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1 Introduction

An increasingly compelling connection has been emerging between entropy and geome-

try ever since Bekenstein and Hawking assigned an entropy to a quantum black hole.

Gauge/gravity duality [1–3] relates the entropy of a thermal state in quantum field theory

to the entropy of a black holes in the gravity dual. The Ryu-Takayanagi proposal [4, 5]

gives a holographic formula for the entanglement entropy in conformal field theory associ-

ated with a spatial region A in terms of the area of a minimal surface in the bulk gravity

theory subtended by the region A. For conformal field theories with interfaces or bound-

aries, the entanglement entropy provides information on the degeneracy of the ground state

g-function, also referred to as the interface or boundary entropy [6].

Superconformal gauge theories in which an interface, a defect, or a boundary is pre-

served by part of the superconformal symmetry have been the subject of intense study,

in large part because these theories often provide solvable yet non-trivial deformations of

the original theory. Such studies include probe brane constructions [7]; the construction of

two-dimensional conformal interfaces by the folding trick [8]; the discovery of topological

defects and their algebra [9, 10]; the analysis of supersymmetry preserving interfaces in

four-dimensional N = 4 super-Yang-Mills [11–14]; and the interplay between defect and

domain wall operators [15, 16]. Rich families of supersymmetric fully back-reacted solutions

have been constructed in Type IIB supergravity for supersymmetric interfaces in [18, 19]

and Wilson lines in [20, 21]; in M-theory for defects in [22–24]; and in various supergravities

for junctions of CFTs in two dimensions in [25–28].

A intriguing novel connection was proposed in [29] between the interface entropy in

certain two-dimensional CFTs and Calabi’s diastasis function of Kähler geometry. In string

theory, Kähler geometry governs compactifications which preserve various degrees of space-

time supersymmetry. The moduli spaces of the corresponding (2, 2) supersymmetric sigma

models generically have Kähler moduli and complex structure moduli components.

The Calabi diastasis function [30] may be defined for any Kähler manifold K with

Kähler form ω = i∂∂̄K and associated Kähler potential K. The Kähler form ω is invariant

under Kähler gauge transformations, which may be expressed in local complex coordinates

(t, t̄) by K(t, t̄)→ K(t, t̄)+Λ(t)+Λ̄(t̄), where Λ(t) is holomorphic. Calabi showed [30] that

the real-valued Kähler potential K(t, t̄) may be continued to a complex-valued potential

K(t1, t̄2) for independent points t1 and t2. The diastasis function,

D(1, 2) = K(t1, t̄1) +K(t2, t̄2)−K(t1, t̄2)−K(t2, t̄1) (1.1)

is then well-defined, invariant under Kähler gauge transformations, and preserved upon

restriction to a complex analytic submanifold of K. In the limit where the points t1, t2 are

infinitesimally near one another, D(1, 2) reduces to the Kähler metric on K.

Specifically, a formula was proposed in [29] for the g-function of an interface separating

(2, 2) supersymmetric CFTs with Kähler moduli t1 and t2 in terms of the diastasis function,

2 ln g = D(1, 2) (1.2)

– 2 –
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In turn, the g-function is related to the entanglement entropy of a spatial region of length

L which encloses the interface symmetrically, by the following relation [34],

Sε =
c

3
ln
L

ε
+ ln g (1.3)

The examples given in [29] to illustrate the relation (1.2) include sigma models with (2, 2)

supersymmetry, for target space T 2 as well as Calabi-Yau manifolds in the large volume

limit. A common feature of these examples is the fact that (1.2) holds only for a special sub-

class of interfaces which preserve some supersymmetry, and for interfaces where the moduli

of either the complex structure or the Kähler structure are held fixed across the interface.

1.1 Summary of results

In the present paper we shall produce evidence supporting the relation (1.2) between the

interface entropy and Calabi’s diastasis function using the holographically dual half-BPS in-

terface solutions [27] to Type 4b supergravity [31]. The fundamental property of these fami-

lies of solutions that makes this correspondence possible is the existence of a smooth projec-

tion from their (3m+2)-dimensional moduli space to a pair of points in the Kähler manifold

SO(2,m)/ (SO(2)× SO(m)). The points correspond to the two asymptotic AdS3 × S3 re-

gions of the interface, and are subject to the overall conservation of anti-symmetric tensor

field flux charge. The interface entropy is then determined by the Calabi diastasis function

evaluated at this pair of points, along with the common central charge of these regions.

Essential in making this connection is the fact that the holographic interface solution pre-

serves some supersymmetry. Note that supersymmetry was also a crucial ingredient on the

CFT side, as discussed in [29]. There is was shown that the relation of g-function and dias-

tasis function does not hold for a non-supersymmetric interface where both the Kähler and

complex moduli jump. A holographic example of this failure is given in section 8, where

it is shown that for a nonsupersymmetric Janus interface the g-function is related to the

geodesic distance between points in the moduli space rather than to the diastasis function.

Next, we shall define and evaluate the entanglement entropy of the half-BPS solutions

to Type 4b supergravity which are dual to N -junctions. The corresponding N -junctions

solutions were obtained explicitly in [27]. Their space-time manifold is of the formAdS2×S2

warped over a Riemann surface Σ with boundary ∂Σ. The solutions have N asymptotic

AdS3×S3 regions labelled by i = 1, · · · , N , each of which is characterized by a unit vector

κ̂i ∈ Rm+2 of vacuum expectation values of the un-attracted scalars, as well as a charge

vector µi ∈ Rm+2 which obeys1 µi · µi > 0, overall charge conservation
∑N

i=1 µi = 0,

as well as µi · κ̂i = 0. The data κ̂i, µi, subject to the above relations, account for the

2(m + 1)N −m − 2 moduli of these families of solutions, including for the central charge

ci ∼ µi · µi of each asymptotic region.

The supergravity fields of the general half-BPS N -junction solutions are completely

determined in terms of κ̂i and µi by the BPS equations and Bianchi identities [27]. We shall

prove a key result that all data are equivalently and uniquely determined by extremizing

the holographic entanglement entropy for given κ̂i and µi. This result may be interpreted as

1The dot product stands for the SO(2,m)-invariant inner product with signature (+ +− · · ·−).
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a realization (albeit in a “mini-superspace” sense) of the idea that gravitational equations

of motion follow from entanglement entropy (see e.g. [32, 33])

Finally, we shall derive generalizations applicable to the entanglement entropy of the

junctions of N ≥ 3 CFTs, each of which lives on a spatial half-line, and which are joined

at a single spatial point. We shall often refer to the entanglement entropy in this case as

junction entropy, and derive a general formula for the junction entropy of all such solutions

in terms of the data κ̂i and µi for i = 1, · · · , N . For special arrangements of the charges,

such as when all charge vectors being parallel to one another, we shall express the junction

entropy as a sum of terms each of which is governed by the diastasis function for a pair of

AdS3×S3 regions. We end by speculating on the significance of the junction entropy as an

N -point generalization of the diastasis function with N ≥ 3. We shall also briefly discuss

the possible significance of the special arrangements of charges upon which the junction

entropy reduces to a dependence on Calabi’s diastasis function only.

1.2 Organization

The remainder of this paper is organized as follows. In section 2 we review the six-

dimensional Type 4b supergravity solutions which are half-BPS and describe holographic

interfaces and junctions. In section 3 we calculate the entanglement entropy for the general

N -junction solution. In section 4 we analyze the Kähler structure of the moduli space of

half-BPS solutions and express the diastasis function in terms of the supergravity fields.

In section 5 we give a holographic proof of the relation (1.2) between the interface entropy

and the diastasis function for N = 2. In section 6 we calculate the entanglement entropy

of the holographic solutions which are dual to junctions of three CFTs. Specializing to the

case of parallel charges µi, or when κ̂i · µj = 0 for all i, j, we express the junction entropy

as a sum of diastasis functions of pairs of asymptotic data. In section 7 we present an

analogous treatment for the case of N -junctions. We close in section 8 with a calculation

of the entropy for a non-supersymmetric interface, and in section 9 with a discussion of

our results and future directions. Some review material and technical details of the UV

regularization of the holographic entropy are relegated to appendix A.

