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Abstract

Background: Spinal cord atrophy occurs early in multiple sclerosis (MS) and impacts disability. The therapeutic
effect of interferon beta-1a (IFNβ-1a) on spinal cord atrophy in patients with relapsing-remitting (RR) MS has not
been explored.

Methods: We retrospectively identified 16 consecutive patients receiving weekly intramuscular IFNβ-1a for 2 years
[baseline age (mean ± SD) 47.7 ± 7.5 years, Expanded Disability Status Scale score median (range) 1.5 (0–2.5), timed
25-foot walk 4.6 ± 0.7 seconds; time on treatment 68.3 ± 59.9 months] and 11 sex- and age-matched normal
controls (NC). The spinal cord was imaged at baseline, 1 and 2 years later with 3T MRI. C1-C5 spinal cord volume
was measured by an active surface method, from which normalized spinal cord area (SCA) was calculated.

Results: SCA showed no change in the MS or NC group over 2 years [mean annualized difference (95 % CI) MS:
−0.604 mm2 (−1.352, 0.144), p = 0.106; NC: −0.360 mm2 (−1.576, 0.855), p = 0.524]. Between group analysis indicated no
differences in on-study SCA change [MS vs. NC; year 1 vs. baseline, mean annualized difference (95 % CI) 0.400 mm2

(−3.350, 2.549), p = 0.780; year 2 vs. year 1: −1.196 mm2 (−0.875, 3.266), p = 0.245; year 2 vs. baseline −0.243 mm2

(−1.120, 1.607), p = 0.712].

Conclusion: Established IFNβ-1a therapy was not associated with ongoing spinal cord atrophy or any difference
in the rate of spinal cord volume change in RRMS compared to NC over 2 years. These results may reflect a
treatment effect. However, due to sample size and study design, these results should be considered preliminary
and await confirmation.
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Background
Multiple sclerosis (MS) is a disease of the CNS charac-
terized by lesions and atrophy in both the brain and
spinal cord [1]. Measurement of spinal cord atrophy is
of growing interest due to improving MRI technology,
regarding both scan acquisition and segmentation tech-
niques, facilitating its quantification [2–7]. In addition, a
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myriad of studies have shown that such atrophy occurs
early in the disease course and is a proposed contributor
to neurologic disability [1, 5, 8]. Despite the availability
of more than 10 disease-modifying immunotherapies for
the treatment of MS, few studies have assessed the-
rapeutic effects on spinal cord atrophy [8–14]. Such a
pursuit might have relevance in complementing the in-
formation on disease severity and treatment effects ob-
tained from brain imaging. In support of this concept,
spinal cord metrics provide a unique contribution to
brain metrics in modeling the relationship between MRI
and clinical status in MS [15]. In addition, a growing
body of evidence indicates that spinal cord involvement
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may occur and progress independently from brain in-
volvement [8, 16–19].
Interferon β-1a (IFNβ-1a), given intramuscularly each

week, is an approved MS immunotherapy that has been
shown to limit relapse rate, delay the time to a sus-
tained increase in physical disability, and limit cerebral
MRI-defined lesion activity and burden of disease in
patients with relapsing forms of the disease [20–22]. In
addition, studies have indicated the ability of weekly
intramuscular IFNβ-1a to limit the rate of brain atro-
phy [23, 24]. However, no studies to date have exam-
ined spinal cord atrophy treatment effects in patients
with relapsing forms of MS receiving weekly intramus-
cular IFNβ-1a. We performed a pilot study to assess
the 2 year change in spinal cord volume associated with
established IFNβ-1a treatment in comparison to healthy
subjects.
Methods
Subjects
Baseline demographic and clinical data of the MS and
normal control (NC) groups are summarized in Table 1.
We retrospectively analyzed 16 consecutive patients with
relapsing-remitting MS (RRMS) receiving established 30
mcg weekly intramuscular IFNβ-1a (Avonex, Biogen
Inc., Cambridge, MA) and 11 NC. This was an explora-
tory retrospective non-randomized two-arm observa-
tional preliminary study. All MS subjects were identified
by chart review using the following inclusion criteria:
RRMS [25], age 18 to 60 years, and an Expanded Dis-
ability Status Scale (EDSS) [26] score of 0–5. Patients
were required to have a baseline, 1 year, and 2 year 3T
MRI scan available. Clinical evaluation, including EDSS
scoring and timed 25-foot walk (T25FW) [27], were
assessed within 3 months of MRI by the treating neur-
ologist at the Partners MS Center. When comparing
groups on baseline characteristics, age and sex distribu-
tions were similar (Table 1). This study was approved by
our institution’s research ethics committee.
Table 1 Baseline demographics and clinical data

