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Abstract
Background: Prior to cluster analysis or genetic network analysis it is customary to filter, or
remove genes considered to be irrelevant from the set of genes to be analyzed. Often genes whose
variation across samples is less than an arbitrary threshold value are deleted. This can improve
interpretability and reduce bias.

Results: This paper introduces modular models for representing network structure in order to
study the relative effects of different filtering methods. We show that cluster analysis and principal
components are strongly affected by filtering. Filtering methods intended specifically for cluster and
network analysis are introduced and compared by simulating modular networks with known
statistical properties. To study more realistic situations, we analyze simulated "real" data based on
well-characterized E. coli and S. cerevisiae regulatory networks.

Conclusion: The methods introduced apply very generally, to any similarity matrix describing
gene expression. One of the proposed methods, SUMCOV, performed well for all models
simulated.

Background
Prior to cluster analysis or genetic network analysis it is
customary, after initial quality screening, to remove genes
considered to be substantively irrelevant from the set of
genes to be analyzed. Typically genes which are informally
judged to exhibit insufficient variation across samples are
deleted. One obvious advantage of this is dimension
reduction; clustering algorithms run faster and genetic
network analysis may be simplified if there are fewer
genes than samples. Another obvious advantage is clarity
of interpretation: the biological meaning of a cluster or
gene pathway is more easily discerned if the results of an
analysis do not include irrelevant and distracting genes.

We will demonstrate another ill effect of not filtering prior
to analysis – bias in a cluster analysis of the data.

The accuracy and usefulness of a cluster analysis is
strongly affected by the subset of genes to be analyzed, as
determined by filtering the genes prior to the analysis.
However, although much recent work has been devoted
to the development of clustering methods, relatively little
attention has been directed to the filtering step. This paper
explores filtering in some depth and presents some new
approaches. We establish the feasibility of data-based
selection of genes, and its superiority to arbitrary thresh-
olds.
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Results and Discussion
The model
To investigate filtering we focus on the covariance struc-
ture of the data. Cluster and genetic network analysis
focuses on the relatedness of the expression patterns of
the genes being studied. We represent this by the covari-
ance matrix of the gene expressions, and assume that there
are groups of genes that are correlated among themselves
while being uncorrelated with the other groups. There is a
final set of genes D whose members are uncorrelated with
each other and all other genes. It is this group of genes that
we term irrelevant and wish to remove from the analysis.

This model implies a block structure for the appropriately
ordered covariance matrix Σ. Suppose that N genes belong
in the analysis and d genes are unrelated and should be
deleted. Then

where Σjj is a nj × nj within cluster covariance matrix, Δ is a

d × d diagonal covariance matrix for the set D of irrelevant

genes, and .

This model is an example of modularity, where a module is
a part of an organism that is integrated with respect to a
certain kind of process and relatively autonomous with
respects to other parts of the organism. The modularity
concept has gained popularity more-or-less simultane-
ously in molecular biology and systems biology, develop-
mental biology and evolutionary biology, and cognitive
psychology [1]. We assume that the within cluster covari-
ance matrix Σjj arises from an independent module which
is a biological gene network. We consider two simple net-
work architectures as examples in this paper.

SIMs
A SIM (Single Input Module) consists of a set genes that
are controlled by a single transcription factor [2]. There is
considerable experimental evidence that SIMs occur fre-
quently [2,3]. For example, consider a SIM represented by
the linear model for gene expression

where β > 0 and the i are independent errors with mean 0
and variance 1. The covariance of all pairs of genes in this
system is nonzero. The covariation among the n1 network
genes is driven by the hub y1 which codes the transcription
factor. We assume that genes not included in the SIM fol-
low the model

where j is an independent error with mean 0 and variance

1. This will yield a covariance matrix of the form (1) with

m = 1. The correlation of two non-hub genes is β2/(β2 + 1),

and correlations with the hub are .

A causal chain
Another simple network architecture we consider is a
causal chain of genes specified by the first-order autore-
gressive process

We assume that the process is stationary, whence

The correlation of expression between adjacent genes in the
chain is β. We can regard y1 as coding the transcription fac-
tor which initiates the chain. The expression of genes out-
side the causal chain is distributed jointly as iid N(0, 1).

