d) for each object in frame i of the nth video clip,
nbi

gtj
is the bounding box of object j in frame i of the nth video clip, and

ndi
gtj

is the descriptor of object j in frame i of the nth video clip.

GT can be explicitly given (e.g., by manual video annotation) or derived by running
various computer vision algorithms such as object recognisers, detectors, or trackers on the
visual data.

3.1.4 Evaluator functions

The evaluation is based on comparing the results of selected algorithms on the protected
visual data with the ground truth or the performance on the unprotected visual data,
respectively. The set of evaluation functions is given as

F = {

Fprivacy, Futility

}

(9)

where
Fprivacy = {

fidind
, fidaggr , fidf used

}

(10)

and
Futility = {

fdetind
, fdetaggr , fdetf used

, ftrack, fsim, fspeed

}

. (11)

The subscripts id , det , track , sim, and speed mark evaluation functions that are based on object
identification, detection, tracking, image similarity and the processing speed of the privacy
protection filter, respectively. Functions for object identification correspond to functions for
measuring the privacy protection performance. The other functions represent examples for
measuring the utility. The subscripts ind , aggr and f used refer to independent, aggregated
and fused frames. More details about these functions and the different classes of frames are
described in Section 4.
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The output of the evaluator is the set of results

E = {

Eprivacy, Eutility

}

(12)

where
Eprivacy = {

eidind
, eidaggr , eidf used

}

(13)

and
Eutility = {

edetind
, edetaggr , edetf used

, etrack, esim, espeed

}

. (14)

These results are constituted by the outputs of the evaluator functions where eidind
, eidaggr ,

. . . , espeed represent the output values of the functions fidind
, fidaggr , . . . , fspeed , respectively

and ∀e ∈ R | 0 ≤ e ≤ 1. The set E can be considered as a “signature” of the evaluated
privacy protecting method along the privacy and utility dimensions. The evaluator functions
represent different aspects of the privacy-utility design space and were chosen based on the
most commonly used approaches of the related work and our own experience in the field. It
is important to note that these evaluator functions are examples, and our framework be can
easily adapted to functions covering different utility aspects.

4 Definition of the evaluation framework

State-of-the-art privacy evaluation frameworks [6, 17, 31] usually work on the basis of
individual frames. This means that the effect of a privacy protection filter is evaluated by
assessing the evaluator functions for each image frame independently. Such frame-by-frame
evaluation methods have limitations in revealing a privacy loss caused by the exploitation of
aggregated or fused frames from different time instances and/or multiple cameras looking
at the same object. In our framework definition we attempt to overcome these deficiencies.
For each evaluator function f , if applicable, we will provide various measurement methods
that take

1. independent frames,
2. aggregated frames of the same visual data from different time instances or from

multiple capturing devices, and
3. fused frames of the same visual data from different time instances or from multiple

capturing devices

into account. Aggregated and fused frames may provide more information about the objects
of interest than individual frames. Thus, it might be helpful to consider this additional infor-
mation for the privacy evaluation. In case of aggregated frames an evaluator function f has
access to a set of frames and carries out the measurements jointly for this set (i.e., multi-
ple frames are used simultaneously during the evaluation). The performance of a privacy
protection filter might deteriorate using aggregated frames despite its good frame-by-frame
performance. For example, if there is at least one insufficiently protected frame in the visual
data where an object of interest can be recognised, this object may lose its privacy in other
frames as well due to successful object tracking even if the object’s identity is well protected
in all other frames. In case of fused frames, multiple frames from the same or different cam-
eras are analysed and combined in order to construct a new set of abstracted visual data. It
is possible that fused frames constructed from multiple frames from different time instances
or view angles may provide a better view on an object. Examples for fusion methods include
image stitching, super-resolution or de-filtering. The fused information may lead to privacy
loss as well.
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4.1 Evaluation of privacy

In this section we define the evaluator functions used for privacy evaluation.

Fprivacy = {

fidind
, fidaggr , fidf used

}

(15)

In our framework we measure the privacy protection level of visual data by the de-
identification rate of protected objects as a successful identification of the object of interest
is the primary cause of privacy loss. The level of privacy is considered to be low if objects
can be clearly identified and high if the identification is not possible.