2 Holographic interfaces and junctions

The holographic dual to two-dimensional CFTs with an interface or a junction will be

formulated in terms of six-dimensional Type 4b supergravity [31], a family of theories

which contain a supergravity supermultiplet and m anti-symmetric tensor supermultiplets.

The bosonic fields consist of the metric, two-form fields of which 5 have self-dual and m

have anti-self dual field strength, and 5m scalars in the SO(5,m)/ (SO(5)× SO(m)) coset.

The fermionic fields consist of four negative chirality gravitinos and 4m positive chirality

spinors. Classically, the number m is arbitrary and the supergravity Bianchi identities

and field equations are invariant under SO(5,m,R). At the quantum level, however, the

absence of anomalies requires m = 5 or m = 21, and restricts invariance to the U-duality

group SO(5,m,Z). The theory corresponds to the low energy limit of Type IIB string

theory compactified respectively on the spaces T 4 or K3.

– 4 –
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The vacuum solution has space-time AdS3 × S3 and is invariant under the isometry

PSU(1, 1|2)×PSU(1, 1|2) Lie superalgebra. The dual CFT has a central charge related to

the radius of AdS3 by the Brown-Henneaux formula [35].

A half-BPS solution which is holographically dual to the interface of two CFTs interpo-

lates between two asymptotic AdS3×S3 regions with the same central charge. A half-BPS

solution dual to the junction of N different CFTs is characterized by a space-time with N

asymptotic AdS3 × S3 regions, in which the radii of the asymptotic AdS3 are subject to

certain mild inequalities. Regular solutions to Type 4b supergravity with these properties

exist for arbitrary m and have been constructed explicitly in [27, 36].

2.1 Half-BPS supergravity solutions in type 4b

In this section we shall briefly review the salient features of the half-BPS solutions to Type

4b supergravity of [27, 36] which are dual to interface and junction CFTs. The structure

of their space-time manifold is dictated by supersymmetry. It takes the form of AdS2×S2

warped over a Riemann surface Σ with boundary and enjoys a SO(2, 1)× SO(3) isometry.

The space-time metric ds2 of the solutions and its closed 3-form field strengths GA

with A = 1, · · · ,m+ 5, are given as follows,

ds2 = H
F+

F−
ds2
AdS2

+H
F−
F+

ds2
S2 +

F+F−
H
|dw|2

GA = dΨA ∧ ωAdS2 + dΦA ∧ ωS2 (2.1)

Here, w, w̄ are local complex coordinates on Σ, while ds2
AdS2

and ds2
S2 are the metrics

respectively of the manifolds AdS2 and S2 with unit radius, and ωAdS2 and ωS2 are their

respective volume forms. The remaining data, namelyH, F±, ΦA and ΨA are all real-valued

functions on Σ, which we shall now specify.2

The BPS equations and regularity conditions require H to be a positive harmonic

function in the interior of Σ which vanishes on the boundary ∂Σ of Σ. They also require

F 2
± to be positive in the interior of Σ and F− to vanish on ∂Σ. The BPS equations, along

with the Bianchi identities, then determine the remaining data in terms of an SO(5,m)-

vector Λ of meromorphic functions on Σ satisfying,

0 = Λ · Λ− 2(∂wH)2

F 2
± = Λ̄ · Λ± 2|∂wH|2 (2.2)

The dot product is taken with respect to the SO(5,m)-invariant metric η = diag(I5,−Im).

The real-valued flux potentials ΦA and ΨA are given in terms of the complex combination,

1√
2

(
ΦA − iΨA

)
=
H∂wH

F 2
+F

2
−

(
(Λ̄ · Λ̄) ΛA − (Λ̄ · Λ) Λ̄A

)
−
∫
dwΛA (2.3)

It is a fundamental result, obtained in [27], that the BPS equations require invariance of

half-BPS solutions under an SO(3) subgroup of the SO(5) factor of SO(5) × SO(m). The

2The data used in the notations of [27] are related to the data used here by f2
1 = HF+/F−, f

2
2 =

HF−/F+, and 4ρ2 = F+F−/H.
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SO(3) is minimal in SO(5) so that the vector of SO(5) decomposes under SO(3) as follows

5 = 3⊕1⊕1. As a result, the invariance of any SO(5,m) vector under this SO(3) requires

the vanishing of the corresponding components of the vector. We shall choose a gauge in

which GA = ΦA = ΨA = ΛA = 0 for A = 3, 4, 5.

Finally, the matrix of scalar fields V takes values in SO(5,m)/ (SO(5)× SO(m)), so

that we have V tηV = η, where η = diag(I5,−Im). We shall denote its components by

V = V (ρ,r)
A with ρ = 1, · · · , 5 and r = 6, · · · ,m+ 5. The SO(3) invariance of the solutions

implies that we should set V (ρ,r)
A = δρA for A = 3, 4, 5 as well as for ρ = 3, 4, 5. The

remaining V effectively takes values in the reduced space SO(2,m)/ (SO(2)× SO(m)), and

may be parametrized, uniquely up to rotations in SO(2)× SO(m), by the entries,

V ±A =
1√
2

(
V 1

A ± iV 2
A

)
V +

A =
(
λ̄A − |X|2λA

)
X (1− |X|4)−1 (2.4)

with |X|2 + |X|−2 = Λ̄ · Λ/|∂wH|2. In particular, the phase of the function X remains

undetermined, as it transforms non-trivially under SO(2) rotations in SO(2)× SO(m).

Note that the effective target space SO(2,m)/ (SO(2)× SO(m)) of the scalar fields

is the Kähler manifold which will govern the Calabi diastasis structure to be established

below.

2.2 Parametrization of the supergravity solutions

We limit attention here to the case where the Riemann surface Σ has only a single connected

boundary component and no handles, so that it may be modeled by the upper half plane.3

Positivity of H and F 2
± in the interior of Σ forces all poles xi of the harmonic function H to

lie on the real line, and Λ to have single and double poles at xi. Regularity of the solution

precludes Λ from having singularities away from the points xi.

Near each pole xi the metric becomes locally asymptotic to AdS3×S3 and corresponds

to a half-line CFT holographic dual. Thus a supergravity solution with N poles xi for

i = 1, · · · , N will produce a holographic dual consisting of a junction of N half-line CFTs.

The basic functions of these solution take the following form,

H = i

N∑
i=1

(
γi

w − xi
− γi
w̄ − xi

)

ΛA = −i
N∑
i=1

(
κAi

(w − xi)2
+

µAi
w − xi

)
(2.5)

The residues γi, κ
A
i , and µAi are real, with γi > 0. The index A ranges over A = 1, · · · ,m+5

with the understanding that SO(3) invariance sets ΛA = κAi = µAi = 0 for A = 3, 4, 5.

The residue µAi gives the charge (or flux) of the 3-form field strength GA across a

three-sphere S3
i in the asymptotic AdS3 × S3 region at the pole xi. Using (2.3) we find,

2
√

2π2µAi =

∫
S3
i

GA
N∑
i=1

µAi = 0 (2.6)

3Generalizations to Riemann surfaces with multiple boundaries and handles were discussed in [37].

– 6 –



J
H
E
P
1
0
(
2
0
1
4
)
0
9
3

The second equation above expresses overall charge conservation. The first equation of (2.2)

is equivalent to the following constraints for each i = 1, 2, · · · , N ,

κi · κi = 2γ2
i E(1)

i = 0

κi · µi = 0 E(2)
i = 0 (2.7)

where E(1)
i and E(2)

i are given as follows,

E(2)
i = µi · µi + 2

∑
j 6=i

κi · µj
xi − xj

− 2
∑
j 6=i

2γiγj − κi · κj
(xi − xj)2

E(1)
i =

∑
j 6=i

µi · µj
xi − xj

−
∑
j 6=i

κi · µj − µi · κj
(xi − xj)2

+ 2
∑
j 6=i

2γiγj − κi · κj
(xi − xj)3

(2.8)

For N ≥ 3, there exist three relations between E(1)
i and E(2)

i , namely for n = 0, 1, 2, we

have,
N∑
i=1

(
xni E

(1)
i − nx

n−1
i E(2)

i

)
= 0 (2.9)

Thus, the equations E(1)
i = E(2)

i = 0 constitute 2N − 3 independent constraints. It is

straightforward to verify the SL(2,R)-covariance of equations (2.7) under which µi is in-

variant while the other data transform as follows,

x′i =
axi + b

cxi + d
γ′i =

γi
(cxi + d)2

κ′i =
κi

(cxi + d)2
(2.10)

with a, b, c, d ∈ R and ad− bc = 1. The data xi, γi, κi, µi in the functions H and ΛA for the

N -junction solution contain 2N(m + 3) − 3 real parameters, taking into account that we

set κAi = µAi = 0 for A = 3, 4, 5, as well as the covariance under SL(2,R). The number of

charge conservation relations in (2.6) is m+2, while the number of independent constraints

in (2.7) is 4N − 3, leaving 2N(m+ 1)− (m+ 2) independent moduli.

