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1 Introduction
In this paper, we consider a class of quasi-linear elliptic systems of the form

⎧⎨
⎩–εp�p,Au +V (x)|u|p–u =Hs(|u|p, |v|p)|u|p–u +K(x)|u|p∗–u, x ∈R

N ,

–εp�p,Av +V (x)|v|p–v =Ht(|u|p, |v|p)|v|p–v +K(x)|v|p∗–v, x ∈R
N ,

(.)

where �p,Au = div(|∇u+ iA(x)u|p–(∇u+ iA(x)u)), i is the imaginary unit, A(x) :RN →R
N

is real vector potential,  < p <N ,V (x) is a non-negative potential, p∗ =Np/(N –p) denotes
the Sobolev critical exponent for N ≥  and K(x) is a bounded positive coefficient.
The scalar case corresponding to (.) has received considerable attention in recent

years. For p =  and A(x) ≡ , the scalar case corresponding to (.) turns into

–ε�u +V (x)u = K(x)|u|∗–u + f
(
x, |u|)u, x ∈ R

N . (.)

The equation (.) arises in finding standing wave solutions of the nonlinear Schrödinger
equation

i�
∂ψ

∂t
= –

�


m
�ψ +W (x)ψ – g

(
x, |ψ |)ψ . (.)

A standing wave solution of (.) is a solution of the form

ψ(x, t) = u(x) exp
–iEt
� .

Then ψ(x, t) solves (.) if and only if u(x) solves (.) with V (x) =W (x) – E and ε = �


m .
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The equation (.) has been extensively investigated in the literature based on various
assumptions of the potential V (x) and the nonlinearity f (x,u). See, for example, [–]
and the references therein.
There are also many works dealing with the magnetic fields A(x) �=  and p =  for the

scalar case corresponding to (.). In [], the authors firstly obtained the existence of
standing waves for special classes of magnetic fields. For many results, we refer the reader
to [–].
For general p > , most of the work, as we know, consider the scalar case which corre-

sponds to (.) with A(x)≡ . See [–] and the references therein. We especially men-
tion [] for the existence of positive solutions for a class of p-Laplacian equations. Gloss
[] studied the existence and asymptotic behavior of positive solutions for quasi-linear
elliptic equations of the form

–εp�pu +V (x)|u|p–u = f (u), x ∈R
N , (.)

where f is a subcritical nonlinearity without some growth conditions such as the
Ambrosetti-Rabinowitz condition. The problem (.) has also been studied in [–].
The main difficulty in treating this class of equation (.) is a possible lack of compactness
due to the unboundedness of the domain.
However, to our best knowledge, it seems there is almost no work on the existence

of non-trivial solutions to the problem (.) involving critical nonlinearity and magnetic
fields. We mainly follow the idea of []. Observe that though the idea was used in other
problems, the adaption of the procedure to the problem is not trivial at all. Because of the
appearance of magnetic fields A(x), we must deal with the problem for complex-valued
functions and therefore we need more delicate estimates.
The outline of the paper is as follows. The forthcoming section is the main result and

preliminary results including the appropriate space setting to work with. In Section , we
study the behavior of (PS)c sequence. Section  gets that the functional associated to the
problem possesses the mountain geometry structure, and the last section concludes the
proof of the main result.

2 Main results and preliminaries
Firstly, we make the following assumptions on V (x), A(x),H(s, t) and K(x) throughout the
paper:
(V) V ∈ C(RN ,R), V () = infx∈RN V (x) =  and there exists b >  such that the set νb :=

{x ∈R
N : V (x) < b} has finite Lebesgue measure;

(A) A ∈ C(RN ,RN ) and A() = ;
(K) K(x) ∈ C(RN ,R+),  < infK ≤ supK < ∞;
(H) H(s, t) ∈ C(R+ ×R

+,R) and Hs,Ht = o(|s| + |t|) as |s| + |t| → ;
(H) there exist c >  and p < α < p∗ such that

∣∣Hs(s, t)
∣∣, ∣∣Ht(s, t)

∣∣ ≤ c
(
 + |s| α–p

p + |t| α–p
p

)
;

(H) there are a > , θ ∈ (p,p∗) and α,β > p such that H(s, t) ≥ pa(|s|
α
p + |t| β

p ) and
 < θ

pH(s, t) ≤ sHs + tHt .
Under the above mentioned conditions, we get the following result.

http://www.boundaryvalueproblems.com/content/2013/1/11
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Theorem  Suppose that the assumptions (V), (A), (K) and (H)-(H) hold. Then for
any σ > , there is εσ >  such that if ε < εσ , the problem (.) has at least one solution
(uε , vε) which satisfies

θ – p
pθ

∫
RN

(
εp

(∣∣∇|uε|
∣∣p + ∣∣∇|vε|

∣∣p) +V (x)|uε|p +V (x)|vε|p
) ≤ σεN .

