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Abstract. In this note, we prove some fixed point theorems for Kannan
type mappings. We will use the additional conditions as compactness
or asymptotic regularity or involutions. Our proofs are inspired by the
study of Lipschitzian mappings (Agarwal et al., Fixed point theory for
Lipschitzian-type mappings with applications, 2009).
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1. Kannan fixed point theorem

In 1968, Kannan [10] proved the following fixed point theorem.

Theorem 1.1. Let (X, d) be a complete metric space and let T : X → X be a
mapping such that there exists K < 1

2 satisfying

d(Tx, Ty) � K[d(x, Tx) + d(y, Ty)] for all x, y ∈ X. (1)

Then, T has a unique fixed point v ∈ X, and for any x ∈ X the sequence
of iterates {Tnx} converges to v and d(Tn+1x, v) � K · ( K

1−K )n · d(x, Tx),
n = 0, 1, 2, . . .

It is not difficult to see that Lipschitzian mappings and mappings satis-
fying (1) are independent, see [11]. Kannan’s theorem is important because
Subrahmanyam [14] proved that Kannan’s theorem characterizes the metric
completeness. That is, a metric space X is complete if and only if every map-
ping satisfying (1) on X with constant K < 1

2 has a fixed point. Contractions
(in the sense of Banach) do not have this property; Connell [5] gave an ex-
ample of metric space X such that X is not complete and every contraction
on X has a fixed point.

Here is an elementary proof of Kannan theorem. We will start from the
following technical lemma, see [8].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81611283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s11784-017-0402-8&domain=pdf


J. Górnicki

Lemma 1.2. Let C be a nonempty closed subset of a complete metric space
(X, d) and let T : C → C be a mapping such that there exists K < 1 satisfying
(1). Assume that there exist constants a, b ∈ R such that 0 � a < 1 and b > 0.
If for arbitrary x ∈ C there exists u ∈ C such that d(u, Tu) � a · d(x, Tx)
and d(u, x) � b · d(x, Tx), then T has at least one fixed point.

Proof. Let x0 ∈ C be an arbitrary point. Consider a sequence {xn} ⊂ C
satisfies

d(Txn+1, xn+1) � a · d(Txn, xn),

d(xn+1, xn) � b · d(Txn, xn), n = 0, 1, 2, . . .

Since

d(xn+1, xn) � b · d(Txn, xn) � b · an · d(Tx0, x0),

it is easy to see that {xn} is a Cauchy sequence in C. Because C is complete,
there exists v ∈ C such that limn→∞ xn = v. Then

d(Tv, v) � d(Tv, Txn) + d(Txn, xn) + d(xn, v)
� K[d(v, Tv) + d(xn, Txn)] + d(Txn, xn) + d(xn, v),

and

d(Tv, v) � K + 1
1 − K

· d(Txn, xn) +
1

1 − K
· d(xn, v)

� K + 1
1 − K

· an · d(Tx0, x0) +
1

1 − K
· d(xn, v) → 0

as n → ∞. Hence, Tv = v. �

Proof of Theorem 1.1. For any x ∈ X let u = Tx. Then

d(u, Tu) = d(Tx, Tu) � K[d(x, Tx) + d(u, Tu)],

d(u, Tu) � K

1 − K
· d(x, Tx),

where by assumption K
1−K < 1, and d(u, x) = d(Tx, x). Now, for arbitrary

x0 ∈ X we can inductively define a sequence {xn+1 = Txn}. By Lemma
1.2, this sequence is convergent, limn→∞ xn = v and Tv = v. Suppose z is
another fixed point of T . Then

0 < d(v, z) = d(Tv, Tz) � K[d(v, Tv) + d(z, Tz)] = 0,

a contradiction. Hence, T has unique fixed point v ∈ X.
Since for each x ∈ X,

d(Tn+1x, Tnx) � K[d(Tnx, Tn+1x) + d(Tn−1x, Tnx)],

d(Tn+1x, Tnx) � K

1 − K
· d(Tnx, Tn−1x),
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we have

d(Tn+1x, v) � K[d(Tnx, Tn+1x) + d(v, Tv)] = K · d(Tn+1x, Tnx)

� K ·
(

K

1 − K

)n

· d(Tx, x), n = 0, 1, 2, . . . �

Remark 1.3. The contraction of Kannan type with constant K = 1
2 in com-

plete metric space does not guarantee the existence of fixed points of T , [11].
Kannan’s fixed point theorem and some of its generalizations are dis-

cussed in [9,12,13]. In particular, we have the following theorem (see [12]).