2.3 Asymptotic AdS3 × S3 regions

To analyze the asymptotic behavior of the metric of the solutions, given in (2.1), we begin

by parametrizing the AdS2 factor in terms of the unit radius Poincaré patch metric,

ds2
AdS2

=
dz2 − dt2

z2
(2.11)

where t ∈ R denotes time, and z ∈ R+. Near the poles of the harmonic function H the

metric becomes locally asymptotic to AdS3×S3. The asymptotic behavior can be exhibited

by defining w = xi + e−x+iθ and expanding the metric functions in the limit x→ +∞,

ds2 =
√

2µi · µi
(
dx2 +

8γ2
i

µi · µi
e2x ds2

AdS2
+ dθ2 + sin2 θ ds2

S2

)
+O(e−2x) (2.12)

Since the AdS2 factor in (2.12) is conformal to the half line × time, the conformal boundary

of the metric contains N half-spaces, parameterized by t, z which are glued together at the

– 7 –
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boundary of AdS2 located at z = 0. Hence the holographic interpretation of the solution is

that of an N -junction where N different CFTs, each of which is defined on R+, are glued

together at a one-dimensional junction. It follows from (2.12) that the radius Ri of the i-th

asymptotic AdS3 region, and hence the central charge ci of the dual CFT, are given by,

R4
i = 2µi · µi ci =

6π2µi · µi
GN

(2.13)

where GN is the six dimensional Newton’s constant. The scalar fields of V lie in a the

Kähler coset space SO(2,m)/ (SO(2)× SO(m)). In the i-th asymptotic region the scalars

have the following limiting behavior,

V ±A(xi) = eiθi
(
κiA
2γi
± i µiA√

2µi · µi

)
(2.14)

where θi is the phase of the field X of (2.4) at the pole xi. Note that the second term

in (2.14) is completely determined by the charges µAi in the i-th asymptotic AdS3 region.

Consequently, these scalars are subject to an attractor mechanism. By contrast, the first

term in (2.14) is not fixed by the charges and the corresponding scalars are un-attracted.

2.4 Supergravity solutions dual to interfaces and junctions

There is no regular solution with N = 1, although relaxing the regularity conditions allows

for (singular) holographic duals of boundary CFT with only one asymptotic AdS region [28].

Firstly, we will considerN = 2 regular solutions with two asymptotic AdS3×S3 regions.

They are holographically dual to a half-BPS interface CFT. Charge conservation requires

the CFTs on both sides have the same central charge, but the values of un-attracted scalars

may jump across the interface. The N = 2 solution is therefore a realization of a Janus

configuration [17] in six dimensional supergravity.

Secondly, we consider N = 3 regular solutions with three asymptotic AdS3×S3 regions.

They are holographically dual to a junction of three CFTs. In this case charge conservation

allows the three CFTs which meet at the junction to have different central charges, and

correspond to a decoupling limit of different self-dual strings in six dimensions.

Thirdly, we consider N -junction regular solutions with N ≥ 4 asymptotic AdS3 × S3

regions, which are holographically dual to N different CFTs meeting at one point. Solving

the constraints of (2.7) and (2.8) is now considerably more involved than for 3-junctions

and interfaces, and no closed-form analytical solution is known at this time.

3 Entanglement entropy

In this section we shall calculate the entanglement entropy for the half-BPS interface and

junction solutions and extract the boundary entropy (or g-function) from the results. In

particular we shall discuss the required careful regularization of the integrals involved and

the cutoff dependence of the result. The connection to the diastasis function for N = 2,

N = 3, and N > 3 will be made in sections 5–7.

We choose the entangling region A to enclose the interface symmetrically. For the

N -junctions, we choose a symmetric star-shaped region (see figure 1 for an example of a

– 8 –



J
H
E
P
1
0
(
2
0
1
4
)
0
9
3

Figure 1. Junction of three CFTs and star shaped entangling surface A.

N = 3 junction) which extends the same distance in all half-spaces. The Ryu-Takayanagi

prescription [4] states that the entanglement entropy is given by the area of a minimal

surface in the bulk which encloses the boundary ∂A of the region A when it reaches the

asymptotic AdS boundary. This prescription works straightforwardly for three dimensional

spacetimes which asymptote to AdS3. For the BPS junctions we have to generalize the

prescription since the solution is a fibration of AdS2 × S2 over the upper half plane Σ.

The minimal area surface for the holographic entanglement entropy is given by holding

the AdS2 time t constant, setting z = L, and integrating over the two sphere S2 and the

Riemann surface Σ (see figure 2). The entanglement entropy is then given by the area of

this surface, and its expression may be read off using the metric of (2.1),

Se =
1

4GN

∫
Σ
|dw|2F 2

−

∫
S2

ωS2 =
π

GN

∫
Σ
|dw|2

(
Λ̄ · Λ− 2|∂wH|2

)
(3.1)

Here, GN is Newton’s constant. The second formula is obtained by integrating over S2 in

the first formula, and using the expressions for F 2
− given in (2.2).

The above formula for the entanglement entropy Se is formal, as the integration over Σ

diverges due to the presence of the poles of H and ΛA at the boundary of Σ. To regularize

these divergences, we introduce a cutoff by removing a (half-) disk of coordinate radius

εi > 0 around the pole xi for all i = 1, · · · , N (see figure 2).

Within the context of AdS/CFT, the cutoffs εi at different poles must be related to the

common UV-cutoff ε of the dual CFT. In appendix A, we shall provide a careful derivation

of the corresponding relation,

ε2
i =

4κi · κi
µi · µi

ε2

L2
(3.2)

using the Fefferman-Graham expansion.

Convergence of the integral in (3.1) for large |w| is guaranteed by the flux conservation

formula of (2.6). Still, to evaluate the integrals of individual terms in (3.1) arising from
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Figure 2. The AdS2 × S2 × Σ space-time for N = 3 junctions. The surface of minimal area is

localized in AdS2 at z = L, and encompasses all of S2 × Σ.

the substitution of (2.5), it is convenient to also introduce a large |w|-cutoff W so that

0 < |w| < W . The key integral needed to evaluate (3.1) is then given by,∫
Σ

|dw|2

(w − x)(w̄ − y)
=
π

2
ln

(
W 2

(x− y)2 + ε2

)
(3.3)

along with its derivatives in x and/or y. The result for the entanglement entropy becomes,

Se =
π2

GN
SR +

π2

2GN

N∑
i=1

µi · µi ln

(
µi · µiL2

8ε2

)
(3.4)

SR =

N∑
i=1

∑
j 6=i

(
2γiγj − κi · κj

(xi − xj)2
+
κj · µi − κi · µj

xi − xj
− 1

2
µi · µj ln

(xi − xj)2

γiγj

)

It is immediate that Se and SR are invariant under SL(2,R), which confirms that the

AdS/CFT motivated regularization procedure of (3.2) is also SL(2,R)-invariant.

3.1 Extrema of the entropy solve all constraints

We establish a remarkable equivalence between configurations of the data (xi, γi, κi, µi)

which satisfy the constraints E(1)
i = E(2)

i = 0 for i = 1, · · · , N , and those which provide

extrema of the entropy Se. To formulate this equivalence precisely, we begin by spelling out

the data that are kept fixed, and those that are to be varied in the extremization procedure.