Setting λ = ε–p, the problem (.) is equivalent to the following problem:

⎧⎨
⎩–�p,Au + λV (x)|u|p–u = λHs(|u|p, |v|p)|u|p–u + λK(x)|u|p∗–u, x ∈R

N ,

–�p,Av + λV (x)|v|p–v = λHt(|u|p, |v|p)|v|p–v + λK(x)|v|p∗–v, x ∈R
N .

(.)

We are going to prove the following result.

Theorem  Suppose that the assumptions (V), (A), (K) and (H)-(H) hold. Then for
any σ > , there is �σ >  such that if λ > �σ , the problem (.) has at least one solution
(uλ, vλ) which satisfies

θ – p
pθ

∫
RN

((∣∣∇|uλ|
∣∣p + ∣∣∇|vλ|

∣∣p) + λV (x)|uλ|p + λV (x)|vλ|p
) ≤ σλ– p

N . (.)

For convenience, we quote the following notations. Let Eλ,A denote the Banach space

Eλ,A =
{
u ∈W ,p(

R
N)

:
∫
RN

λV (x)|u|p <∞
}
, λ > 

equipped with the norm

‖u‖λ,A =
(∫

RN

(∣∣∇u + iλ

p A(x)u

∣∣p + λV (x)|u|p)) 
p
.

Set E = Eλ,A × Eλ,A and ‖(u, v)‖pE = ‖u‖pλ,A + ‖v‖pλ,A for any (u, v) ∈ E.
Similar to the diamagnetic inequality [], we have

∣∣∇|u(x)|∣∣ ≤
∣∣∣∣∇u

ū
|u|

∣∣∣∣ =
∣∣∣∣Re(∇u + iλ


p Au

) ū
|u|

∣∣∣∣ ≤ ∣∣∇u + iλ

p Au

∣∣ (.)

(the bar denotes complex conjugation). This inequality shows that if u ∈ Eλ,A, then |u| ∈
W ,p(RN ) and therefore u ∈ Lq(RN ) for any q ∈ [p,p∗). That is to say, if un ⇀ u in Eλ,A, then
un → u in Lqloc(R

N ) for any q ∈ [p,p∗) and un → u a.e. in R
N .

The energy functional associated with (.) is defined by

Iλ(u, v) =

p

∫
RN

(∣∣∇u + iλ

p Au

∣∣p + λV (x)|u|p + ∣∣∇v + iλ

p Av

∣∣p + λV (x)|v|p)
–

λ

p∗

∫
RN

K(x)
(|u|p∗

+ |v|p∗)
–

λ

p

∫
RN

H
(|u|p, |v|p)

=

p
∥∥(u, v)∥∥p

E – λ

∫
RN

G(u, v),

where G(u, v) = 
p∗K(x)(|u|p∗ + |v|p∗ ) + 

pH(|u|p, |v|p).

http://www.boundaryvalueproblems.com/content/2013/1/11
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Under the assumptions of Theorem , standard arguments [] show that Iλ ∈ C(Eλ,A,
R) and its critical points are weak solutions of the equation (.).

3 (PS)c condition
We call a sequence {(un, vn)} ⊂ E a (PS)c sequence if Iλ(un, vn) → c and I ′λ(un, vn) → 
strongly in E′ (E′ is the dual space of E). Iλ is said to satisfy the (PS)c condition if any (PS)c
sequence contains a convergent subsequence.
The main result of Section  is the following compactness result.

Proposition . Let the assumptions of Theorem  be satisfied. There exists a constant
α ≥  independent of λ such that, for any (PS)c sequence {(un, vn)} ⊂ E for Iλ with
(un, vn) ⇀ (u, v), either (un, vn) → (u, v) or c – Iλ(u, v)≥ αλ

–N
p .

As a consequence, we obtain the following result.

Proposition . Assume that the assumptions of Proposition . hold, Iλ(u, v) satisfies the
(PS)c condition for all c≤ αλ

–N
p .