Mult

Number of subjects 16

Age (years) 47.7

Women, number (%) 14 (8

Disease duration (years) 15.0

Expanded Disability Status Scale score, median (range) 1.5 (0

Timed 25-foot walk (seconds) 4.6 ±

Time on interferon β-1a (months) 68.3

Key: data are presented as mean ± standard deviation (range), unless otherwise ind
**Fisher’s exact test
MRI acquisition
All subjects underwent spinal cord 3T MRI using the
same acquisition protocol and scanner (GE Signa, General
Electric Healthcare, Milwaukee, WI). The scan protocol
has been detailed previously [28]. 2D T2-weighted fast
spin-echo imaging of the whole spinal cord was per-
formed using 137–192 axial slices without gaps (TR/
TE: 5933.34–6183.34/110.24–112.48 ms; voxel size
0.9375 × 0.9375 × 3 mm; number of signal averages: 2;
field of view: 24 × 19 cm; scan duration: 18–38 min).
Every patient, except for 4, had a TR of 6166.7 ms; the
majority had a TE of 110.24 ms. We employed an 8
channel phased array coil, motion compensation, and
interleaving, but no cardiac gating. Spinal cord imaging
began superiorly at the base of the cerebellum. To en-
sure consistency between baseline and follow-up scans,
patients were always positioned in the same orientation
(head first with shoulders against the coil). We relied
on T2-weighted images for cord volume determinations
based on our previous work showing similar results be-
tween T1- and T2-derived spinal cord volume data, and
no confounding effect of spinal cord T2 lesions on such
determinations [29]. Scans were conducted at baseline,
1 and 2 years later. Sample images are shown in Fig. 1.

MRI analysis
Image analysis was performed by a validated active sur-
face method [2] using Jim (v.7, Xinapse Systems, West
Bergholt, UK; www.xinapse.com). A marker was placed
at the center of the spinal cord on the most superior
axial slice of C1 in which the cerebellum was no longer
visible. Additional markers were then placed in the cen-
ter of the cord on every fifth slice until the bottom of C5
was reached. The active surface method was then ap-
plied to automatically produce regions-of-interests by
distinguishing between the contour of the cord and the
surrounding CSF. Total spinal cord volume was then
calculated for C1-C5, from which the normalized cross-
sectional spinal cord area (SCA) was derived by dividing
by the total number of axial slices [30]. Analysis was
iple sclerosis Normal controls p value

11 –

± 7.5 (34–58) 43.1 ± 7.9 (30–53) 0.15*

8 %) 8 (73 %) 0.37**

± 10.3 (4–35) – –

–2.5) – –

0.7 (3–6) – –

± 59.9 (4–156) – –

icated; disease duration = years from first symptoms; *two-sample t-test;

http://www.xinapse.com


Fig. 1 Sample images and segmentations results. Representative baseline cervical spinal cord T2-weighted axial images (taken at C3) from three
patients with RRMS on interferon β-1a treatment. The corresponding region-of-interest (red oval) resulting from the semiautomated cord contouring
tool is also shown. The normalized spinal cord area (SCA) for each patient, determined from C1-C5, is listed below the images. a A patient with a
disease duration (DD) of 19.4 years, Expanded Disability Status Scale (EDSS) score of 2.0, and timed 25-foot walk (T25FW) of 4.0 s. b A patient with DD
4.4 years, EDSS 2.5, and T25FW 5.7 s. c A patient with DD 24.4 years, EDSS 1.5, T25FW 4.0 s, in whom successful spinal cord contouring was performed
despite the presence of a T2 hyperintense spinal cord lesion (indicated with arrow)

Fig. 2 Spinal cord area over 2 years: individual subject results. Change in normalized spinal cord area over 2 years in each subject, including
patients with relapsing-remitting multiple sclerosis (MS) on interferon β-1a treatment (IFNβ-1a) (top) and normal controls (bottom)
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performed by two trained observers who were blinded
to both subject group and clinical data. Manual adjust-
ments were applied to the final output maps as neces-
sary. The high reliability of this method has already been
established [29]. Sample segmentations are shown in
Fig. 1. In addition, for descriptive purposes only and to
assess to what extent patient’s had overt spinal cord
pathology, the number of spinal cord lesions in the C1-
C5 area, and the entire spinal cord was determined for
each subject by the same trained observers.

Statistical analysis
Baseline characteristics between groups were compared
using two-sample t-tests and Fisher’s exact tests. One-
sample t-tests and two-sample t-tests were employed to
analyze the on-study change in SCA within each cohort
and between MS and NC, respectively. Relationships be-
tween clinical characteristics and SCA were determined
using Spearman correlations. A p < 0.05 was considered
statistically significant; a p > 0.05 but <0.10 was consid-
ered a trend.