The charge vectors µi are subject to overall charge conservation (2.6) and will be held

fixed. The unit vector κ̂i (satisfying κ̂i · κ̂i = 1) is taken to be orthogonal to µi and will

also be held fixed. Relating the unit vector κ̂i to κi, µi, and γi by,

κi =
√

2 γi κ̂i κ̂i · µi = 0 (3.5)

the constraints κ2
i = 2γ2

i and κi · µi = 0 of (2.7) will automatically hold. In terms of the

independent variables xi, γi, κ̂i, and µi (the last subject to overall charge conservation), the
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reduced entropy SR of (3.4) is given by,

SR =
N∑
i=1

∑
j 6=i

(
2γiγj(1− κ̂i · κ̂j)

(xi − xj)2
− 2
√

2
γiκ̂i · µj
xi − xj

− 1

2
µi · µj ln

(xi − xj)2

γiγj

)
(3.6)

We shall now prove that the following variational problem precisely yields the constraint

equations E(1)
i = E(2)

i = 0 of (2.7) and (2.8). Keeping the charges µi and the unit vectors κ̂i

fixed, and varying freely with respect to xi produces the equations E(1)
i . Varying freely with

respect to γi produces the equations E(2)
i . Indeed, from (3.6) one establishes the relations,

∂SR
∂xi

= −2E(1)
i γi

∂SR
∂γi

= E(2)
i (3.7)

where the identification κi =
√

2γiκ̂i has been used to re-express the result of the variation

of SR in the form on (2.8). It is remarkable that the constraints imposed on the solutions

by the BPS conditions and the equation of motion can be viewed as conditions which follow

from extremizing the holographic boundary entropy.

4 Kähler structure of moduli and Calabi’s diastasis

In this section, we shall exhibit the Kähler structure which underlies the moduli space of

half-BPS solutions with N asymptotic AdS3×S3 regions. We shall also introduce Calabi’s

diastasis function in this setting, and relate it to the scalar fields in Type 4b supergravity.

In subsequent sections, the entanglement entropy of certain subclasses of these solutions

will be expressed with the help of the diastasis function.

4.1 Kähler structure of moduli

In Type 4b supergravity, the scalar field V takes values in SO(5,m)/ (SO(5)× SO(m)), a

Grassmannian which is not generally Kähler (although it is m = 2). For half-BPS solutions,

however, supersymmetry requires V to take values in the following submanifold,

K ≡ SO(2,m)

SO(2)× SO(m)
(4.1)

which is a Kähler Grassmannian for any value of m. The scalar field provides a smooth map

V : Σ → K. Of central interest here are the values of V at the points xi on ∂Σ, since all

the solutions are specified uniquely by the data xi, γi, κi, µi at the i = 1, · · · , N asymptotic

AdS3×S3 regions. We have learned, either from examination of the constraints (2.7) or from

the variational solution provided in section 3.1, that the parameters xi, γi are determined in

terms of the data κ̂1, · · · , κ̂N and µ1, · · · , µN , subject to overall charge conservation (2.6)

and the conditions κ̂2
i = 1, µ2

i > 0, and κ̂i · µi = 0.

For each i = 1, · · · , N the pair (κ̂i, µi), with κ̂i, µi ∈ R2+m subject to the conditions

κ̂2
i = 1, µ2

i > 0, and κ̂i · µi = 0, projects to a unique point in the Kähler manifold K. This

follows from the fact that the two linearly independent vectors κ̂i and µi uniquely define a
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2-plane in R2+m, and thus a unique point in the Grassmannian K. An explicit formula may

be obtained for the canonical section σ : K → SO(2,m) in terms of the scalar field V by

σAB = ηAB − 2V +
AV
−
B − 2V −AV

+
B

= ηAB − 2κ̂Aκ̂B − 2µ̂Aµ̂B (4.2)

The canonical section σ indeed takes values in SO(2,m), as may be verified with σtησ = η,

and is clearly invariant under the action of SO(2) × SO(m), so that it is properly a map

from the coset K. Therefore, any pair (κ̂i, µi) projects to a unique point in K. The con-

verse, however, does not hold. First because given a value σi, only the 2-plane in which κ̂i
and µi live is determined, but the square µ2

i and the angle distinguishing the direction of

µi from the direction of κ̂i are not determined by specifying a point σi in K.

Specifying µ2
i ∈ R+ in each asymptotic AdS3 × S3 region i = 1, · · · , N amounts to

specifying the radius of the AdS3 or equivalently the central charge ci by the Brown-

Henneaux formula. Adding an angle θ ∈ U(1) at each point i completes the extra data

into a point in K+ = SO(2,m)/SO(m)× R+, so that the full moduli space is given by,

(K+
1 × · · · × K

+
N )cc (4.3)

where the subscript “cc” stands for enforcing the charge conservation relation of (2.6). This

space naturally projects to the Kähler manifold K1× · · · KN under the map provided by σ

as a function of the scalar field V .

4.2 Calabi’s diastasis in terms of supergravity fields

The purpose of this section is to compute the Kähler potential and evaluate Calabi’s

diastasis function for the Kähler coset space K. The starting point is the frame field

V of the SO(2)× SO(m) principal bundle over the coset SO(2,m)/SO(2)× SO(m), whose

total space is the group SO(2,m). It may be decomposed as follows,

V =
(
V (ρ,r)

A

)
=

(
V ρ

α V
ρ
a

V r
α V

r
a

)
(4.4)

where A = (α, a) runs over the indices of the defining representation of SO(2,m) with

α = 1, 2 and a = 6, · · · ,m + 5, while ρ and r run over the indices respectively of the

defining representations of SO(2) and SO(m) with ρ = 1, 2 and r = 6, · · · ,m+5. The group

SO(2,m) acts on V by right-multiplication, while SO(2)×SO(m) acts by left-multiplication.

4.2.1 The Kähler form and metric

To compute the Kähler form ωK of K, we identify ωK with the SO(2) projection of the

curvature of the right-invariant canonical connection Q12 of this SO(2) × SO(m)-bundle.

Supergravity formulas gives us Q = −Qt in terms of the scalar field V by the formula,

dV V −1 =

(
Q

√
2P√

2P t S

)
(4.5)
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and provide its curvature ωK = dQ12 in terms of P by4

ωK = dQ12 = 2
∑
r

P 1r ∧ P 2r (4.6)

In terms of the complex components of the scalar fields V 1,2
A introduced in (2.4), the

relevant algebraic relations are given by,

ηAB V ±AV
∓
B = 1

ηAB V ±AV
±
B = 0 (4.7)

In terms of the variables V ±A the Kähler form ωK and the Kähler metric ds2
K become,

ωK = −iηAB dV +
A ∧ dV −B

ds2
K = ηAB dV +

A dV
−
B (4.8)

By construction, the Kähler form and metric are invariant under SO(2,m).

4.2.2 The Kähler potential

To obtain the Kähler potential, it will be convenient to fix the gauge for the SO(2) which

acts on the indices ± of V ±A. This will allow us to express the Kähler form, metric, and

potential in terms of local complex coordinates. To do so in practice, we follow [30] and

choose V +
1+iV +

2 to be real. The remaining complex coordinates are introduced as follows,

V +
1 =

w + 1

2N
V +

2 = i
w − 1

2N
V +

5+s =
zs

N
(4.9)

where s = 1, · · · ,m. The equations of (4.7) determine N in terms of the other variables,

and give w as a holomorphic function of the matrix Z defined by Zt = (z1, · · · , zm), so that,

2N2 = 1 +
∣∣ZtZ∣∣2 − 2Z†Z w = ZtZ (4.10)

The domain which represents the coset K in the variable Z corresponds to N > 0 along

with the choice Z†Z < 1, and is referred to as the Lie sphere,

K =

{
Z ∈ Cm such that Z†Z <

1

2
+

1

2

∣∣ZtZ∣∣2 < 1

}
(4.11)

Expressing the Kähler form of (4.8) in terms of these variables gives,

ωK = d

(
id lnN− i(Z

tZ)Z†dZ̄ − ZtdZ̄
N2

)
= −i∂∂̄ lnN2 (4.12)

with the help of the standard notations, d = ∂ + ∂̄ where ∂ =
∑

s dz
s ∂
∂zs . The Kähler

potential K, which is defined by ωK = i∂∂̄K, is given by,

K(Z, Z̄) = − ln
(

1 + |ZtZ|2 − 2Z†Z
)

(4.13)

4Since Q is a connection valued in SO(2), the Q ∧Q term is absent in the formula for the curvature.
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4.2.3 Calabi’s diastasis function

Calabi’s diastasis function D(1, 2) is defined for a pair of points in the Kähler manifold K.