1. Independent frames
Frame-by-frame evaluation of de-identification is performed by object recognition
algorithms trained for the specific objects of interest. Object recognisers are trained
based on the unprotected visual data. Object recognition is carried out within each anno-
tated bounding box nbi

gtj
of each privacy protected frame nṽi in each video nṼ from ˜V

where object noi
gtj

actually appears. If the output of the recogniser does not match the
ground-truth then the de-identification was considered successful and hence privacy
is protected. The privacy level provided by the protection algorithm can be calculated
depending on how often the object’s identity has been successfully recognized. There-
fore, the final output of the function fidind

is defined as the ratio between the number
of unrecognised objects in ˜V and the total number of occurrences of all objects in GT
which can be calculated as the inverse of the average hit-rate of the recognitions.

fidind

(

˜V,GT
)

= 1 − hidind

J
∑

j=1
occurrences

(

ogtj

)

(16)

The function occurrences () returns the total number of occurrences of the object
ogtj in GT , i.e., the number of frames where the object is visible. hidind

represents the

number of successful object recognitions (hit-rate) in ˜V and is calculated as follows:

where the function recognise () performs object recognition within the bound-
ing box of a given object and returns the identifier of the top ranked object. This
is then stored in jrec and compared to the object’s true identifier. In our framework,
recognise () is not bound to any specific object recognition algorithm. Any suit-
able algorithm that fits the purpose and the object type can be used for the concrete
framework implementation.

2. Aggregated frames
When using multiple frames simultaneously the de-identification rate can be computed
as follows. Object recognition is carried out within each annotated bounding box nbi

gtj
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of each protected frame nṽi in each video nṼ from ˜V where noi
gtj

actually appears. If a

particular object noi
gtj

can be recognised at least once in the input data-set, then all the
occurrences of that object are considered as successfully recognised. This severe loss of
privacy is due to the perfect object tracking assumption among all aggregated frames.
Although tracking does not reveal the identity per se, the identity of a successfully
recognised objected can be propagated among all aggregated frames. The final output
of the function fidaggr is the ratio between the number of unrecognised objects in ˜V and
the total number of occurrences of all objects in GT which can be calculated as follows:

fidaggr

(

˜V,GT
)

= 1 − hidaggr

J
∑

j=1
occurences

(

ogtj

)

(17)

where the function occurrences () returns the total number of occurrences of the
object ogtj in GT . hidaggr stands for the number of successful object recognitions (hit-

rate) in ˜V and is calculated as follows:

where the function recognise () performs object recognition within the bounding
box of a given object and returns the identifier of the top ranked object. This is then
stored in jrec and compared to the object’s true identifier. As previously mentioned, the
recognition algorithm can be chosen arbitrarily.

3. Fused frames
If frames are fused in order to get abstracted information of the objects, de-
identification is measured as follows. A set of fused images is created, and object
recognition is carried out on each fused image. If an object can be recognised based on
fused images, then by assuming perfect object tracking all occurrences of that object
in GT are considered to be recognised in the data-set. The final output of the func-
tion fidf used

is the ratio between the number of unrecognised objects in ˜V and the total
number of occurrences of all objects in GT .

fidf used

(

˜V,GT
)

= 1 − hidf used

J
∑

j=1
occurences

(

ogtj

)

(18)

The function occurrences () returns the total number of occurrences of a certain
object based on the ground-truth. hidf used

is the hit-rate of object recognition and is
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calculated as follows:

where the function recognise () performs object recognition in a fused frame within
the bounding box of a given object and returns the identifier of the top ranked object.
This is then stored in jrec and compared to the object’s true identifier. As previously
mentioned, the recognition algorithm can be chosen arbitrarily.

4.2 Evaluation of utility

In our framework we measure utility by the performance ratio of various functions on the
protected and unprotected visual data. The utility of visual data includes various aspects
such as the capability of detecting specific objects or activities, the fidelity of the pro-
tected data or the complexity/efficiency of the protection filters. We propose the following
evaluator functions for utility evaluation.

Futility = {

fdetind
, fdetaggr , fdetf used

, ftrack, fsim, fspeed

}

(19)

For the detection capability, we focus on object detection in terms of independent, aggre-
gated and fused frames as well as on object tracking algorithms. For the fidelity aspect,
we measure the similarity between unprotected and protected visual data, and we use the
processing speed of privacy protection filters as a measure for efficiency. In the following
subsections we explain in detail how these evaluator functions are determined.2

4.2.1 Utility evaluation by object detection

One way of measuring utility is by the detection rate of privacy protected objects. If the
position and type of objects can be well detected, the utility level of visual data is considered
to be higher than in case of insufficiently detected objects. For example, if an unattended
baggage at an airport can be clearly localised in privacy protected visual data, then the utility
level is not decreased significantly due to privacy protection. Below, we provide a detailed
explanation on how to evaluate utility in visual data based on independent, aggregated and
fused frames.