In order to prove Proposition ., we need the following lemmas.

Lemma . Let the assumptions of Theorem  be satisfied. {(un, vn)} is a (PS)c sequence
of Iλ. Then c≥  and {(un, vn)} is bounded in the space E.

Proof One has

Iλ(un, vn) –

θ
I ′λ(un, vn)(un, vn)

=
(

p
–

θ

)∥∥(un, vn)∥∥p
E +

(

θ
–


p∗

)
λ

∫
RN

K(x)
(|un|p∗

+ |vn|p∗)
+ λ

∫
RN

(

θ

(|un|pHs
(|un|p, |vn|p) + |vn|pHt

(|un|p, |vn|p)) – 
p
H

(|un|p, |vn|p))

≥
(

p
–

θ

)∥∥(un, vn)∥∥p
E .

Together with Iλ(un, vn)→ c and I ′λ(un, vn) →  as n→ ∞, we have(

p
–

θ

)∥∥(un, vn)∥∥p
E ≤ c + o() + εn

∥∥(un, vn)∥∥E .

Then {(un, vn)} is bounded and c≥ . �

FromLemma ., wemay assume (un, vn) ⇀ (u, v) in E and (un, vn) → (u, v) in Lqloc(R
N )×

Lqloc(R
N ) for any q ∈ [p,p∗) and un → u, vn → v a.e. in R

N .

Lemma . Let γ ∈ [p,p∗). There is a subsequence {(unj , vnj )} such that for any ε > , there
is rε >  with r ≥ rε

lim
j→∞ sup

∫
Bj\Br

(|unj |γ + |vnj |γ
) ≤ ε,

where Br := {x ∈R
N : |x| ≤ r}.

http://www.boundaryvalueproblems.com/content/2013/1/11
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Proof The proof of Lemma . is similar to that of Lemma . of [], so we omit it. �

Let η ∈ C∞(R+) be a smooth function satisfying  ≤ η(t) ≤ , η(t) =  if t ≤  and η(t) = 
if t ≥ . Define ũj(x) = η(|x|/j)u(x), ṽj(x) = η(|x|/j)v(x). Obviously, we have

‖u – ũj‖Eλ,A →  and ‖v – ṽj‖Eλ,A →  as j → ∞. (.)

Lemma . One has

lim
j→∞Re

∫
RN

(
Hs

(|unj |p, |vnj |p)|unj |p–unj
–Hs

(|unj – ũj|p, |vnj – ṽj|p
)|unj – ũj|p–(unj – ũj) –Hs

(|̃uj|p, |̃vj|p)|̃uj|p–ũj)ϕ̄ = 

and

lim
j→∞Re

∫
RN

(
Ht

(|unj |p, |vnj |p)|vnj |p–vnj
–Ht

(|unj – ũj|p, |vnj – ṽj|p
)|vnj – ṽj|p–(vnj – ṽj) –Ht

(|̃uj|p, |̃vj|p)|̃vj|p–̃vj)ψ̄ = 

uniformly in (ϕ,ψ) ∈ E with ‖(ϕ,ψ)‖E ≤ .

Proof The local compactness of Sobolev embedding implies that for any r ≥ , we
have

lim
j→∞Re

∫
Br

(
Hs

(|unj |p, |vnj |p)|unj |p–unj
–Hs

(|unj – ũj|p, |vnj – ṽj|p
)|unj – ũj|p–(unj – ũj) –Hs

(|̃uj|p, |̃vj|p)|̃uj|p–ũj)ϕ̄ = 

uniformly in ‖ϕ‖Eλ,A ≤ . For any ε > , there exists rε >  such that

lim
j→∞ sup

∫
Bj\Br

|̃uj|γ ≤
∫
RN

|u|γ ≤ ε

for all r ≥ rε . Together with the assumption (H) and the Hölder inequality, it follows from
Lemma . that