We shall label these points by their complex coordinates Za = (z1
a · · · zma )t for a = 1, 2 and

set wa = ZtaZa. Calabi’s diastasis function is then defined by,

D(1, 2) ≡ K(Z1, Z̄1) +K(Z2, Z̄2)−K(Z1, Z̄2)−K(Z2, Z̄1) (4.14)

In terms of the coordinates Z, and the composite w = ZtZ, it takes the following form,

D(1, 2) = ln

(
1 + w1w̄2 − 2Z†2Z1

)(
1 + w2w̄1 − 2Z†1Z2

)
(

1 + w̄1w1 − 2Z†1Z1

)(
1 + w̄2w2 − 2Z†2Z2

) (4.15)

For Z1 and Z2 near the origin, the diastasis function reduces to D(1, 2) ≈ 2(Z1−Z2)†(Z1−
Z2), and is proportional to the local Euclidean distance. More generally, it is an immediate

consequence of the definition of the diastasis function in (1.1) that locally for t2 ≈ t1, the

diastasis function is always approximated by the Euclidean distance. Globally, however, the

diastasis function and the Riemannian distance between two points behave quite differently,

both qualitatively and quantitatively. Key differences are that the diastasis function is

neither always positive, not always obeys the triangle inequality.

4.2.4 Recasting the diastasis function in terms of the scalars V

To recast the diastasis potential in terms of the original supergravity scalars V , we begin

by using the expression for the functions 2N2
a = 1 + |wa|2 − 2Z†aZa. Eliminating the

combinations in the denominator of the argument of the logarithm in (4.15), we find,

D(1, 2) = ln

∣∣∣∣∣1 + w̄1w2 − 2Z†1Z2

2N1 N2

∣∣∣∣∣
2

(4.16)

We may now express Calabi’s diastasis in terms of the values V (xi) and V (xj) of the scalar

field V at a pair of points i, j, using (4.9) and their complex conjugates, and we find,

D(i, j) = ln
∣∣ηABV (xi)

+
AV (xj)

−
B

∣∣2 (4.17)

Given the asymptotic values of the scalar field provided in (2.14), we obtain an equivalent

relation directly in terms of the unit vector κ̂i, κ̂j and µ̂i, µ̂j , as follows,

D(i, j) = ln
(

(κ̂i · κ̂j + µ̂i · µ̂j)2 + (κ̂i · µ̂j − µ̂i · κ̂j)2
)

(4.18)

Note that the formulas for D(i, j) are manifestly invariant under SO(2,m).

5 Entanglement entropy and diastasis of interfaces

In this section we will solve the constraints and evaluate the entanglement entropy for the

simplest nontrivial case, namely the N = 2 interface. In this case the general expression
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for the entanglement entropy (3.4) takes the following form,

Se =
π2

GN

(
2

2γ1γ2 − κ1 · κ2

(x1 − x2)2
+ 2

κ1 · µ2 − κ2 · µ1

x1 − x2
− µ1 · µ2 ln(x1 − x2)2

+
1

2
µ2

1 ln
µ2

1

4κ2
1

+
1

2
µ2

2 ln
µ2

2

4κ2
2

+
1

2
(µ2

1 + µ2
2) ln

L2

ε2

)
(5.1)

Note that charge conservation equates µA1 = −µA2 , which together with (2.8) implies

κ1 · µ2 = κ2 · µ1 = 0. (5.2)

The constraint E(2)
i = 0 of (2.8) now takes the form,

µ2
1(x1 − x2)2 = 4γ1γ2 − 2κ1 · κ2 (5.3)

and can be used to eliminate x1 − x2 from the entaglement entropy (5.1). In addition we

use (3.5) and (2.8) to replace κi by the normalized κ̂i for i = 1, 2 and (2.13) to replace

µ2
1 = µ2

2 by the central charge (which is the same on both sides due to charge conservation).

The entanglement entropy becomes,

Se =
c

3
ln
L

ε
+
c

6

(
1− ln 2

)
+

c

12
ln (1− κ̂1 · κ̂2)2 (5.4)

The first term in (5.4) is the universal contribution to the entanglement entropy which only

depends on the central charge c, the length of the interval L, and the UV cutoff ε [38, 39]. It

has the same form whether or not an interface is present and can be removed by considering

the difference between the entanglement entropy of pure AdS3 and the interface space-time.

The second term in (5.4) is non-universal and can be eliminated by a moduli independent

rescaling of the cutoff. The third term in (5.4) is universal and present for a nontrivial

interface. Hence, it may be identified with the g-function of the interface [6],

ln g =
c

12
ln (1− κ̂1 · κ̂2)2 (5.5)

We can relate the g-function to the geometric diastasis function by using (4.18), and the

fact that µ̂1 · µ̂2 = −1, so that we find the following general expression for the g-function

in terms of the central charge and the diastasis function of the interface,

2 ln g =
c

6
D(1, 2) (5.6)

The extra factor c/6 in front of the geometric diastasis function in (5.6) compared to (1.2)

has the following explanation. The underlying CFT of the Type 4b AdS3 × S3 vacua is

given by a symmetric product ofMN/SN whereM = T 4 for the m = 5 case andM = K3

for m = 21. Since the CFT corresponding to a single M target space has central charge

c = 6 this implies that the number of copies of in the symmetric product N = c/6. Note

that in a symmetric product all copies of the underlying M CFT are at the same point in

the moduli space. Consequently the diastasis function for theMN/SN symmetric product

CFT is given by N times the diastasis function of the underlying CFT with target spaceM.
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The example of [29] comprises a target space which is a single copy of T 2 and hence (1.2)

holds without any additional factor.

To summarize, we have demonstrated the holographic version of the relation (1.2)

between the g-function and the Calabi’s diastasis function, which was first discovered for

the dual interface CFTs in [29].

6 Entanglement entropy and diastasis for 3-junctions

The goal of this section is two investigate whether the entanglement entropy (3.4) for the

3-junction can be related to the diastasis function. For the case N = 3 the constraint

equations E(1)
i = 0 in (2.7) imply the E(2)

i = 0 constraint. Despite this simplification, the

N = 3 case is still considerably more difficult than theN = 2 case of the interface, treated in

the previous section, due in part to the fact that for a 3-junction, charge conservation does

not force the charges µA to be parallel. The constraint equations form a non-linear system

whose complete solution appears to require solving a quintic equation of general type.

To make progress, we recast the entropy and the constraints in terms of manifestly

SL(2,R)-invariant variables, which are defined as follows,

yi =
γi(xj − xk)

(xi − xj)(xi − xk)
∆ij = κ̂i · κ̂j − 1 (6.1)

where (i, j, k) in the first equation is a cyclic permutation of (1, 2, 3). In these variables,

the constraint equations become quadrics,

0 = µ2
i +
√

2κ̂i · (µj − µk)yi + 4yiyj∆ij + 4yiyk∆ik (6.2)

Successively eliminating two of the three yi produces a polynomial equation in the third

variable of degree 5, which does not lead to algebraic solutions. In terms of these variables,

the entropy SR given in (3.6) takes the form,

SR = −4y1y2∆12 − 4y2y3∆23 − 4y3y1∆31 +
1

2

3∑
i=1

µ2
i ln

1

y2
i

+
√

2κ̂1 · (µ3 − µ2)y1 +
√

2κ̂2 · (µ1 − µ3)y2 +
√

2κ̂3 · (µ2 − µ1)y3 (6.3)

Note that the variables yi now encompass the free SL(2,R)-invariant combinations of the

variables xi, γi, so that extremization in yi indeed reproduces the constraint equations (6.2).