1. Independent frames
Calculating the detection rate on a frame-by-frame basis can be done by comparing
the detected objects to the ground-truth in each frame nṽi of each video nṼ from ˜V .

2The evaluator functions can be easily modified/extended to represent different utility aspects such as
pleasantness or intelligibility of visual data (e.g., [7]).
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If the bounding box nbi
detjd

of the detected object is sufficiently close to the annotated

object nbi
gtj

and their description is the same ndi
gtj

= ndi
detjd

, the detection is considered

to be successful. The output of the function fdetind
is the ratio between the number of

successfully detected objects in ˜V and the number of all annotated objects in GT .

fdetind

(

˜V,GT
)

= 1

N · nL

N
∑

n=1

nL
∑

i=1

hnṽi (20)

hnṽi represents the number of successful detections (hits) in nṽi and is calculated by the
following algorithm.

The function detect() performs object detection on a given frame and returns a set of
object annotations about the detected objects, namely their bounding boxes and descrip-
tions. As previously explained for the recognise() function, the detect() function
is not bound to any specific algorithm. Any suitable detection algorithm for the object
type and the requirements of the evaluation can be used for the framework implemen-
tation. For example, the Viola-Jones face detector [54] is widely used if faces are the
objects of interest. Jd is the number of objects detected by the detector and Jnṽi is the
number of objects actually appearing in frame nṽi according to the ground-truth nOi

gt .
2. Aggregated frames

In case of independent frames we used only the information available at the given frame.
Here we use the information from all available frames together for the detection. The
performance of a generally trained object detector can be increased by adapting its
model specifically to the input data. Thus, before we perform the evaluation, we further
train the detector with aggregated frames using the following algorithm.
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Jd is the number of objects detected by the detector in the current frame (nṽi) and

the update() function is responsible for updating the detector’s model. This pro-
cess requires stored visual data. If the evaluation framework would be used in an
on-line manner, the detector’s model could only be updated on the fly. After adapting
the detector to the input data, the measurement can be done similarly to independent
frames.

fdetaggr

(

˜V,GT
)

= 1

N · nL

N
∑

n=1

nL
∑

i=1

hnṽi (21)

hnṽi is the hit-rate of the detector in the privacy protected frame nṽi and is calculated by
the following algorithm.

The function detect() performs object detection on a given frame and returns a set of
object annotations about the detected objects, namely their bounding boxes and descrip-
tions. Jd is the number of objects detected by the detector and Jnṽi is the number of
objects actually appearing in frame nṽi based on the ground-truth nOi

gt .
3. Fused frames

Frames constructed by combining multiple independent frames can also be used to
enhance the detector. Before performing the evaluation, the detector is further trained as
in case of aggregated frames. However, fused frames are used instead of multiple inde-
pendent frames. The preliminary detector training can be performed by the following
algorithm.

Jd is the number of objects detected by the detector in the current fused frame ṽF I

and the update() function is responsible for updating the detector’s model. After the
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detector has been adapted to the input data, the measurement can be done as described
below.

fdetf used

(

˜V,GT
)

= 1

N · Ln

N
∑

n=1

Ln
∑

i=1

hnṽi (22)

hnṽi
is calculated by the same algorithm as for (21).

Utility evaluation by object tracking
Another way of utility evaluation is to apply tracking algorithms to the privacy protected

input data. For instance in retail surveillance, the customers’ traces in the shop is a very use-
ful information. However, tracking should only be performed on the protected visual data in
order not to reveal the customers’ identities. We only consider aggregated frames in terms
of tracking. Aggregated frames can originate either from a single camera or from multi-
ple cameras. The task of a tracking algorithm is basically to detect and “‘follow” selected
objects across various frames over time in a video sequence or over different videos from
multiple cameras. Trackers usually rely on a model that stores all knowledge about objects
that are initially handed over to the tracker. This model is continuously updated after each
processed frame and used to estimate the objects’ positions in the next frame. Measuring
the accuracy of a tracking algorithm can be performed by comparing the trackers output
with the ground-truth [47]. Tracking is considered to be successful if an object’s location
and description provided by the tracker matches the ground-truth data. The function ftrack

can be defined as follows:

ftrack

(

˜V,GT ,M
)

= 1

N · nL

N
∑

n=1

nL
∑

i=1

hnṽi (23)

where M is the model of the tracker. hnṽi stands for the hit-rate of the tracker and is
calculated with the algorithm below.