lim
j→∞ supRe

∫
RN

(
Hs

(|unj |p, |vnj |p)|unj |p–unj
–Hs

(|unj – ũj|p, |vnj – ṽj|p
)|unj – ũj|p–(unj – ũj) –Hs

(|̃uj|p, |̃vj|p)|̃uj|p–ũj)ϕ̄
= lim

j→∞ supRe
∫
Bj\Br

(
Hs

(|unj |p, |vnj |p)|unj |p–unj
–Hs

(|unj – ũj|p, |vnj – ṽj|p
)|unj – ũj|p–(unj – ũj) –Hs

(|̃uj|p, |̃vj|p)|̃uj|p–ũj)ϕ̄
≤ c lim

j→∞ sup
∫
Bj\Br

(|unj |p– + |vnj |p– + |̃uj|p– + |̃vj|p–
)|ϕ̄|

+ c lim
j→∞ sup

∫
Bj\Br

(|unj |α– + |vnj |α– + |̃uj|α– + |̃vj|α–
)|ϕ̄|

http://www.boundaryvalueproblems.com/content/2013/1/11
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≤ c lim
j→∞ sup

(‖unj‖p–Lp(Bj\Br) + ‖vnj‖p–Lp(Bj\Br)

+ ‖̃uj‖p–Lp(Bj\Br ) + ‖̃vj‖p–Lp(Bj\Br )
)‖ϕ̄‖Lp(Bj\Br )

+ c lim
j→∞ sup

(‖unj‖α–
Lα (Bj\Br ) + ‖vnj‖α–

Lα (Bj\Br)

+ ‖̃uj‖α–
Lα (Bj\Br ) + ‖̃vj‖α–

Lα (Bj\Br )
)‖ϕ̄‖Lα (Bj\Br )

≤ cε
p–
p + cε

α–
α ,

where ci (i = , , , ) are positive constants. Similarly, we can prove

lim
j→∞Re

∫
RN

(
Ht

(|unj |p, |vnj |p)|vnj |p–vnj
–Ht

(|unj – ũj|p, |vnj – ṽj|p
)|vnj – ṽj|p–(vnj – ṽj) –Ht

(|̃uj|p, |̃vj|p)|̃vj|p–̃vj)ψ̄ = . �

Lemma. Let {(un, vn)} and {(̃un, ṽn)} be as defined above.Then the following conclusions
hold:

Iλ(un – ũn, vn – ṽn) → c – Iλ(u, v)

and

I ′λ(un – ũn, vn – ṽn) →  in E′ (the dual space of E).

Proof By using the similar arguments of [, ], we have

Iλ(un – ũn, vn – ṽn)

= Iλ(un, vn) – Iλ (̃un, ṽn)

+
λ

p∗

∫
RN

K(x)
((|un|p∗

– |un – ũn|p∗
– |̃un|p∗)

+
(|vn|p∗

– |vn – ṽn|p∗
– |̃vn|p∗))

+
λ

p

∫
RN

(
H

(|un|p, |vn|p) –H
(|un – ũn|p, |vn – ṽn|p

)
–H

(|̃un|p, |̃vn|p)) + o().

By (.) and the similar idea of proving the Brézis-Lieb lemma [], it is easy to get

lim
n→∞

∫
RN

K(x)
((|un|p∗

– |un – ũn|p∗
– |̃un|p∗)

+
(|vn|p∗

– |vn – ṽn|p∗
– |̃vn|p∗))

= 

and

lim
n→∞

∫
RN

(
H

(|un|p, |vn|p) –H
(|un – ũn|p, |vn – ṽn|p

)
–H

(|̃un|p, |̃vn|p)) = .

Furthermore, using the fact Iλ(un, vn)→ c and Iλ (̃un, ṽn) → Iλ(u, v), we obtain

Iλ(un – ũn, vn – ṽn) → c – Iλ(u, v).

http://www.boundaryvalueproblems.com/content/2013/1/11
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In order to prove I ′λ(un – ũn, vn – ṽn)→  in E–, for any (ϕ,ψ) ∈ E, it follows that

I ′λ(un – ũn, vn – ṽn)(ϕ,ψ)

= I ′λ(un, vn)(ϕ,ψ) – I ′λ (̃un, ṽn)(ϕ,ψ)

+ λRe
∫
RN

K(x)
(|un|p∗–un – |un – ũn|p∗–(un – ũn) – |̃un|p∗–ũn

)
ϕ̄

+ λRe
∫
RN

K(x)
(|vn|p∗–vn – |vn – ṽn|p∗–(vn – ṽn) – |̃vn|p∗–̃vn

)
ψ̄

+ λRe
∫
RN

(
Hs

(|un|p, |vn|p)|un|p–un
–Hs

(|un – ũn|p, |vn – ṽn|p
)|un – ũn|p–(un – ũn) –Hs

(|̃un|p, |̃vn|p)|̃un|p–ũn)ϕ̄
+ λRe

∫
RN

(
Ht

(|un|p, |vn|p)|vn|p–vn
–Ht

(|un – ũn|p, |vn – ṽn|p
)|vn – ṽn|p–(vn – ṽn) –Ht

(|̃un|p, |̃vn|p)|̃vn|p–̃vn)ψ̄
+ o().