The need for filtering
To investigate the necessity of filtering prior to cluster
analysis, suppose that the set D of irrelevant genes is
known. We will compare two strategies: 1) Preselection:
filter out the set D and do a cluster analysis and 2) Postse-
lection: do the cluster analysis and then delete the set D
from the clusters. The final set of genes is the same, but the
second method includes the irrelevant genes in the analy-
sis phase. A data set of 50 arrays was generated using a
multivariate normal distribution with five gene clusters
each consisting of 40 genes. Within-cluster correlations of
0.40, between cluster correlation of zero, and variances of
1 defined the covariance matrix. The set D consisted of
400 genes each of which was independent of all others.
We did a k-means cluster analysis (k = 5) of the genes for
each of strategies 1) and 2) and compared the agreement
of the respective gene clusters with the true grouping using
the adjusted Rand index [4], which is a traditional crite-
rion for assessment and comparison of different results
provided by clustering algorithms. It is able to measure
the quality of different partitions of a data set from a clas-
sification perspective, including partitions with different
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numbers of classes or clusters. The adjusted Rand index
can range from 0 to 1, with 1 being perfect agreement. The
data set was simulated 100 times and the average adjusted
Rand index computed.

The means of the adjusted rand index for strategy 1 (Prese-
lection) and for strategy 2 (Postselection) were 90% and
76%, respectively. Not deleting the irrelevant genes prior
to cluster analysis introduces considerable bias. Thus even
if an astute biologist has no trouble discarding irrelevant
genes when presented with the results of an unfiltered
cluster analysis, the validity of the results will be compro-
mised. If we specify a sixth cluster when analyzing the
larger set of genes, in the hope of isolating the irrelevant
genes, the mean adjusted Rand index for strategy 2 rises to
only 83%. Thus even if we knew the true number of clus-
ters and added an "over flow" cluster to the analysis, post-
selection is inferior and the analysis is biased.

The same picture emerges if we are clustering arrays. A data
set was generated using 25 arrays divided into 5 groups of
5. 40 genes had mean 1.3 for the first group of 5 arrays and
mean 0 for the other arrays. Another 40 genes had mean 1.3
for the second group of 5 arrays and mean 0 for the other
arrays, and so on for a total of 200 genes. Thus each group
of arrays has a unique gene expression profile. Another set
of 400 irrelevant genes was included which had mean zero
for all the arrays. The genes had a multivariate normal dis-
tribution with the specified mean and the identity covari-
ance matrix. We did a k-means cluster analysis of the arrays
for each of strategies 1 and 2 and compared the agreement
of the respective array clusters with the true grouping using
the adjusted Rand index. This was replicated 100 times and
the average adjusted Rand index computed.

The means of the adjusted Rand index for strategy 1 and
for strategy 2 were 79% and 62%, respectively. Again, not
deleting the irrelevant genes prior to cluster analysis of the
arrays introduces considerable bias. Extraneous genes can
also degrade more exploratory methods. A common
exploratory method is to portray the arrays in two dimen-
sions by projecting them onto the first two principal com-
ponents. Figure 1 shows the principal component plots
for arrays generated according to the preselection and
postselection strategies already described. There were
three groups of 10 arrays, each defined by a unique set of
40 genes over-expressed in that cluster. Group 1 was over-
expressed for 40 genes and mean 0 otherwise. Group 2
was over-expressed for a different 40 genes and mean 0
otherwise, and likewise for Group 3. Another 1200 extra-
neous genes had mean 0 over all the arrays. For postselec-
tion the principal components were computed using all
genes and then the irrelevant genes were deleted from the
principal components plot. The preselection strategy com-
puted the principal components using only the relevant
genes. Figure 1 gives the principal component plots.

Filtering improves the informativeness of the principal
component plot dramatically. The existence of bias in
sample principal components in the presence of noise var-
iables has been shown theoretically by [5]. The preceding
has demonstrated that filtering irrelevant genes before
analysis is desirable. We next investigate how this can be
done.