The function track() performs object detection in the current frame based on object infor-
mation in M and the previous frame, and returns a set of annotations about the tracked
objects. The track() function is not bound to any specific tracking algorithm. Any suitable
algorithm that fits the requirements of the evaluation scenario can be used for the concrete
framework implementation (e.g., [32]). Jt is the number of objects tracked by the tracker
and Jnṽi is the number of objects actually appearing in the protected frame nṽi according to
the ground-truth nOi

gt while the update() function is responsible for updating the tracker’s
model M.
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Utility evaluation by image similarity
Another utility measurement is to visually compare the privacy protected video to the

unprotected video by using image similarity metrics. The similarity corresponds to the devi-
ation of the unprotected from the protected data. Such deviation can be measured by the
differences in pixel intensities or the mean and variance values of intensity values in specific
image regions. The output of the function fsim is basically the average of the similarities
between each unprotected nvi and protected nṽi frame in each video nV and nṼ from V
and ˜V respectively. These metrics work solely on a frame-by-frame basis, and therefore
aggregated and fused frames are not discussed here.

fsim

(

V, ˜V
)

= 1

N · nL

N
∑

n=1

nL
∑

i=1

similarity
(

nvi, nṽi
)

(24)

For the function similarity(), a specific similarity metric which returns the extent of
similarity between two given image frames must be chosen (e.g., the structural similarity
index SSIM [56]).

Utility evaluation by processing speed
Some privacy protection filters are computationally expensive and cannot be applied in

real time. In terms of utility this can be an important issue because online protection of
visual data is often required or the protection should be performed onboard of the cameras.
We measure the processing speed of privacy protection filters in order to make our eval-
uation framework as comprehensive as possible. This speed does not only depend on the
computational complexity of the filter’s algorithm, but also on the image resolution and the
computing power of the underlying hardware. Depending on the requirements of the surveil-
lance scenario a target speed (τ ) can be chosen arbitrarily. The processing speed of privacy
protection filters can be measured for example in frames per second (FPS). The function
fspeed can therefore be calculated as follows:

fspeed

(

˜V
)

= 1

N · nL

N
∑

n=1

nL
∑

i=1

max

(

1

τ · (

t
(

nṽi
) − t

(

nṽi−1
)) , 1

)

(25)

where τ is the arbitrary target speed of the filter. The function t () returns the time when the
processing of a given image frame was finished.

5 Implementation and test of the framework prototype

We have developed one possible implementation of the previously defined evaluation frame-
work using standard algorithms for object recognition, detection and tracking from OpenCV
[23]. With this prototype implementation we demonstrate the capabilities of our approach
and compare objective and subjective evaluation techniques. In the following subsections
we describe implementation details of our prototype and present measurement results.

5.1 Framework implementation

The goal of our implementation is to present objective measurement results based on var-
ious state-of-the-art privacy protection algorithms. Therefore, we have implemented the
following functions (as described in Sections 3 and 4):



Multimed Tools Appl

– fidind
, fidaggr , and fidf used

by using the PCA [53], LDA [8] and LBP [1] based face
recognisers,

– fdetind
, fdetaggr , and fdetf used

by using the cascade classifier based face detection
module and the histogram of oriented gradients (HOG) based person detector,

– ftrack by using the MIL, Boosting, MedianFlow and TLD object trackers, and
– fsim by calculating MSE (mean squared error) and SSIM (structural similarity) index.

5.2 Test data

We used our evaluator prototype to objectively evaluate eight privacy protection filters pro-
posed at the MediaEval 2014 Workshop [7]. Figure 2 demonstrates the visual effects of the

Fig. 2 Image samples of each privacy filter proposed at the MediaEval 2014 Workshop [7]



Multimed Tools Appl

eight different protection filters. The key objective of these protection filters was to protect
the privacy of the persons but still keep the “intelligibility” and “visual appearance” high.
In order to evaluate the performance among these categories the Visual Privacy Task organ-
isers of the MediaEval 2014 Workshop carried out a user study. In this paper we compare
our objective and their subjective evaluation results in order to demonstrate the pertinence
of our proposed framework.