Theorem 1.4. Let (X, d) be a complete metric space and let T : X → X be a
mapping with the following property:

d(Tx, Ty) � Ad(x, Tx) + Bd(y, Ty) + Cd(x, y) for all x, y ∈ X, (2)

where A,B,C are nonnegative and satisfy A + B + C < 1. Then, T has a
unique fixed point v ∈ X, and for any x ∈ X the sequence of iterates {Tnx}
converges to v.

Proof. It is analogous to the last one. �

Note that this theorem is stronger than Banach’s and Kannan’s fixed
point theorems. Let X = [0, 1] be with usual metric and T : [0, 1] → [0, 1] be
a mapping defined by Tx = x

3 for 0 � x < 1 and T1 = 1
6 . T does not satisfy

Banach’s condition because it is not continuous at 1. Kannan’s condition (1)
also cannot be satisfied because d(T0, T 1

3 ) = 1
2 [d(0, T0) + d(13 , T

1
3 )]. But it

satisfies condition (2) if we put A = 1
6 , B = 1

9 and C = 1
3 .

2. Compactness

Edelstein [6] proved the following.

Theorem 2.1. Let (X, d) be a compact metric space and let T : X → X be a
mapping. Let us suppose that d(Tx, Ty) < d(x, y) for all x, y ∈ X with x �= y.
Then, T has a unique fixed point.

Now, we prove the following theorem.

Theorem 2.2. Let (X, d) be a compact metric space and let T : X → X be a
continuous mapping. Let us suppose that

d(Tx, Ty) <
1
2
[d(x, Tx) + d(y, Ty)] for all x, y ∈ X with x �= y.

Then, T has a unique fixed point v ∈ X and for each x ∈ X the sequence
of iterates {Tnx} converges to v.

Proof. Trivial example of such mapping is T : [0, 1] → [0, 1] defined by Tx =
c, c ∈ [0, 1], where the set [0, 1] with the usual metric is a compact metric
space.
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The function f : X → [0,+∞) defined by f(x) = d(x, Tx) is continuous.
In view of compactness, there exists a point v ∈ X such that f(v) = inf{f(x) :
x ∈ X}. If v �= Tv, then

d(Tv, T 2v) <
1
2
[d(v, Tv) + d(Tv, T 2v)],

d(Tv, T 2v) < d(v, Tv), (3)

and hence

f(Tv) = d(Tv, T 2v) < d(v, Tv) = f(v),

a contradiction. Hence, v = Tv. It is obvious that v is unique.
Now take any x ∈ X and define a sequence {xn = Tnx}. If x = v, then

xn = v, n = 1, 2, . . .. Let x �= v. Because

d(Tn+1x, Tnx) <
1
2
[d(Tnx, Tn+1x) + d(Tn−1x, Tnx)],

hence

d(Tn+1x, Tnx) < d(Tnx, Tn−1x) < . . . < d(Tx, x),

and the sequence of nonnegative numbers bn = d(Tn+1x, Tnx) is nonde-
creasing and thus convergent. Let 0 � b = limn→∞ bn. The assumption that
b > 0 leads to the contradiction. Again by compactness of X the sequence
{Tnx} contains a converging subsequence {Tnix} such that Tnix → z ∈ X
as i → ∞. Because T is continuous

0 < b = lim
i→∞

d(Tni+1x, Tnix) = d(Tz, z),

i.e. z �= v. Moreover, by (3),

0 < b = lim
i→∞

d(Tni+2x, Tni+1x) = d(T 2z, Tz) < d(Tz, z) = b,

a contradiction. Thus, b = 0. Since

d(Tn+1x, v) = d(Tn+1x, Tv) <
1
2
[d(Tnx, Tn+1x) + d(v, Tv)]

=
1
2

· d(Tn+1x, Tnx) → b = 0

as n → ∞, we have limn→∞ d(Tn+1x, v) = 0. �

The result holds also in the following case (see also [9]):

Theorem 2.3. Let (X, d) be a compact metric space and let T : X → X be a
continuous mapping. Let us suppose that

d(Tx, Ty) < Ad(x, Tx) + Bd(y, Ty) + Cd(x, y)
for all x, y ∈ X and x �= y,

where A,B,C are positive and satisfy A+B +C = 1. Then, T has a unique
fixed point v ∈ X and for each x ∈ X the sequence of iterates {Tnx} converges
to v.