It is standard to check that

lim
n→∞

∫
RN

K(x)
(|un|p∗–un – |un – ũn|p∗–(un – ũn) – |̃un|p∗–ũn

)
ϕ̄ = 

and

lim
n→∞

∫
RN

K(x)
(|vn|p∗–vn – |vn – ṽn|p∗–(vn – ṽn) – |̃vn|p∗–̃vn

)
ψ̄ = 

uniformly in (ϕ,ψ) ∈ E with ‖(ϕ,ψ)‖E ≤ . Together with Lemma ., we have

I ′λ(un – ũn, vn – ṽn) →  in E′. �

Let un = un – ũn, vn = vn – ṽn, then un –u = un + (̃un –u), vn – v = vn + (̃vn – v). From (.),
we get (un, vn) → (u, v) in E if and only if (un, vn) → (, ) in E.
Observe that

Iλ
(
un, v


n
)
–

p
I ′λ

(
un, v


n
)(
un, v


n
)

=
(

p
–


p∗

)
λ

∫
RN

K(x)
(∣∣un∣∣p∗

+
∣∣vn∣∣p∗)

+
λ

p

∫
RN

(∣∣un∣∣pHs
(∣∣un∣∣p, ∣∣vn∣∣p) + ∣∣vn∣∣pHt

(∣∣un∣∣p, ∣∣vn∣∣p) –H
(∣∣un∣∣p, ∣∣vn∣∣p))

≥ λ

N

∫
RN

K(x)
(∣∣un∣∣p∗

+
∣∣vn∣∣p∗)

≥ λ

N
Kmin

∫
RN

(∣∣un∣∣p∗
+

∣∣vn∣∣p∗)
,

where Kmin = infx∈RN K(x) > . Furthermore, we get

∥∥(
un, v


n
)∥∥p∗

p∗ ≤ N(c – Iλ(u, v))
λKmin

+ o(). (.)

http://www.boundaryvalueproblems.com/content/2013/1/11
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Now, we consider the energy level of the functional Iλ below which the (PS)c condition
holds.
Let Vb(x) := max{V (x),b}, where b is a positive constant in the assumption (V). Since

the set νb has finite measure, we get

∫
RN

V (x)
(∣∣un∣∣p + ∣∣vn∣∣p) =

∫
RN

Vb(x)
(∣∣un∣∣p + ∣∣vn∣∣p) + o(). (.)

In connectionwith the assumptions (H)-(H) and theYoung inequality, there existsCb > 
such that

∫
RN

(
K(x)

(|u|p∗
+ |v|p∗)

+ |u|pHs
(|u|p, |v|p) + |v|pHt

(|u|p, |v|p))
≤ b

(‖u‖pp + ‖v‖pp
)
+Cb

(‖u‖p∗
p∗ + ‖v‖p∗

p∗
)
. (.)

Let S be the best Sobolev constant of the immersion

S‖u‖pp∗ ≤
∫
RN

|∇u|p for all u ∈W ,p(
R

N)
.

Proof of Proposition . Assume that (un, vn)� (u, v), then

lim inf
n→∞

∥∥(
un, v


n
)∥∥

E > 

and

c – Iλ(u, v) > .

By the Sobolev embedding inequality and the diamagnetic inequality, we get

S
(∥∥un∥∥p

p∗ +
∥∥vn∥∥p

p∗
)

≤
∫
RN

(∣∣∇un
∣∣p + ∣∣∇vn

∣∣p)
≤

∫
RN

(∣∣∇un + iλ

p A(x)un

∣∣p + ∣∣∇vn + iλ

p A(x)vn

∣∣p)
=

∫
RN

(∣∣∇un + iλ

p A(x)un

∣∣p + λV (x)
∣∣un∣∣p + ∣∣∇vn + iλ


p A(x)vn

∣∣p + λV (x)
∣∣vn∣∣p)

– λ

∫
RN

V (x)
(∣∣un∣∣p + ∣∣vn∣∣p)