The subjective evaluation was based on a subset of the PEViD dataset [28] which origi-
nally contains 65 full HD (1920×1080, 25 fps, 16 seconds each) video sequences covering
a broad range of surveillance scenarios. The video clips are annotated by the ViPER GT
tool [55] which produces XML files containing the ground-truth and general information
about the surveillance scenario (walking, fighting, etc.). The Visual Privacy Task organisers
selected six particular video clips from the PEViD dataset [28] for their subjective eval-
uation including day/night, indoor/outdoor and close-up/wide area scenarios. The dataset
further included the ground-truth for every image frame, i.e., bounding boxes around faces,
hair regions, skin regions, body regions and accessories.

The user study was conducted on the submitted privacy protected videos of eight research
teams evaluating and investigated aspects such as privacy, intelligibility and pleasantness
by means of questionnaires [7]. The protected videos were evaluated by three different user
groups: (i) an online, crowd-sourced evaluation by the general public, (ii) an evaluation by
security system manufacturers and video-analysis technology and privacy protection solu-
tions developers, and (iii) an on-line evaluation by a target group comprising trained CCTV
monitoring professionals and law enforcement personnel.

Our objective evaluation is based on the following setting.

Input:

– The same six selected video clips from the PEViD dataset [28] served as unprotected
input videos. Each clip is in full HD resolution (1920×1080) and contains 400 image
frames.

V =
{

1V, 2V, 3V, 4V, 5V, 6V
}

where iL = 400|i=1,...,6

– Ground-truth data was also used in the evaluation process. It is provided by the PEViD
dataset [28] for each video clip in ViPER XML [55] format.

GT =
{

1Ogt ,
2Ogt ,

3Ogt ,
4Ogt ,

5Ogt ,
6Ogt

}

– Furthermore, we used the privacy protected version of each video clip filtered by the
privacy-preserving methods [5, 19, 20, 30, 34, 40, 41, 49] proposed at the MediaEval
2014 Workshop [7].

Output:

– A set of real numbers between [0, 1] provided by the evaluator functions, where zero
represents the worst and one the best result.

E = {eidind
, eidaggr , eidf used

, edetind
, edetaggr , edetf used

, etrack, esim, espeed} where
∀e ∈ R and 0 ≤ e ≤ 1.

In the following subsections we describe the details of each implemented function and
discuss the produced results.
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5.3 Evaluation of privacy

In Section 4 we have defined our evaluation framework by using general object recognisers.
The most critical objects are however faces in terms of privacy. Therefore, in our current
prototype we focused on faces when evaluating visual privacy and used the PCA [53], LDA
[8], and LBP [1] based face recogniser functions from OpenCV.

In our current prototype we have implemented de-identification evaluator functions for
independent (fidind

), aggregated (fidaggr ), and fused (fidf used
) frames by using the above

mentioned face recogniser tools. We have used all valid faces from the six unprotected
input videos (1V, . . . , 6V ) as a training set for the face recognisers. By valid faces we mean
those 766 faces from the 2400 video frames where both eyes are visible. We need both
eyes in order to correctly align and resize faces because OpenCV’s face recognisers require
aligned faces and equal input image sizes. The position of faces and eyes were taken from
the ground-truth data and the output of the face recognisers were also compared with the
ground-truth during the evaluation process.

After training the three face recognisers we tested them on the same 766 valid face
regions of the privacy filtered videos from ˜V [5, 19, 20, 30, 34, 40, 41, 49]. At each frame
we chose the best-performing recogniser. This measurement provided the results for inde-
pendent frames. In case of aggregated frames we performed further calculations according
to the rules defined by (17) in Section 4.1. Namely, we considered all the occurrences of a
certain face as recognised when it was successfully recognised at least once during the eval-
uation. When following the fused frames approach, again, we carried out our calculations
based on the algorithm defined under (18) in Section 4.1. The set of fused frames were cre-
ated as follows. We grouped the 766 valid face images per person based on the structural
similarity (SSIM) index. Those face images got placed in one group which were at least
70 % similar to each other (i.e., SSIM ≥ 0.7). Within each group we created image pairs in
every possible combination and fused them pair-wise based on two-level discrete station-
ary wavelet transform [42]. These fused images constituted the set of fused frames (FI).
Figure 3 shows the calculated privacy evaluation results for independent, aggregated, and