6.1 Solving for constrained charges

Although it does not appear possible to solve in simple terms for the 3-junction entropy

in all generality, it is nonetheless possible to solve for a subclass of physically interesting

charge arrangements. Under the assumption that the vector space spanned by the vectors

κi is orthogonal to the vector space spanned by the vectors µi, the entropy may be obtained

in explicit form, and in fact exhibits remarkable properties. This restricted case includes

the physically important special situation where all 3-form charges µi are parallel to one

another.
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Concretely, the above orthogonality conditions are expressed by,

κ̂i · µj = 0 (6.4)

for all i, j = 1, 2, 3. The expression for the reduced entropy of (6.3) is given by,

SR = −4y1y2∆12 − 4y2y3∆23 − 4y3y1∆31 +
1

2

3∑
n=1

µ2
n ln

1

y2
n

(6.5)

while the constraints of (6.2) reduce to the equations,

0 = µ2
i + 4yiyj∆ij + 4yiyk∆ik (6.6)

where (i, j, k) is a cyclic permutation of (1, 2, 3). Solving for yiyj with i 6= j one finds,

yiyj =
µi · µj
4∆ij

(6.7)

Substituting into the entropy, we find,

Se =
1

24
(c1 + c2 − c3) ln

(
∆12

µ̂1 · µ̂2

)2

+
1

24
(c2 + c3 − c1) ln

(
∆23

µ̂2 · µ̂3

)2

+
1

24
(c3 + c1 − c2) ln

(
∆31

µ̂3 · µ̂1

)2

+
1

12
(c1 + c2 + c3)

(
1 + ln

L2

2ε2

)
(6.8)

Therefore the entanglement of the 3-junction with the restricted charge assignments κ̂i·µj =

0 may be expressed in terms of the diastasis function for pairs, since we have,

∆ij = −1− µ̂i · µ̂j + eD(i,j)/2 sign(κ̂i · κ̂j + µ̂i · µ̂j) (6.9)

A thorough discussion of the signs involved will be presented in the next section. Suffice

it here to add the following explicit expression which suffice to evaluate the case where all

flux charges µi are parallel to one another,

µ̂i · µ̂j = −1 ln ∆2
ij = D(i, j)

µ̂i · µ̂j = +1 ln ∆2
ij = ln

(
2− eD(i,j)/2 sign(κ̂i · κ̂j + 1)

)2
(6.10)

The first of these relations was used for the interface entropy.

7 Entropy and Calabi’s diastasis for N -junctions

For general N > 3 junctions the system of constraint equations lends itself even less than

for N = 3 to a complete solution, as the constraints E(1)
i = 0 in (2.7) now impose further

non-trivial relations. Nonetheless, the system may be well-understood in terms of Calabi’s

diastasis function for large physically relevant classes of data κ̂i, µi. Basically, the system

lends itself to solution better when the dimension of the vector space spanned by the

charge vectors µi is smaller. We begin by solving the case when the dimension is 1, and

then produce extensions to low dimensions.
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7.1 Parallel charge vectors µi

One class of data κ̂i, µi allows for complete solution in terms of Calabi’s diastasis function,

namely when the charge vectors µi are parallel to one another for all i = 1, · · · , N ,

µi = αi µ̂1

N∑
i=1

αi = 0 ci =
3π2 α2

i

2GN
(7.1)

Above we have indicated the overall charge conservation relation on the coefficients αi, as

well as the relation resulting from (2.13) between the real coefficient αi and the central

charge ci of the i-th asymptotic region AdS3 × S3. Henceforth, we shall replace the data

of the positive central charges ci by those of the coefficients αi. Clearly, ci determines αi
up to its sign, which will be important, and which will be denoted by α̂i = sign(αi).

As a result of the assumption that µi are all parallel to one another, the orthogonality

relations κ̂i ·µi = 0 imply the following orthogonality relations valid for all i, j = 1, · · · , N ,

κ̂i · µj = 0 (7.2)

The reduced entropy of (3.6) simplifies accordingly, and is given by,

SR =
N∑
i=1

∑
j 6=i

(
2γiγj(1− κ̂i · κ̂j)

(xi − xj)2
− 1

2
αiαj ln

(xi − xj)2

γiγj

)
(7.3)

The parameters αi are fixed by the central charges up to signs. We seek to eliminate the

dependence on the data κ̂i in favor of the diastasis function. The variables xi and γi are

to be determined by extremizing the entropy for given αi and κ̂i, following section 3.1.

Calabi’s diastasis function, evaluated between pairs labeled by i, j as in (4.18), then

takes on a considerably simplified form under the assumption of (7.2), and we have,

D(i, j) = ln (κ̂i · κ̂j + α̂i α̂j)
2 (7.4)

Inverting this relation to obtain κ̂i · κ̂j in terms of D(i, j) and α̂iα̂j requires care with

sign issues. While the manifold of unit vectors κ̂i in R2+m with signature (+ +− · · ·−) is

connected, its submanifold of unit vectors orthogonal to a unit vector µ̂1 of positive square

is disconnected. Its two connected components may be distinguished by a sign ŝi, obtained

as follows. Upon making an SO(2,m) rotation, we may choose a canonical direction for the

vector µ̂1, and combine the first relation of (7.1) with (7.2), to parametrize κi as follows,

µ̂1 = (1, 0; 0) κ̂i = (0, si; si) s2
i − s2

i = 1 (7.5)

where ŝi = sign(si) while si is an arbitrary vector in Rm. From this parametrization, the

following inequality follows right away,

ŝiŝj κ̂i · κ̂j ≥ 1 (7.6)

with equality only when ŝi si = ŝj sj . Recasting the diastasis function in the form,

D(i, j) = ln
(
ŝiŝj κ̂i · κ̂j + ŝi ŝj α̂i α̂j

)2
(7.7)
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it is now straightforward and unambiguous to solve for the combination ŝiŝj κ̂i · κ̂j which

is always positive by (7.6). Extracting κ̂i · κ̂j from this result, we find,

κ̂i · κ̂j = −α̂iα̂j + ŝiŝj e
D(i,j)/2 (7.8)

Substituting this result into (7.3) gives the desired expression for the reduced entropy in

terms of Calabi’s diastasis function,

SR =

N∑
i=1

∑
j 6=i

(
2γiγj

(
1 + α̂iα̂j − ŝiŝj eD(i,j)/2

)
(xi − xj)2

− 1

2
αiαj ln

(xi − xj)2

γiγj

)
(7.9)

The solutions for N = 2 and N = 3 may be derived explicitly, and were given in the

preceding sections. For N ≥ 4, the constraint equations at present appear prohibitive.

7.2 Two-dimensional space of charge vectors µi

We shall now proceed to the case where the space of charge vectors is 2-dimensional. To

simplify the discussion, we limit attention to the case where this space is orthogonal to the

vectors κ̂i for all i = 1, · · · , N , or equivalently,

κ̂i · µj = 0 (7.10)

for all i, j = 1, · · · , N . Using an SO(2,m) rotation to set µ̂1 to the direction given in (7.5),

we see that the orthogonality of κ̂i with µ̂1 forces κ̂i to take the form given in (7.5) for all

i = 1, · · · , N . Using the residual SO(1,m) group which leaves µ̂1 invariant, we may choose

any linearly independent unit charge µ̂2 to take the form,

µ̂2 = (α, γ;β, 0 · · · 0) α2 + γ2 − β2 = 1 (7.11)

We can have either β = 0 when the vector restricted to SO(1,m) has positive square, or

γ = 0 when it has negative square. The case γ 6= 0, β = 0 is ruled out by orthogonality to

κ̂i, so that only the case γ = 0, β 6= 0 remains, and the first component of si must vanish.

In summary, we have for all unit charge vectors,

µ̂j = (αj , 0;βj , 0 · · · , 0)

κ̂i = (0, si; 0, si) (7.12)

where α2
j − β2

j = 1, β1 = 0, and si is an arbitrary vector in Rm−1 with s2
i − s2

i = 1.