= λ

∫
RN

K(x)
(∣∣un∣∣p∗

+
∣∣vn∣∣p∗)

+
∣∣un∣∣pHs

(∣∣un∣∣p, ∣∣vn∣∣p) + ∣∣vn∣∣pHt
(∣∣un∣∣p, ∣∣vn∣∣p)

– λ

∫
RN

Vb(x)
(∣∣un∣∣p + ∣∣vn∣∣p) + o()

≤ λb
(∥∥un∥∥p

p +
∥∥vn∥∥p

p

)
+ λCb

(∥∥un∥∥p∗
p∗ +

∥∥vn∥∥p∗
p∗

)
– λb

(∥∥un∥∥p
p +

∥∥vn∥∥p
p

)
+ o()

= λCb
(∥∥un∥∥p∗

p∗ +
∥∥vn∥∥p∗

p∗
)
+ o().

http://www.boundaryvalueproblems.com/content/2013/1/11
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This, together with (.), gives

S ≤ λCb
(∥∥un∥∥p∗

p∗ +
∥∥vn∥∥p∗

p∗
) p∗–p

p∗ + o()

≤ λCb

(
N(c – Iλ(u, v))

λKmin

) p
N
+ o()

= λ– p
N Cb

(
N
Kmin

) p
N (

c – Iλ(u, v)
) p
N + o().

Set α = S
N
p C

–N
p

b N–Kmin, then

αλ
–N

p ≤ c – Iλ(u, v) + o().

This completes the proof of Proposition .. �

Proof of Proposition . Since c≤ αλ
–N

p , we have

c – Iλ(u, v)≤ αλ
–N

p – Iλ(u, v).

In connection with Iλ(u, v)≥  and Proposition ., we complete this proof. �

4 Themountain-pass structure
In the following, we always consider λ ≥ . We will prove that Iλ possesses the mountain-
pass structure which has been carefully discussed in the works [, ].

Lemma . Let the assumptions of Theorem  be satisfied. There exist αλ,ρλ >  such that

Iλ(u, v) >  if  <
∥∥(u, v)∥∥E < ρλ and Iλ(u, v) ≥ αλ if

∥∥(u, v)∥∥E = ρλ.

Proof By (.), for any δ > , there is Cδ >  such that

∫
RN

G(u, v)≤ δ
(‖u‖pp + ‖v‖pp

)
+Cδ

(‖u‖p∗
p∗ + ‖v‖p∗

p∗
)
.

Thus,

Iλ(u, v) =

p
∥∥(u, v)∥∥p

E – λ

∫
RN

G(u, v)

≥ 
p
∥∥(u, v)∥∥p

E – λδ
(‖u‖pp + ‖v‖pp

)
– λCδ

(‖u‖p∗
p∗ + ‖v‖p∗

p∗
)
.

In connection with ‖u‖pp + ‖v‖pp ≤ C‖(u, v)‖pE , we may choose δ ≤ (pλC)– such that

Iλ(u, v) ≥ 
p

∥∥(u, v)∥∥p
E – λCδ

(‖u‖p∗
p∗ + ‖v‖p∗

p∗
)
.

The fact p∗ > p implies the desired conclusion. �
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Lemma . Under the assumptions of Lemma ., for any finite dimensional subspace
F ⊂ E, we have

Iλ(u, v) → –∞ as (u, v) ∈ F ,
∥∥(u, v)∥∥E → ∞.

Proof Together with the fact H(s, t)≥ pa(|s|
α
p + |t| β

p ), we have

Iλ(u, v) ≤ 
p
∥∥(u, v)∥∥p

E – λa
(‖u‖α

α + ‖v‖β

β

)
for all (u, v) ∈ E.

Since all norms in a finite-dimensional space are equivalent and α,β > p, we complete the
proof. �

In the following, we will find special finite-dimensional subspaces by which we establish
sufficiently small mini-max levels.
Define the functional

�λ(u, v) =

p
∥∥(u, v)∥∥p

E – λa
∫
RN

(|u|α + |v|β)
.

Obviously, it follows that �λ ∈ C(E) and Iλ(u, v) ≤ �λ(u, v) for all (u, v) ∈ E.
Observe that

inf

{∫
RN

|∇φ|p : φ ∈ C∞


(
R

N ,R
)
,‖φ‖Lα (RN ) = 

}
= 

and

inf

{∫
RN

|∇ψ |p :ψ ∈ C∞


(
R

N ,R
)
,‖ψ‖Lβ (RN ) = 

}
= .