Results
The results are presented in Figs. 1, 2, 3, 4 and Tables 2, 3.

Baseline comparisons
In the MS patients, a significant inverse correlation was
observed between baseline SCA and disease duration
(Spearman r = −0.518, p = 0.042, Table 2, Fig. 4). No sig-
nificant associations were found between baseline SCA
Fig. 3 On-study change in spinal cord area: comparison of patient and con
relapsing-remitting multiple sclerosis (MS) on interferon β-1a treatment v
error bars are shown. SCA showed no change in the MS (p = 0.106) or NC
differences in on-study SCA change (year 1 vs. baseline, p = 0.780; year 2
and baseline age, EDSS score, or T25FW (all p > 0.05,
Table 2).

On-study spinal cord change: within group comparisons
Considering the MS subgroup alone, no significant change
was seen in SCA over the 2 year study period [mean an-
nualized difference (95 % CI): −0.604 mm2 (−1.352, 0.144),
p = 0.106]. Similarly, when assessing the on-study change
in SCA within the NC cohort, no significant difference
was detected over 2 years [−0.360 mm2 (−1.576, 0.855),
p = 0.524] (Table 3, Figs. 2 and 3).

On-study spinal cord area change: between group
comparisons
When comparing the on-study changes in SCA between
the MS and NC cohorts, no significant differences were
detected [MS vs. NC mean annualized change difference
(95 % CI) year 2 vs. baseline: −0.243 mm2 (−1.120,
1.607), p = 0.712]. Analysis comparing the change in
SCA from baseline to year 1 and from year 1 to year 2
also indicated no significant differences between the two
cohorts [year 1 vs. baseline: 0.400 mm2 (−3.350, 2.549),
p = 0.780; year 2 vs. year 1: −1.196 mm2 (−0.875, 3.266),
p = 0.245] (Table 3, Figs. 2 and 3).

Spinal cord lesions
Spinal cord lesions in the C1-C5 area were detected in
10 subjects (63 %) from the MS cohort at baseline [mean
number ± SD (range) per patient: 1.38 ± 1.45 (0–4)
lesions] (Fig. 1). An analysis of baseline data showed that
the MS subjects with cervical spinal cord lesions had a
trol groups. Normalized spinal cord area (SCA) in patients with
s. normal controls (NC) over 2 years. Means and standard deviation
(p = 0.524) groups over 2 years. Between group analysis indicated no
vs. year 1, p = 0.245; year 2 vs. baseline, p = 0.712). See also Table 3



Fig. 4 Spinal cord atrophy is related to disease duration. The scatter plot depicts the significant association in the MS group between decreasing
normalized cervical spinal cord area and increasing disease duration at baseline (Spearman r = −0.518, p = 0.042)
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SCA of 63.22 ± 12.86 mm2, and the 6 MS subjects with-
out lesions had a SCA of 75.2 ± 11.71 mm2. This differ-
ence was not statistically significant, but showed a trend
(p = 0.082). The number of lesions per patient in the
whole spinal cord was 3.00 ± 3.33 (0–12) at baseline,
3.69 ± 3.66 (0–14) at year 1, and 3.44 ± 2.61 (0–9) at year
2. Considering the whole spinal cord, most of the MS
subjects had spinal cord lesions; only five patients (31 %)
were free of lesions at baseline. This was reduced to 3
subjects (19 %) by year 2. No spinal cord lesions were
detected in the NC group at any time point.

Discussion
In this pilot study, we explored the effect of IFNβ-1a
therapy on spinal cord atrophy over 2 years in patients
with RRMS. Patients did not develop any atrophy over 2
years and had no difference in their spinal cord volume
change as compared to healthy volunteers. This was a
“real world” retrospective study without any comparison
patient group, such as untreated patients. The sample
size was small. Thus, the results should be interpreted
with caution and the study design does not permit any
Table 2 Relationship between baseline cervical spinal cord area
and clinical characteristics in the multiple sclerosis group

rs p value

Disease duration −0.518 0.042*

Age −0.291 0.273

Expanded Disability Status Scale score 0.170 0.529

Timed 25-foot walk 0.114 0.675

Key: rs = Spearman’s correlation coefficient; *p < 0.05; see also Fig. 4
strong conclusion regarding a treatment effect of
IFNβ-1a. Nonetheless, the data provided here are valu-
able in that very few studies have examined spinal
cord metrics under treatment with disease-modifying
MS medications; most of the previous studies have fo-
cused on progressive rather than relapsing forms of
the disease [8–14]. Thus, we provide a unique set of
preliminary results that could serve as a basis for fur-
ther studies on the role of spinal cord imaging in
treatment monitoring in RRMS.
Spinal cord atrophy has been reported to occur in the