Motivation for proposed filtering methods
It is common to filter genes with small variance prior to
clustering. The rationale is that genes which do not vary
across samples contribute little information or may not be
expressed, and genes which do not vary cannot covary. In
this section we show that the pattern of covariance can be
much more informative for filtering irrelevant genes. We
will also demonstrate this later by simulation.

Consider the hub model given by equations (2) – (4). The
variances of the genes in this network are

Note that the hub gene y1 which drives the underlying

gene network has variance σ2, the same as the irrelevant

Principal component plotsFigure 1
Principal component plots. In the left panel extraneous 
genes were deleted from the plot after the principal compo-
nents were computed using all the genes. The right panel is for 
principal components computed from the relevant genes only.
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genes . Clearly y1 should be included

with the network genes in a cluster or inferred gene net-
work, but filtering by a variance criterion would lump y1

with the irrelevant genes.

Now suppose that instead of filtering based on only the
diagonal element of the covariance matrix, we associate
with gene i the sum of the absolute values of the elements
in row i of Σ, i.e. the summed absolute covariance with
itself and the other genes. This measure is

Clearly the summed absolute covariance has more poten-
tial for filtering in the context of this network architecture.
The measure differs more for the network versus non-net-
work genes, and the hub y1 is now distinguished. We will
refer to filtering based on the absolute row sums as covar-
iance-based, and describe filtering based on small gene
variance as variance-based.

To compare the two approaches, we generated data from
a SIM of 40 genes, along with another 160 genes which
were dormant in the process being studied. The regression
coefficient was chosen so that the genes in the network
had a correlation of .5 with the hub. There were 50 arrays.
The left panel of Figure 2 shows the variances of the genes
and the right panel shows the sum of absolute covari-
ances. The dark points are the network genes. We observe
that the network genes are more clearly distinguished
using the absolute covariances.

Next we consider the causal chain architecture given by
(5) and (6). For this stationary first-order autoregressive
model each network variable has variance 1/(1 - β2) > 1
and the extraneous variables have variance 1, so the vari-
ance distinguishes the network genes. The sum of the
absolute covariances for the ith network gene is

so this measure distinguishes the network genes more
clearly that the variance.

The preceding results lead us to consider new filtering cri-
teria which include off-diagonal elements of the covari-
ance or correlation matrix.

Filtering criteria
The first two new criteria we define are based on the cov-
ariance or the correlation.

• 

• 

where ∑ = {σij} and R = {rij} are the covariance and corre-
lation matrices, respectively.

The other two measures are motivated by the structure dis-
played in (1). The elements in a row of ∑ corresponding
to a network variable are mixture of mean zero and mean
nonzero random variables, indicating more variability
than found in a row of non-network variables. We thus
define two measures which exploit this property.

• VARCOVi = Var{|σij|; j ≠ i}

• VARCORi = Var{|rij|; j ≠ i}

where for a vector x, Var{x} is the sample variance of the
sample x.
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Filtering criteria for a SIMFigure 2
Filtering criteria for a SIM. The left panel shows the vari-
ances of the genes and the right panel shows the sum of 
absolute covariances. The dark points are the network 
genes.
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We will refer to filtering using only the variance as VAR.

To use the filtering criteria to identify the relevant genes,
in this paper we use k-means clustering with k = 2 [6,7] to
form two groups of genes based on their measured crite-
rion value. The cluster of genes with the highest average
criterion value are then taken to be relevant for cluster of
network analysis.

Simulations
To compare the filtering criteria, we simulated expression
data using two models. Both models consisted of 5 inde-
pendent equally-sized modules and a set of extraneous
genes. There were 2000 genes in total, and we varied the
percentage of extraneous genes from 50 per cent to 95 per
cent, in increments of 5 per cent. For example, with 95 per
cent extraneous genes, 1900 genes were extraneous and
there were 5 modules consisting of 20 genes each. For 50
per cent, there were 1000 extraneous genes and each mod-
ule consisted of 200 genes.

Model 1 – SIMs: The modules are SIMS. Within a SIM, the
correlation between non-hub genes was .5.

Model 2 – Causal chains: The modules are causal chains.
The correlation between adjacent genes in the chain was
.7, so that a gene accounted for 49% of the variance of its
successor in the chain.