Then, for any δ > , there are φδ ,ψδ ∈ C∞
 (RN ,R) with ‖φδ‖Lα (RN ) = ‖ψδ‖Lβ (RN ) =  and

suppφδ , suppψδ ⊂ Brδ () such that ‖∇φδ‖pp,‖∇ψδ‖pp < δ.
Set eλ(x) = (φδ( p√

λx),ψδ( p√
λx)). Then supp eλ ⊂ B

λ
– 
p rδ

(). For t ≥ , we get

�λ(teλ) =
tp

p
‖eλ‖pE – aλtα

∫
RN

∣∣φδ

( p√
λx

)∣∣α – aλtβ
∫
RN

∣∣ψδ

( p√
λx

)∣∣β
= λ

–N
p Jλ(tφδ , tψδ),

where

Jλ(u, v) =

p

∫
RN

(|∇u|p + |∇v|p + (
A

(
λ
– 
p x

)
+V

(
λ
– 
p x

))(|u|p + |v|p))
– a

∫
RN

(|u|α + |v|β)
.

By direct computation, we have

max
t≥

Jλ(tφδ , tψδ) ≤ α – p

pα(αa)
p

α–p

{∫
RN

(|∇φδ|p +
(
A

(
λ
– 
p x

)
+V

(
λ
– 
p x

))|φδ|p
)} α

α–p

http://www.boundaryvalueproblems.com/content/2013/1/11


Zhang et al. Boundary Value Problems 2013, 2013:11 Page 11 of 13
http://www.boundaryvalueproblems.com/content/2013/1/11

+
β – p

pβ(βa)
p

β–p

{∫
RN

(|∇ψδ|p +
(
A

(
λ
– 
p x

)
+V

(
λ
– 
p x

))|ψδ|p
)} β

β–p
.

Since A() = , V () =  and ‖∇φδ‖pp,‖∇ψδ‖pp < δ, we know that there is �δ >  such that
for all λ ≥ �δ , we have

max
t≥

Iλ(tφδ , tψδ) ≤
(

α – p

pα(αa)
p

α–p
(δ)

α
α–p +

β – p

pβ(βa)
p

β–p
(δ)

β
β–p

)
λ
–N

p . (.)

Lemma . For any σ > , there is �σ >  such that λ ≥ �σ , there is w̄λ ∈ E with ‖w̄λ‖E >
ρλ, Iλ(w̄λ) ≤  and

max
t≥

Iλ(tw̄λ) ≤ σλ
–N

p ,

where ρλ is defined in Lemma ..

Proof This proof is similar to that of Lemma . in [], so we omit the details. �

5 Proof of Theorem 2

Proof By using Lemma ., for any σ >  with  < σ < α, we choose �σ >  and define
the mini-max level

cλ = inf
γ∈�λ

max
t∈[,]

Iλ
(
γ (t)

) ≤ σλ
–N

p for all λ ≥ �σ ,

where �λ = {γ ∈ C([, ],E) : γ () = ,γ () = w̄λ}.
By Proposition ., we know that Iλ satisfies the (PS)cλ condition. Hence, by the

mountain-pass theorem, there is (uλ, vλ) ∈ E such that Iλ(uλ, vλ) = cλ and I ′λ(uλ, vλ) = .
This shows (uλ, vλ) is a weak solution of (.).
Moreover, note that Iλ(uλ, vλ) ≤ σλ

–N
p and I ′λ(uλ, vλ) = . Then

Iλ(uλ, vλ) = Iλ(uλ, vλ) –

θ
I ′λ(uλ, vλ)(uλ, vλ)

=
(

p
–

θ

)∥∥(uλ, vλ)
∥∥p
E +

(

θ
–


p∗

)
λ

∫
RN

K(x)
(|uλ|p∗

+ |vλ|p∗)

+ λ

∫
RN

(

θ

(|uλ|pHs
(|uλ|p, |vλ|p

)
+ |vλ|pHt

(|uλ|p, |vλ|p
))

–

p
H

(|uλ|p, |vλ|p
))

≥
(

p
–

θ

)∥∥(uλ, vλ)
∥∥p
E .

Furthermore, together with the diamagnetic inequality, we prove that (uλ, vλ) satisfies the
estimate (.). The proof is complete. �
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