Fig. 3 Privacy evaluation results for independent, aggregated, and fused frames. No privacy protection can
be observed for the unprotected videos V and only ˜V [49] provides some protection when using aggre-
gated frames while protection levels remain zero for all the other videos. Results for fused frames are also
significantly lower than for independent frames
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fused frames. When evaluating the unprotected videos the results are eidind
= 0, eidaggr = 0,

and eidf used
= 0, which refers to no privacy protection. That is expected since we used

the faces from these unprotected videos to train the face recognisers and thereby those
faces can be recognised with 100 % accuracy. The privacy filter from Paralic et al. [41]
inpaints all faces with the background, therefore it is somewhat surprising that eidind

= 0.52,
eidaggr = 0, and eidf used

= 0.14 only while these values are expected to be close to 1 as there
are no faces to recognise at all. A possible explanation is that the face recognisers we used
always provide an output and with a certain probability they may still guess the right face
identity. Furthermore, the inpainted background may also contain face-like structures that
are similar to the face to be recognised from the face recognisers’ point of view. Another
interesting observation about the evaluation results is that ˜V [49] is the only one providing
some low-level privacy protection in case of aggregated frames while all the others provide
no protection. Furthermore, results in terms of fused frames are significantly lower than in
case of individual frames and they are very close or equal to zero several times.

A subjective evaluation described in Sections 3.1 and 3.2 of [7] has been carried out
as part of the MediaEval 2014 Workshop. The privacy-preserving methods from [5, 19,
20, 30, 34, 40, 41, 49] have been evaluated in three distinct user studies. The first study
followed a crowd-sourcing approach targeting naı̈ve subjects from online communities. The
second study targeted the trained video surveillance staff of Thales, France. A focus group
comprising video-analytics technology and privacy protection solution developers was the
target of the third study. Hereinafter, we refer to the privacy protection level results of these
three studies as pcrowd , pthales , and pf ocus , respectively, while icrowd , ithales , and if ocus

refer to the intelligibility levels. In the following we compare our measurement results with
the outcome of the MediaEval study to see if our objective method complies with their
subjective approach.

In order to compare our objective (eidind
, eidaggr , eidf used

) and the subjective privacy eval-
uation results (pcrowd , pthales , pf ocus) from [7], we plotted the average values together in
a single chart which can be seen in Fig. 4. It is clearly visible that objective and subjective
results follow the same trend except one deviation at ˜V [34]. The privacy filter from [34]
replaces the whole body of each person with a blurry colour blob which obscures original

Fig. 4 Comparison of objective and subjective privacy evaluation results where pAVG = AVERAGE(pcrowd ,

pthales , pf ocus) and eidAVG = AVERAGE(eidind
, eidaggr , eidf used

)
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Table 2 Ranking of protection methods based on the subjective privacy evaluation results presented in [7]
and our objective evaluation results produced by our prototype together with their Spearman’s and Kendall’s
[50] rank correlation coefficient

Protection Filter ˜V [20] ˜V [40] ˜V [5] ˜V [19] ˜V [41] ˜V [30] ˜V [49] ˜V [34]

Subjective Ranking 1. 2. 3. 4. 5. 6. 7. 8.

Protection Filter ˜V [20] ˜V [40] ˜V [5] ˜V [19] ˜V [34] ˜V [30] ˜V [41] ˜V [49]

Objective Ranking 1. 2. 3. 4. 8. 6. 5. 7.

Spearman coefficient ρ 0.850

Kendall coefficient τ 0.764

shapes as well. While our objective method considered only faces, human viewers usually
watch the entire body. They may find privacy protection better in this case because there is
not even any secondary information (e.g., body shape or clothes) available to identify peo-
ple. Our result for ˜V [34] is lower because the face recognisers achieved a higher recognition
rate. This is due to the already mentioned fact that the recognisers always provide an output
and with a certain probability they can still guess the identities properly, especially in case
of such a small population (10 people in the dataset). Although the plots are following the
same trend, a certain offset between objective and subjective results can be observed. This is
due to the differences in the nature of measurements and in the scaling of the extracted data.
The Pearson product-moment correlation coefficient [50]3 for the subjective and objective
privacy evaluation results results in a value of 0.563 which indicates a rather strong positive
correlation. If we exclude the above described outlier case of ˜V [34], the coefficient value
increase to 0.95 which indicates a very strong positive correlation.