Each model was generated 50 times, and the sensitivity
and the positive predictive value was averaged over the 50
simulations for each of the criteria – variance, sumcov,
sumcor, varcov, and varcor. The maximum possible stand-
ard deviation for any of the estimates was .007.

For the Model 1 simulation of SIMs, Figure 3 shows the
average sensitivity and average positive predictive value
for each of the 5 criteria.

SUMCOR is the most sensitive measure when the percent-
age of noise genes is 80% or less, but is dominated by
SUMCOV for higher percentages, and drops precipitously
at 95% to be the worst of the measures. SUMCOV is more
sensitive than VARCOR, VARCOV, VAR, with the mar-
ginal exception of VARCOV at 95%. In particular it is
more sensitive than VAR throughout the range of percent-
ages. The positive predictive value of all the methods dete-
riorates for high noise proportions, but VAR is the worst.
The ranking of the methods with respect to positive pre-
dictive value is VARCOR, VARCOV, SUMCOV, SUMCOR,
VAR. We conclude that VAR is not very informative for the
SIM model, and SUMCOV and SUMCOR are good overall
choices.

Figure 4 shows the number of hub genes found by the fil-
tering methods.

As expected, VAR does very poorly at finding hub genes.
The other methods are ranked as SUMCOR and VARCOR,
VARCOV, SUMCOV, VAR. Both SUMCOV and VARCOV
include aspects of VAR which is uninformative about
hubs, and so probably pay a penalty for that reason.

For the Model 2 simulation of causal chains, Figure 5
shows the average sensitivity and average positive predic-
tive value for each of the 5 criteria.

VAR does better for causal chains than for SIMs. This is
because the off-diagonal covariances decay rapidly with
increasing distance from the diagonal and have relatively
little impact, so VAR captures most of the information.
SUMCOV and VARCOV incorporate aspects of VAR, and
have much better sensitivity and positive predictive value
than SUMCOR and VARCOR which ignore the diagonal
elements of the covariance matrix. Considering both sen-
sitivity and positive predictive value, SUMCOV and VAR-
COV are competitive with VAR. SUMCOV has the
advantage of also doing well for SIMs.

In practice, in the absence of knowledge of the underlying
network architecture SUMCOV is a good overall choice,
and is preferred to VAR since it captures additional struc-
ture. SUMCOR will perform well when VAR performs
poorly. For example, when disparity of gene variances
largely reflects experimental inconsistencies SUMCOR
will benefit from not being a function of the variance

Simulation of a network of SIMsFigure 3
Simulation of a network of SIMs. The left panel shows 
the sensitivity achieved by the filtering methods and the right 
panel shows the positive predictive value.
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(noise), while SUMCOV will be degraded. When the vari-
ance is informative, SUMCOV will include that informa-
tion and also capture block structure, so it performs well
for both SIMs and causal chains.

A graphical method
As an alternative to the partitioning of the filtering crite-
rion by k-means partitioning, we propose a graphical
method. This is a q-q plot of the observed filtering crite-
rion versus the criterion values for a null matrix of inde-
pendent N(0, 1) random variables. We average 20
simulated null matrices to get a stable estimated of the
null distribution. To use the plot we inspect it for a point
of inflection corresponding to a slope change, and take
that point as the threshold for the filtering criterion.

To demonstrate this we simulated a data set generated
according to the SIM model used in the previous section.
1000 of the 4000 genes were network genes. Figure 6
shows the q-q plots for the criterions VAR, SUMCOV, and
SUMCOR.