The diastasis function on pairs is now given as follows,

D(i, j) = ln (κ̂i · κ̂j + αiαj − βiβj)2 (7.13)

Using care with the signs ŝi, we may invert this relation to find,

κ̂i · κ̂j = −αiαj + βiβj + ŝiŝj e
D(i,j)/2 (7.14)
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The reduced entropy now takes the form,

SR =
N∑
i=1

∑
j 6=i

(
2γiγj

(xi − xj)2

{
1 + αiαj − βiβj − ŝiŝj eD(i,j)/2

}
−1

2

√
µ2
iµ

2
j (αiαj − βiβj) ln

(xi − xj)2

γiγj

)
(7.15)

The physical value of the junction entropy is then obtained by the solution to the variational

problem, exhibited in section 3.1, which gives xi, γi in terms of the data κ̂i, µi.

To summarize, we see that the N -junction entropy is governed by Calabi’s diastasis

function, along with the central charges ci = µ2
i , but that a further dependence on the

“angles” associated with the hyperbolic unit vectors (αi, βi) with α2
i − β2

i = 1 necessarily

enters as well.

8 Entropy of a non-supersymmetric interface

The purpose of this section is to show that the interface entropy of a non-supersymmetric

Janus solution is not given by the diastasis function but instead determined by the geodesic

distance on the moduli space between the theories on the two sides of the interface. We

include this calculation for two reasons. First, it provides an illustration that diastasis and

supersymmetry are intimately linked (a point already made in [29]). Second, to the best

of our knowledge, the calculation has not appeared earlier in the literature, and deserves

attention in its own right.

The model we consider here is gravity in three-dimensional space-time with local coor-

dinates xµ and space-time metric5 gµνdx
µdxν which is coupled to a nonlinear sigma model

on a manifold M with Riemannian internal metric. In terms of real local coordinates φi

on M , the internal metric is given by Gij(φ)dφidφj and is considered fixed, and the action

is a functional of the space-time metric gµν(x) and the fields φi(x), given by,

I[g, φ] =

∫
d3x
√
g

(
R− 2Λ− 1

2
Gij(φ)∂µφ

i∂µφj
)

(8.1)

where Λ is the cosmological constant, and g = −det(gµν). Einstein’s equations are given by,

Rµν + Λgµν −
1

2
Gij(φ)∂µφ

i∂νφ
j = 0 (8.2)

while the scalar field equations are given by,

1

2

(
∂

∂φk
Gij(φ)

)
∂µφ

i∂µφj − 1
√
g
∂µ

(
Gik
√
g ∂µφk

)
= 0 (8.3)

We shall set Λ = 1 and use the following Janus Ansatz in which the space-time metric is

parameterized by an AdS2 slicing and the scalars only depend on the slicing coordinate y,

ds2 = dy2 + f(y)
dz2 − dt2

z2
φi = φi(y) (8.4)

5In this section, µ = 0, 1, 2, while i, j = 1, · · · , N = dim(M), and repeated indices are to be summed over.

– 20 –



J
H
E
P
1
0
(
2
0
1
4
)
0
9
3

With this Ansatz the tt and zz components of (8.2) reduce to,

2− 4f +
d2f

dy2
= 0 (8.5)

which is solved by the following family of functions dependent on a real parameter γ,

f(y) =
1

2

(
1 +

√
1− 2γ2 cosh 2y

)
(8.6)

The AdS3 vacuum solution corresponds to setting γ = 0, while 2γ2 = 1 corresponds to

R × AdS2. More generally, regular real solutions correspond to 2γ2 ≤ 1. The yy compo-

nent of the gravitational equation, and the scalar field equation may be similarly derived.

Actually, it is illuminating to change variables from y to λ using the relation,

f(y)
d

dy
=

d

dλ
(8.7)

The remaining equations then take the form,

Gij(φ) φ̇iφ̇j = 2γ2 φ̈i + Γijk φ̇
jφ̇k = 0 (8.8)

where the dot stands for differentiation with respect to λ, the Levi-Civita connection of

the internal metric Gij is denoted by Γijk, and we continue to use the notation φi now for

functions of the coordinate λ instead of y.

8.1 Interface entropy

In this section calculate the interface entropy the non-supersymmetric Janus solution pre-

sented in the previous section. Following [34, 36], the interface entropy (or equivalently

the g-function) can be related to the entanglement entropy of a region which encloses the

interface symmetrically,

Se =
c

3
ln
L

ε
+ ln g (8.9)

The holographic calculation of the interface entropy was performed in [34], and results in,

ln g = − c
6

ln
√

1− 2γ2 (8.10)

Note that we have g → 1 as γ → 0, as this limit should indeed correspond to the the

absence of the interface, and thus the vanishing of the interface entropy. Also note that

reality of the entanglement entropy in (8.10) impose the same bound on γ which had been

imposed by the reality of the metric itself, namely 2γ2 ≤ 1.

The constraint equation in (8.8) relates the geodesic distance ∆` in the internal space

of the non-linear sigma model to the deformation parameter γ,

∆` =

∫
dλ

√
Gij(φ) φ̇iφ̇j =

√
2γ

∫
dλ (8.11)

The geodesic distance is evaluated as follows,

∆` =
√

2γ

∫ +∞

−∞
dµ

1

f(µ)
= 4 tanh−1

(
1−

√
1− 2γ2

√
2γ

)
(8.12)
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Solving for γ in terms of ∆`, one obtains,

γ =
1√
2

tanh

(
∆`

2

)
(8.13)

Hence we obtain the interface entropy in terms of the geodesic distance ∆`,

2 ln g =
c

6
ln cosh

(
∆`

2

)2

(8.14)

Note that the diastasis function coincides with the geodesic distance in the limit of infinites-

imal separation [29] but differs for finite separations. Consequently, since the geodesic

distance is different from the diastasis function the condition that the interface is BPS is

essential in connecting ln g to the diastasis function.

Equation (8.13) implies that an expansion in small separation is equivalent to an

expansion in small γ. The agreement of the diastasis and geodesic distance is consistent

with [34] where it was found that the BPS and non-BPS interface g functions agree at first

order in an expansion in γ.

9 Summary and discussion

The main results of this paper may be summarized as follows.

First, we have proven that the equivalence of interface entropy and Calabi’s diastasis

function, which was derived for BPS interfaces in certain two dimensional CFTs in [29],

continues to hold holographically for BPS interface solutions in six-dimensional Type 4b

supergravity. Key to this equivalence is the fact that the moduli space of half-BPS interface

solutions in Type 4b supergravity has an underlying Kähler manifold structure, which

makes the appearance of Calabi’s diastasis function possible.

Second, we have extended the application of entanglement entropy to the case of a

junction of N ≥ 3 CFTs, where we have defined and carefully regularized an associated

junction entropy. Using the holographic realization of these N -junctions in terms of Type

4b supergravity solutions, we have identified the moduli of the solutions, exhibited their

underlying Kähler structure, and produced a variational formula for the evaluation of this

junction entropy. For special arrangements of the flux charges, including when all the

flux charges are parallel to one another, we have shown that the junction entropy may be

represented as a sum of Calabi’s diastasis functions evaluated between the data associated

with pairs of asymptotic AdS3 × S3 regions.

Third, we have shown that the interface entropy of a non-supersymmetric Janus solu-

tion to a 3-dimensional gravity-non-linear-sigma-model for a general internal Riemannian

manifold M is given in terms of the geodesic distance on M , and not in terms of any diasta-

sis function. Unless M is Kähler the diastasis function would not even exist. We interpret

the results of this calculation as lending support to the assertion that the entropy-diastasis

equivalence is intimately connected with supersymmetry.

The results in this paper leave open several interesting questions and avenues for future

research, of which we list the following.
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It would be instructive to find a way to relax the orthogonality condition (7.10) on

the moduli of the N -junction solution, and to obtain the junction entropy for general

charge assignments. Even for the 3-junction the general case appears considerably more

complicated to solve algebraically, as it involves solving a quintic equation. It may be that

a better parameterization, possibly along the lines of the light cone like variables used

in [27], might help to solve the general case. Since the orthogonality condition were only

imposed as a means of making the constraint equations solvable, it would be interesting to

determine whether this condition has any physical meaning on the CFT side.

In Calabi’s original paper [30] the diastasis function is regarded as a potential. Specif-

ically, the function D(1, 2) is interpreted as the “potential” at point 2 in the presence of a

“source” at point 1. A natural question emerging from this work is whether the N -junction

entropy can be usefully interpreted as a potential in the presence of N − 1 sources as well.