Table 2 compares the ranking of the subjective evaluation conducted by [7] and the rank-
ing achieved by our objective evaluation framework. The rankings are based on the average
privacy metrics pAVG and eidAVG , respectively (cp. Fig. 4). As can be clearly seen, the sub-
jective and our objective evaluation methods achieve highly correlated results for the used
MediaEval 2014 test data. The strong positive correlation of both rankings are also indi-
cated by the Spearman and the Kendall rank correlation coefficients [50] which are given
as ρ = 0.850 and τ = 0.764, respectively.

5.4 Evaluation of utility

Implementation details and measurement results are discussed in the following subsections.
Similarly to the above described privacy evaluation, instead of using objects in general we
specified certain object types for each evaluation function to keep our first prototype simple.

5.4.1 Detection

For utility evaluation by object detection we chose faces and bodies as target objects. We
used the face detection functionality of OpenCV [23] which is based on Haar-cascades. For
person detection, we used the histogram of oriented gradients (HOG) based detector from

3The Pearson product-moment correlation coefficient is a measure of the linear dependence between two
variables in the range of [−1 . . . + 1], where +1 represents a total positive linear correlation, 0 no linear
correlation, and −1 a total negative linear correlation.
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OpenCV [23]. We used all six videos protected by the eight privacy-preserving methods [5,
19, 20, 30, 34, 40, 41, 49] along with their unprotected version as an input for the above
mentioned detectors. Similarly to privacy evaluation, here we also compared the output of
the detectors with the ground-truth data. If a bounding box of a detected face or person was
sufficiently overlapping with the annotated bounding box from the ground-truth data, we
counted that detection as a hit. We call two bounding boxes sufficiently overlapping if their
Sørensen-Dice coefficient is greater than 0.5. This criteria can be formulated as follows:

2 · Abdet∩bgt

Abdet
+ Abgt

> 0.5 (26)

where A refers to the area of a bounding box while bdet and bgt represent detected and
annotated bounding boxes, respectively. Then, we calculated the evaluation results for inde-
pendent (edetFind

), aggregated (edetFaggr ), and fused (edetFf used
) frames in terms of face

detection which are depicted in Fig. 5. Figure 6 shows evaluation results for independent
frames (edetPind

) based on the HOG person detector. Here we only considered independent
frames because OpenCV [23] does not have an option for updating or retraining the HOG
detector’s model.

The overall best utility in terms of face detection is obviously provided by the unprotected
videos (V). The privacy filters from [30, 34, 49], and [41] totally replace faces, thereby
providing the worst utility levels in terms of independent frames. In case of ˜V [20], ˜V [5],
˜V [40], and ˜V [19] a certain utility level can still be achieved along privacy protection.
Furthermore, face detection performance and hence the utility level is always higher when
considering aggregated frames and even higher for fused frames. This is expected because
in case of aggregated and fused frames the face detector’s model is extended by using spe-
cific training samples from the relevant protected video clips. An outstanding result can be
observed at ˜V [30] where edetFf used

is significantly higher than the results for the unprotected
videos (V). This suggests that despite the information loss caused by the application of pri-
vacy protection methods, the utility level can even be increased. Both for aggregated and
fused frames we followed the algorithms defined in Section 4.2.1 and the set of fused frames
were created exactly the same way as described above for privacy evaluation. The detector’s
model was updated by using the opencv traincascade utility from OpenCV [23].

Fig. 5 Results of utility evaluation by face detection for independent, aggregated, and fused frames. The
dashed line marks the highest utility level of the unprotected videos
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Fig. 6 Results of utility evaluation by person detection for independent frames. The dashed line marks the
utility level of the unprotected videos

As for person detection, the results are higher for ˜V [5] and ˜V [19] than for the unpro-
tected video (V). This means that the utility level in visual data can not only be maintained
but can even be further increased while protecting privacy. We find this a quite important
message for privacy protection filter developers. The lowest result is provided by ˜V [34]
which is not surprising at all considering the large amount of changes in terms of both colour
and visual structure (see Fig. 2f).