Proof. It is similar to the proof of Theorem 2.2. �
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Question 2.4. Does there exist a complete but noncompact metric space
(X, d) and a continuous mapping T : X → X such that

d(Tx, Ty) <
1
2
[d(x, Tx) + d(y, Ty)] for all x, y ∈ X with x �= y,

and T is fixed point free?

3. Asymptotic regularity

Let (X, d) be a metric space. A mapping T : X → X satisfying the condition
limn→∞ d(Tn+1x, Tnx) = 0 for all x ∈ X is called asymptotically regular [3].
Asymptotically regular mappings are also studied in [2,4].

Let X = {0} ∪ [1, 2] with the usual metric. A mapping T : X → X
defined by T0 = 1 and Tx = 0 for 1 � x � 2 is satisfying (1) with K = 1

2 and
T is fixed point free. The iterative sequence {xn = Tn0} is not convergent,
so T is not asymptotically regular.

Now, we prove the following theorem.

Theorem 3.1. If (X, d) is a complete metric space and T : X → X is an
asymptotically regular mapping such that there exists K < 1 satisfying (1).
Then, T has a unique fixed point v ∈ X.

Proof. Let x ∈ X and define a sequence {xn = Tnx}. According to asymp-
totic regularity, we get for m > n,

d(Tn+1x, Tm+1x) � K · {d(Tnx, Tn+1x) + d(Tmx, Tm+1x)} → 0

as n → ∞. This shows that {Tnx} is a Cauchy sequence in X. Because X is
complete, there exists v ∈ X such that limn→∞ Tnx = v. Then

d(v, Tv) � d(v, Tn+1x) + d(Tn+1x, Tv)
� d(v, Tn+1x) + K · {d(Tnx, Tn+1x) + d(v, Tv)},

and hence

d(v, Tv) � K

1 − K
· d(Tn+1x, Tnx) +

1
1 − K

· d(v, Tn+1x) → 0

as n → ∞, it follows that Tv = v. Of course such the fixed point is exactly
one, so for each x ∈ X the sequence of iterates {Tnx} converges to v. �

A Kannan type mapping T : X → X such that

d(Tx, Ty) < d(x, Tx) + d(y, Ty) for all x, y ∈ X with x �= y,

and asymptotically regular may not have a fixed point. It can be seen from
the following example.

Example 3.2. Let X = [0, 1] be with usual metric and T : [0, 1] → [0, 1]
be a mapping defined by T0 = 1

2 and Tx = x
2 for 0 < x � 1. Then for

0 < x < y � 1,

|Tx − Ty| =
1
2
(y − x) <

1
2
(x + y) = |x − Tx| + |y − Ty|.
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Moreover, for 0 < x � 1,

|T0 − Tx| =
1
2

− x

2
<

1
2

+
x

2
= |0 − T0| + |x − Tx|.

Thus

|Tx − Ty| < |x − Tx| + |y − Ty| for all x, y ∈ [0, 1], x �= y.

Of course T is an asymptotically regular and fixed point free.

Similarly to Theorem 3.1 we can prove the following:

Theorem 3.3. If (X, d) is a complete metric space and T : X → X is an
asymptotically regular mapping such that there exists M < 1 satisfying

d(Tx, Ty) � M [d(x, Tx) + d(y, Ty) + d(x, y)] for all x, y ∈ X.

Then, T has a unique fixed point v ∈ X.