The data for Figure 7 is similarly generated, using the
causal chain model described in the previous section. The
height of the plot is the value of the criterion, specified by
the left vertical axis. The right vertical axis gives the
number of genes with values greater than the correspond-
ing height of the left axis. Thus one can read a cutoff value
from the left axis and the consequent number of genes
obtained on the right axis. In Figure 6 SUMCOV and
SUMCOR show a clear inflection in their q-q plots. In
both cases 1000 network genes is plausible from the plot.
2-means partitioning estimates 956 network genes based

Simulation of a network of SIMsFigure 4
Simulation of a network of SIMs. The number of hub 
genes found by the filtering methods are displayed.
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Simulation of a network of causal chainsFigure 5
Simulation of a network of causal chains. The left panel 
shows the sensitivity achieved by the filtering methods and 
the right panel shows the positive predictive value.
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q-q plots for a data set generated according to the SIM modelFigure 6
q-q plots for a data set generated according to the 
SIM model. q-q plots for a data set generated according to 
the SIM model. The left axis displays the criterion value, and 
the right axis gives the number of genes with criterion above 
that value. Half of the 2000 genes were network genes.
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on SUMCOV and 1050 genes based on SUMCOR. The
plot for VAR shows only a mild bend and offers little
information as to a plausible cutoff. This is in agreement
with the simulation results shown in Figure 5, where VAR
did not do well for SIMs. 2-means partitioning of VAR
suggests 1184 network genes.

In Figure 7 both the VAR and SUMCOV show a clear
inflection in their q-q plots. In both cases 1000 network
genes is plausible from the plot. 2-means partitioning esti-
mates 975 network genes based on SUMCOV and 905
genes based on VAR. The plot for SUMCOR is straight and
offers no information as to a plausible cutoff. This is in
agreement with the simulation results shown in Figure 3,
where SUMCOR performed poorly for the causal chain
model. 2-means partitioning of SUMCOR suggests 2072
network genes.

Analysis of E. coli and S. cerevisiae regulatory network 
data
The modular network models we have simulated certainly
do not match the complexity of real microarray data.
However, with real data the true underlying model is
unknown so it is impossible to know which genes selected
are true positives or misclassified irrelevant genes. To sat-
isfy the criteria of realism and known properties, we gen-
erated datasets using SynTReN [8], a generator of synthetic

gene expression data. This approach allows a quantitative
assessment of the accuracy of the methods applied. The
SynTReN generator generates a network topology by
selecting subnetworks from the well characterized E. coli
or S. cerevisiae regulatory networks. Then transition func-
tions and their parameters are assigned to the edges in the
network. Eventually, mRNA expression levels for the
genes in the network are obtained by simulating equa-
tions based on Michaelis-Menten and Hill kinetics under
different conditions. After the addition of noise, microar-
ray gene expression measurements are produced.

We produced two synthetic expression datasets, one corre-
sponding to the E. coli network topology and one for S.
cerevisiae. In each dataset there were 100 network genes
and 300 background genes. The 300 background genes
have an underlying network structure, but are not per-
turbed and so propagate only error. This is a more realistic
model for inactive genes than we simulated previously.
We used the cluster addition option of SynTReN and set
all parameters to their default values. We normalized the
expression data produced using vsn [9].

Figure 8 shows the q-q plots for the E. coli synthetic data-
set. Using k-means to partition the genes, the sensitivity/
positive predictive value for the metrics is VAR: .3/1, SUM-
COV: .45/1, and SUMCOR: .33/.66. VAR selected the 30
top genes and SUMCOV selected the top 45. This is dis-
cordant with the q-q plots and k-means clustering is obvi-
ously not partitioning the measurements well. The
extremely high high measurements are apparently having
too much influence. This leads us to try a more robust
clustering method, PAM [7]. Using PAM, we obtain sensi-
tivity/positive predictive value for the metrics VAR: .43/1,
SUMCOV: .89/1, and SUMCOR: .33/.72. This analysis
shows the value of the q-q plot for choosing a metric and
partition. SUMCOR has a very clear inflection around 100
genes, and any partitioning should be in accord with this.

Figure 9 shows the q-q plots for the S. cerevisiae synthetic
dataset. Using k-means to partition the genes, the sensitiv-
ity/positive predictive value for the metrics is VAR: .06/1,
SUMCOV: .71/1, and SUMCOR: .76/.56. This partition-
ing of VAR is discordant with the q-q plots and k-means
clustering is obviously not partitioning the measurements
well. As in the previous example the extremely high meas-
urements are having too much influence. Using PAM, we
obtain sensitivity/positive predictive value for the metrics
VAR: .83/1, SUMCOV: .75/1, and SUMCOR: .42/.46. As
before, the q-q plot is essential for choosing a metric and
partition. SUMCOR has a very clear inflection around 100
genes, and any partitioning should be in accord with this.