One encouraging piece of supporting evidence is the fact that the constraints of (2.7) may

be obtained equivalently from the variation of the entanglement entropy which, in turn,

may be viewed as a zero force condition for a potential.

It would also be interesting to study the junction entropy on the CFT side along the

lines of the work in [29] for interfaces. For example, we have already found that the holo-

graphic entanglement entropy for a 3-junction decomposes into a sum of diastasis functions

between pairs, weighed by combinations of the three central charges. It would be valuable

to determine whether such a structure can arise for BPS junctions on the CFT side as well.
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A Regularization

In this appendix we present a careful holographic UV regularization and exhibit how the

cutoff is imposed on the asymptotically AdS3 × S3 regions for the N -junction solutions.

A.1 Minimal area surface

In this subsection we adapt an argument [40, 41] concerning the minimal area hyper-surface

for AdS2×S2 fibrations, where the metric is given by (2.1). The metric of the AdS2 factor

is given by the unit radius Poincare patch metric

ds2
AdS2

=
dz2 − dt2

z2
(A.1)

The static minimal surface which is used to calculate the holographic entanglement entropy

is independent of t, spans the sphere S2 and extends over the Riemann surface Σ. Since the
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SO(3) isometry of the two sphere is unbroken in the solution, the embedding is independent

of the coordinates of S2 and only depends on the local coordinates w, w̄ of Σ, so that the

embedding is completely specified by a single real-valued function z(w, w̄) of Σ. The

entanglement entropy Se is given by the area of the four-dimensional hyper-surface which

minimizes the area with respect to the metric Gind induced on S2 × Σ,

Se =
1

4GN

∫
S2×Σ

d4ξ
√
Gind

=
Vol(S2)

4GN

∫
|dw|2 F 2

−

√
1 +

H2

F 2
−z

2

(
∂z

∂w

∂z

∂w̄

)
(A.2)

The square root on the second line above is manifestly bounded from below by 1, and this

lower bound is uniquely attainted when the function z is constant. Thus, z = z0 constant

is a solution and gives the absolute minimum for the area. The entanglement entropy on

the hyper-surface of minimal area thus takes the form,

Se =
Vol(S2)

4GN

∫
|dw|2 F 2

− (A.3)

The integration has divergent contributions coming from the asymptotic AdS3 regions near

w = xn, n = 1, 2, · · ·N , which we shall regularize in the sequel.

A.2 Poincaré and AdS2 slicing

In order to make a connection with the field theory result and extract the boundary entropy

we have to carefully identify the cutoff εi employed in the regularization of the entanglement

entropy (A.3) with the UV cutoff in the field theory. The UV cutoff is defined by mapping

the asymptotic metric near w = xi into a Fefferman-Graham coordinate system.

We start with an illustrative example mapping the three dimensional AdS metric in

Poincaré coordinates (u, η, t), and metric,

ds2 = R2 du
2 + dη2 − dt2

u2
(A.4)

to new set of coordinates (x, z, t)

u =
z

coshx
η = z tanhx (A.5)

In terms of these new coordinates (x, z, t), the metric is the AdS2 slicing of AdS3,

ds2 = R2

(
dx2 + cosh2 x

dz2 − dt2

z2

)
(A.6)

The Poincaré coordinates (A.4) are already in Fefferman-Graham form and the boundary

is reached by taking u → 0. The map (A.5) shows that the boundary AdS2 slicing (A.6)

has three components: the AdS2 boundary z → 0 which we identify with the interface and

the two asymptotic regions x→ ±∞. For the latter regions and z = z0 finite we can relate

the cutoff in the Poincare coordinates u = ε with the cutoff in x by (A.5).

e−|x|ε =
ε

z0
(A.7)

– 24 –



J
H
E
P
1
0
(
2
0
1
4
)
0
9
3

For the solutions which are discussed in the present paper the situation is more complicated

in several ways:

1. The three coordinates x, z, t are accompanied by three additional coordinates param-

eterizing the two sphere and an additional (angular) slicing coordinate.

2. The metric (A.6) has two asymptotic regions x→ ±∞ and describes a configuration

where two half spaces are glued together at an interface. For general N > 2 our

solutions describe junctions where N half spaces are glued together.

3. The map (A.5) covers the complete Poincaré patch. Even for interface solutions a

globally defined map is not known and the map has to be defined in patches.

In the following we shall address some of these issues with the primary goal to generalize

the identification (A.7) to our solutions.

A.3 Regularization

To calculate the form of the metric near the n-th asymptotic region w = xi, it is convenient

to introduce the coordinate w = xi + e−x+iθ, where the asymptotic AdS region is reached

by taking x→∞ and θ ∈ [0, π]. The metric takes the following form

ds2 = ρ2e−2x(dx2 + dθ2) + f2
1

dz2 − dt2

z2
+ f2

2ds
2
S2 (A.8)

the asymptotic behavior of the metric near w = xn can be extracted from (2.1) and (2.2)

ρ2 ∼ R2
i e

2x
(

1 + e−xρ(1)(θ) + e−2xρ(2)(θ) + · · ·
)

f2
2 ∼ R2

i sin2 θ
(

1 + e−xf
(1)
2 (θ) + e−2xf

(2)
2 (θ) + · · ·

)
f2

1 ∼ R2
i

A2
i

4
e2x
(

1 + e−xf
(1)
1 (θ) + e−2xf

(2)
1 (θ) + · · ·

)
(A.9)

Here the dots in the brackets denote terms which fall off faster than e−2x in the limit

x → ∞. The AdS radius and the constant Ai > 0 are expressed in terms of moduli

associated with the i-th asymptotic region

R4
i = 2µi · µi A2

i =
16κi · κi
µi · µi

(A.10)

From the leading terms (A.9) we deduce that the metric takes an asymptotic AdS3 × S3

form. The subleading terms depend in general on the spherical slicing coordinate θ. In the

Fefferman-Graham the metric takes the following form,

ds2
FG ∼ R2

i

{
1

u2

(
du2 − g1dt

2 + g2dx
2
⊥

)
+ g3

(
dy2 + ωdx⊥

)2
+ g4 sin2 yds2

S2

}
(A.11)

Here u is a Poincaré slicing coordinate where u = 0 corresponds to the boundary of AdS

and the UV cutoff is defined by restricting the range u > ε. The coordinate x⊥ denotes

the distance from the junction and has a range x⊥ ∈ [0,∞]. Scaling symmetry implies that
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Figure 3. Fefferman-Graham cutoff surface u = uε(x, y) for N = 3 junction.

the functions gk and ω depend only on y and the combination x⊥/u. In the limit u → 0

the gk behave as,

lim
u→0

gk

(x⊥
u
, y
)

= 1, k = 1, 2, 3, 4 lim
u→0

ω
(x⊥
u
, y
)

= 0 (A.12)

The maps between the AdS2 slicing (A.8) and the Fefferman-Graham coordinate slic-

ing (A.11) can be constructed in an asymptotic expansion in e−x.

u

z
=

2

Ai
e−x + k1(θ)e−2x + · · ·

x⊥
z

= 1 + l1(θ)e−x + · · ·

y = θ +m1(θ)e−x + · · · (A.13)

As discussed [40–42] this coordinate map breaks down when x⊥ becomes small compared

to u. The region where the map is applicable is called a “Fefferman-Graham” (FG) patch.

For an N-junction all FG patches are smoothly joined to a central patch when x⊥ ∼ u.

While it is very hard to find such a map (see [40–42] for a discussion) we note that for the

identification of the cutoff only map in the FG patch is needed since we can choose the

location of the entangling surface x⊥ = L to be much larger than the UV cutoff u = ε. It

follows from (A.13) that in this case x is large and we are safely in the FG patch.

The relation of the UV cutoff ε and the radial integration cutoff in εi in the i-th

asymptotic AdS3 × S3 region is given by,

εi = e−x
(i)
ε = Ai

ε

2L
(A.14)
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Plugging in the expression for Ai give in (A.10) and squaring one arrives at,

ε2
i =

4κi · κi
µi · µi

( ε
L

)2
(A.15)

Hence we have arrived at (3.2).
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