early stages of MS, such as in patients with clinically iso-
lated demyelinating syndromes or RRMS [1, 31–33].
However, the stage of the appearance of spinal cord atro-
phy is controversial; other studies have not confirmed
these results and have contended that spinal cord atrophy
most commonly develops in the later stages of RRMS or
in progressive forms of the disease [2, 6, 9, 10, 30, 34]. In
addition, transient changes such as inflammation and
edema may increase spinal cord volume, particularly early
in the MS disease course, and serve to offset or mask on-
going volume loss due to atrophy [35]. Thus, our study
may have suffered from a diagnostic sensitivity bias in that
the lack of spinal cord atrophy may have reflected the
early disease stage of our patients rather than the effect of
therapy. However, this was tempered by the observation
that spinal cord lesions were quite common in our
patients.
In the present study, we employed a highly reprodu-

cible semiautomated segmentation tool to measure
spinal cord volume [2], which was normalized by our
established method [30]. We applied this segmentation



Table 3 Spinal cord area change over 2 years

Multiple sclerosis Normal controls MS vs. NC

p value % change p value % change p value

Year 1 - Baseline −0.673 (−2.463, 1.117) 0.435* −0.41 −1.073 (−3.607, 1.460) 0.367* −0.11 0.400 (−3.350, 2.549) 0.780**

Year 2 - Year 1 −0.710 (−2.482, 1.062) 0.406* −0.55 0.486 (−0.768, 1.739) 0.408* 0.15 −1.196 (−0.875, 3.266) 0.245**

Year 2 - Baseline −0.604 (−1.352, 0.144) 0.106* −1.64 −0.360 (−1.576, 0.855) 0.524* −0.78 −0.243 (−1.120, 1.607) 0.712**

Key: mean annualized change in normalized cervical spinal cord area in mm2 (95 % confidence interval) is reported; in addition, the median annualized percent
change (%) is reported; the second (earlier) time point was subtracted from the first (later) time point listed; MS relapsing-remitting multiple sclerosis, NC normal
controls, *one-sample t-test to assess the within group change; **two-sample t-test to assess the between group difference in changes
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pipeline to 2D images, given their availability in this
retrospective study and our previous demonstration that
these images showed 1) sensitivity to disease-specific ef-
fects and 2) high reproducibility [29]. We did not have
high-resolution 3D images available in this data set,
which have been commonly used by several groups to
effectively measure spinal cord volume [16, 36–38]. In
addition, newer fully automated methods of contouring
spinal cord volume have become available and may have
relevance to MS [3, 6, 7], which we did not employ in
this study. Thus, we cannot exclude the possibility that
our technique, both on the basis of scan acquisition and
post-processing methodology, may have lacked sensitiv-
ity to ongoing spinal cord atrophy in these patients, irre-
spective of a drug treatment effect.
Although we had a small sample size, we chose to test

the relationship between SCA and clinical status in the
MS group at baseline, to explore the validity of our re-
sults. We failed to find any significant correlations be-
tween SCA and measures of overall physical disability
(EDSS score) or ambulatory function (T25FW). How-
ever, we showed that SCA significantly correlated in-
versely with disease duration, indicating that spinal cord
atrophy was linked to advancing disease duration. Previ-
ous studies have shown inconsistent results regarding
the relationship between spinal cord atrophy and clinical
status in MS. Some studies have shown a correlation be-
tween spinal cord atrophy and advancing EDSS score,
[2, 4, 6, 7, 10, 15, 17, 18, 29, 30, 33, 34, 39], while others
have not [1, 8, 10]. A significant relationship between
spinal cord atrophy and ambulatory dysfunction on the
T25FW has been shown in some [4, 6, 30] but not all
studies [18, 29]. Furthermore, a growing body of evidence
indicates that spinal cord-disability relationships are more
strongly present in patients with advanced disability and
progressive stages of the disease [1, 4, 8, 9, 18, 34, 39], the
stage at which spinal cord atrophy is most commonly
seen [2, 6, 10, 30, 34]. Therefore, in addition to the
small sample size, our inability to show a relationship
between SCA and disability measures may reflect the
restricted range of our mildly disabled relapsing-
remitting stage patients. Nonetheless, the link we
showed between SCA and disease duration is consist-
ent with previous work [7, 33, 34] and provides some
reassurance of the validity of the SCA measure
employed in our study.

Conclusion
Established IFNβ-1a therapy was not associated with on-
going spinal cord atrophy or any difference in the rate of
spinal cord volume change in RRMS compared to NC
over 2 years. These results may reflect a treatment effect.
However, due to sample size and study design, these re-
sults should be considered preliminary and await con-
firmation in larger prospective studies.
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