5.4.2 Tracking

When evaluating utility by object tracking we used the whole bodies of people as target
objects. We used the following 4 trackers that are implemented in OpenCV [23]: MIL [4],
Boosting [21], MedianFlow [24], and TLD [25]. We fused the results of these trackers by
always choosing the best performing tracker per frame similarly to our approach regarding
face recognisers. Tracking is considered to be successful in a frame if the output of a tracker
is sufficiently overlapping with the annotated bounding box from the ground-truth data.
Again, we consider an overlapping sufficient if the Sørensen-Dice coefficient is greater than
0.5. Figure 7 shows our results for utility evaluation through object tracking (etrack). Several
privacy protected videos achieved slightly better utility results than the unprotected videos
which further supports the fact that utility can be improved even when obfuscating the
unprotected visual data for the sake of privacy protection. However, differences are not too
significant between the protection techniques and there is no outstanding result. Tracking
performance is almost equal in each case.

5.4.3 Similarity

As part of utility evaluation we measured visual similarity by calculating the mean squared
error (MSE) and the structural similarity (SSIM) index for the protected videos (˜V [5, 19,
20, 30, 34, 40, 41, 49]) compared to the unprotected videos (V). Differences between the



Multimed Tools Appl

Fig. 7 Results of utility evaluation by object tracking. The level of the unprotected videos is marked with
the dashed line

privacy protected videos in terms of mean squared error are very small. All similarity results
are within the [0.99, 1] interval. Therefore, all types of protected videos are considered to
be very similar to the unprotected videos based on this metric. This fact suggests that MSE
is not a suitable metric when comparing privacy protection filters.

Our measurement results regarding structural similarity are depicted in Fig. 8. ˜V [19]
shows the most substantial difference from the unprotected videos (V). The global modifi-
cations carried out by the privacy filter cause notably large changes in the image structure
which explains the extent of dissimilarity.

Fig. 8 Results of utility evaluation by measuring visual similarity to the unprotected video V when using
the structural similarity index (esimSSIM )
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Fig. 9 Comparison of objective and subjective utility evaluation results where iAVG = AVERAGE(icrowd ,

ithales , if ocus) and edetF = AVERAGE(edetFind
, edetFaggr , edetFf used

)

Our definition of utility and the way Badii et al. [7] define intelligibility is rather different.
We measure quite different things by using computer vision methods than they do with their
questionnaires. Thus, while comparing objective and subjective evaluation results for utility
in Fig. 9, it is not surprising that no correlation can be observed between objective and
subjective results. Figure 9 depicts the average of the intelligibility results icrowd , ithales , and
if ocus together with our objective evaluation results regarding utility (edetF , edetP , etrack ,
esimSSIM ).

6 Conclusions and future work

We have proposed an objective visual privacy evaluation framework that considers a rather
wide variety of aspects including the use of aggregated and fused frames as opposed to
traditional frame-by-frame assessment methods. A formal definition has been provided
by which reproducible results can be measured. This framework is based on a general
definition of privacy protection and utility, and can be used to benchmark various pro-
tection techniques. Thus, our framework may serve as a useful tool for developers of
visual privacy-preserving techniques. We have applied this framework to state-of-the-art
privacy protection methods and compared our results to a recently conducted subjective
evaluation. For privacy protection, subjective and objective evaluation results show a high
correlation.

A possibility for future work is to conduct a survey with an even larger number of par-
ticipants and compare these subjective results with the output of the proposed objective
framework. Then the definitions of the measured aspects within the framework could also
be fine-tuned in order to better approximate subjective results. Another possible task for
the future is to create a more comprehensive implementation of our objective evaluation
framework in form of an on-line API which would make our work useful to the research
community.
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18. Erdélyi A, Barát T, Valet P, Winkler T, Rinner B (2014) Adaptive cartooning for privacy protection in
camera networks. In: Proceedings of the international conference on advanced video and signal based
surveillance, pp 44–49
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57. Winkler T, Erdélyi Á, Rinner B (2012) TrustEYE – trustworthy sensing and cooperation in visual sensor

networks. Last accessed: November 2016. http://trusteye.aau.at
58. Winkler T, Rinner B (2014) Security and privacy protection in visual sensor networks: a survey. ACM

Comput Surv 47(1):42
59. Zhang C, Tian Y, Capezuti E (2012) Privacy preserving automatic fall detection for elderly using RGBD

cameras. In: Proceedings of the international conference on computers helping people with special needs,
pp 625–633
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