SUMCOV partitioned well for both analyses, and had the
most interpretable q-q plot with a clear inflection in the

q-q plots for the causal chain modelFigure 7
q-q plots for the causal chain model. q-q plots for a data 
set generated according to the causal chain model. The left 
axis displays the criterion value, and the right axis gives the 
number of genes with criterion above that value. Half of the 
2000 genes were network genes.
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vicinity of the correct number of genes. VAR partitioned
well for S. cerevisiae, suggesting that the connectivity may
be less than for E. coli. The q-q plots for VAR were not very
useful, which is a serious disadvantage for this metric.
SUMCOR did not partition well for either dataset, but the
q-q plots for this metric were very informative.

Conclusion
This paper presents objective methods for evaluating and
choosing metrics and thresholds for filtering genes prior
to cluster and network analysis. We introduced a model
for genetic data with modular network structure and a
substantial proportion of irrelevant "noise" genes. We
considered two variations, SIMS and causal chains. The
examination of these models shows that the common
practice of filtering out genes with low variance can be jus-
tified for some models, and introduces alternatives which
are superior for other models and conditions.

Real biological phenomena are certainly more complex
than the simple models we considered, and probably rep-
resent a mixture of complex architectures. We have shown
that using VAR can miss hubs, so that metric may be con-
sidered to be biased against hubs. Variables with higher
connectivity will be more easily detected using SUMCOV
and SUMCOR. SIMs have a stronger block-diagonal struc-
ture, but the connectivity is still rather limited and more
complex structures may be expected to have larger off-

diagonal entries. In general, variables with higher connec-
tivity will be more easily selected by the new metrics SUM-
COV and SUMCOR. An advantage of SUMCOV is the
incorporation of both diagonal and off-diagonal elements
of the covariance matrix. However, if the diagonal ele-
ments reflect experimental inconsistency this becomes a
disadvantage. We advocate using our graphical approach
to chose the most informative measure.

We adopted 2-group clustering algorithms to classify
genes because these are familiar methods for identifying
the components of a mixture of two distributions. How-
ever, we don't claim any inherent advantage for this
approach. Further investigation of mixture methods in the
context of varying types of data could be done, but the
intent of this paper is to point out the feasibility of data-
based selection of genes, and its superiority to arbitrary
thresholds. The analysis of the E. coli and S. cerevisiae
shows that in a realistic setting robustness is an important
consideration when selecting a partitioning method.

Although we have restricted our discussion to measures
based on the covariance matrix, the ideas are much more
general. The covariance could be replaced by any similar-
ity measure and analogous measures computed. Self-sim-
ilarity would be substituted for VAR, row sums of the
similarity matrix for SUMCOV, and row sums of the off-
diagonal similarities (after normalization by self-similar-

q-q plots for the E. coli synthetic dataFigure 8
q-q plots for the E. coli synthetic data. q-q plots for the 
E. coli synthetic data. The left axis displays the criterion 
value, and the right axis gives the number of genes with crite-
rion above that value.
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q-q plots for the S. cerevisiae synthetic dataFigure 9
q-q plots for the S. cerevisiae synthetic data. q-q plots 
for the S. cerevisiae synthetic data. The left axis displays the 
criterion value, and the right axis gives the number of genes 
with criterion above that value.
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ity) for SUMCOR. The q-q plot could again be used to
judge relative efficacy.

Methods have been developed recently which simultane-
ously cluster and perform variable selection [10,11].
These methods are restricted to model-based clustering
and will not apply to other clustering algorithms, varied
definitions of gene similarity, or other network inference
methods. An advantage of our method is that it is model-
free and can be used in conjunction with any clustering
algorithm or similarity matrix. We recommend that other
information relevant to filtering be employed before
focusing on the covariance matrix. For example, conven-
tionally genes considered to be unexpressed based on the
small magnitude of their gene expression measurements
are deleted, and such screening should be performed prior
to applying the methods of this paper.
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