Proof. Let x ∈ X and define a sequence {xn = Tnx}. According to asymp-
totic regularity, we get for m > n,

d(Tn+1x, Tm+1x) � M · {d(Tnx, Tn+1x) + d(Tmx, Tm+1x) + d(Tnx, Tmx}
� 2M · {d(Tnx, Tn+1x) + d(Tmx, Tm+1x)}

+M · d(Tn+1x, Tm+1x),

so

d(Tn+1x, Tm+1x) � 2M
1 − M

· {d(Tnx, Tn+1x) + d(Tmx, Tm+1x)} → 0

as n → ∞. This shows that {Tnx} is a Cauchy sequence in X. Because X is
complete, there exists v ∈ X such that limn→∞ Tnx = v. Then

d(v, Tv) � d(v, Tn+1x) + d(Tn+1x, Tv)
� d(v, Tn+1x) + M · {d(Tnx, Tn+1x) + d(v, Tv) + d(Tnx, v)},

and hence

d(v, Tv) � M

1 − M
· {d(Tn+1x, Tnx) + d(Tnx, v)} +

1
1 − M

· d(v, Tn+1x)→0

as n → ∞, it follows that Tv = v. Finally, we prove that there is only one
fixed point. Let v, u be two different fixed points. Then

d(u, v) = d(Tu, Tv) � M · {d(u, Tu) + d(v, Tv) + d(u, v)} = M · d(u, v)
and we would have 1 � M , a contradiction. Hence T has a unique fixed point,
so for each x ∈ X the sequence of iterates {Tnx} converges to v. �

4. Involutions

A mapping T : X → X is called an involution if T 2 = I, where I denotes
the identity map. Not much is known even about Lipschitz involution. For
example, it is known the following result [7] (for simple proof see [8]).
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Theorem 4.1. Let C be a nonempty closed convex subset of a Banach space
and let T : C → C be a mapping. If T 2 = I and if for arbitrary x, y ∈ C we
have ‖Tx − Ty‖ � L · ‖x − y‖ where L is constant such that L < 2, then T
has a fixed point in C.

Question 4.2. Does there exist 2-Lipschitz involution of a nonempty closed
convex set in a Banach space which has no fixed point?

Probably for Kannan type mappings, the situation is more difficult.
Here is an example Kannan’s type mapping for which T 2 = I.

Example 4.3. Let X = [0, 1] be with usual metric and let T : [0, 1] → [0, 1]
be a mapping defined by Tx = 1 − x. If |x − Tx| = a, |y − Ty| = b, then (it
can be easily visualized through a simple drawing)

|Tx − Ty| =
1
2
(a + b) =

1
2
[|x − Tx| + |y − Ty|], x, y ∈ [0, 1],

hence, T is a Kannan type mapping with constant K = 1
2 . Of course T is an

involution.

Let X be a Banach space, T : X → X be a mapping such that there
exists K < 1 satisfying (1). Assume that for a given element x ∈ X the
equation 2u − Tu = x has a solution in X (a similar case is described in
[3]). For example, if Tu = 1 − u, u ∈ [0, 1] (see Example 4.3), then for any
x ∈ [0, 1] a solution of the equation is u = x+1

3 .

Theorem 4.4. Let C be a nonempty closed convex subset of a Banach space
X and let T : C → C be a mapping such that T 2 = I and that there exists
K < 1 satisfying (1). If for each x ∈ C the equation 2u − Tu = x has a
solution in C, then T has a unique fixed point in C.

Proof. We will use a slightly modified version of Lemma 1.2. For any x ∈ C
let u = 1

2 (x + Tu). Then

‖u − Tu‖ =
1
2
‖T 2x − Tu‖ � K

2
(‖x − Tx‖ + ‖u − Tu‖)

and

‖u − Tu‖ �
K
2

1 − K
2

· ‖x − Tx‖,

where by assumption a =
K
2

1−K
2
< 1. Using the triangle inequality,

‖u − x‖ =
1
2
‖Tu − x‖ � 1

2
· (‖Tu − u‖ + ‖u − x‖),

and we get

‖u − x‖ � ‖u − Tu‖ � a · ‖x − Tx‖.
Now, for arbitrary x0 ∈ C we can inductively define a sequence {xn} ⊂ C in
the following manner xn+1 = 1

2 (xn + Txn+1), n = 0, 1, 2, . . . By Lemma 1.2,
this sequence is convergent: limn→∞ xn = v and Tv = v. It is obvious that v
is unique. �
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