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Abstract
This paper deals with the fixed point theorems for mappings satisfying a contractive
condition involving a gauge function ϕ when the underlying set is endowed with a
b-metric. Our results generalize/extend the main results of Proinov and thus we
obtain as special cases some results of Mysovskih, Rheinboldt, Gel’man, and Huang.
We also furnish an example to substantiate the validity of our results. Subsequently, an
existence theorem for the solution of initial value problem has also been established.
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1 Introduction and preliminaries
The Banach contraction principle has been extensively used to study the existence of solu-
tions for the nonlinear Volterra integral equations and nonlinear integro-differential equa-
tions and to prove the convergence of algorithms in computational mathematics. These
applications elicit the significance of fixed point theory. Therefore mathematicians have
been propelled to contribute enormously in the field of fixed point theory by finding the
fixed point(s) of self-mappings or nonself-mappings defined on several ambient spaces
and satisfying a variety of conditions. Among these fixed point theorems only a few have
practical importance, i.e., they provide a constructive method for finding fixed point(s).
This provides information on the convergence rate alongwith error estimates. The Banach
contraction principle is one of such theorems wherein the proposed iterative scheme con-
verges linearly. Commonly, the iterative procedures serve as constructivemethods in fixed
point theory. Furthermore, it is also of crucial importance to have prior and posterior
estimates for such methods. In this context, Proinov [] extended the Banach contrac-
tion principle with a higher order of convergence. He proposed an iterative scheme for a
mapping satisfying a contractive condition which involves a gauge function of order r ≥ 
and obtained error estimates as well. His results include as special cases some results of
Mysovskih [], Rheinboldt [], Gel’man [], Huang [], and others. In [] the authors ex-
tended the results of Proinov to the case of multivalued mappings.
For the last few decades fixed point theory has rapidly been evolving, not only in metric

structure but also in many different generalized spaces and the b-metric space is one of
them. The notion of a b-metric space was initiated in some works of Bourbaki, Bakhtin,
Czerwik, and Heinonen. Several papers appeared which deal with the fixed point theory
for single valued and multivalued functions in a b-metric space [–] etc.
Inspired by the work of Proinov [] in this paper we investigate whether the conse-

quences of his results hold when the underlying structure is replaced with a b-metric
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space. We give an affirmative answer to this question. Our results generalize main results
of Proinov [] and thus subsume many results of authors [–]. We establish an example
to substantiate the validity of our results. Consequently, in Section  we also obtain an
existence theorem for the solution of an initial value problem.
In the following we recall some auxiliary notions and results in a b-metric space [–,

] which are needed subsequently.

Definition . [, ] LetX be a nonempty set and s≥  be a given real number. A function
d : X × X → R

+ is said to be a b-metric space if and only if for all x, y, z ∈ X the following
conditions are satisfied:
(d) d(x, y) =  if and only if x = y;
(d) d(x, y) = d(y,x);
(d) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X,d) is called a b-metric space with the coefficient s.

The following example shows that the class of b-metric spaces is essentially larger than
the class of metric spaces.

Example . [, , ] () Let X := lp(R) with  < p <  where lp(R) := {{xn} ⊂ R :∑∞
n= |xn|p < ∞}. Define d : X ×X →R

+ as

d(x, y) =

( ∞∑
n=

|xn – yn|p
)/p

,

where x = {xn}, y = {yn}. Then (X,d) is a b-metric space with coefficient s = /p.
() LetX := Lp[, ] be the space of all real functions x(t), t ∈ [, ] such that

∫ 
 |x(t)|p dt <

∞. Define d : X ×X → R
+ as

d(x, y) =
(∫ 



∣∣x(t) – y(t)
∣∣p dt)/p

.

Then (X,d) is a b-metric space with coefficient s = /p

A sequence {xn} in a b-metric space X is convergent if and only if there exists x ∈ X
such that d(xn,x) →  as n → ∞ and we write limn→∞ xn = x; it is Cauchy if and only if
d(xn,xm) →  asm,n → ∞. A b-metric space (X,d) is complete if every Cauchy sequence
in X converges.
Let (X,d) be a b-metric space; then a convergent sequence has a unique limit; every

convergent sequence is Cauchy; and in general the b-metric d is not a continuous func-
tional [].

Definition . Let (X,d) be a b-metric space and A be a nonempty subset of X then clo-
sureA ofA is the set consisting of all points ofA and its limit points. Moreover,A is closed
if and only if A = A.

In the following the b-metric version of Cantor’s intersection theorem is given, which
can easily be established running along the same lines as in the proof of its metric version.

http://www.journalofinequalitiesandapplications.com/content/2014/1/266
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Theorem . [] Let (X,d) be a complete b-metric space, then every nested sequence of
closed balls has a nonempty intersection.

Let f :D ⊂ X → X and there exist some x ∈D such that the setO(x) = {x, fx, f x, . . .} ⊂D.
The setO(x) is known as an orbit of x ∈D. We recall that a functionG fromD into the set
of real numbers is said to be f -orbitally lower semi-continuous at t ∈ X if {xn} ⊂O(x) and
xn → t implies G(t) ≤ lim infG(xn) [].
Throughout this paper let J always denote an interval inR

+ containing  i.e., an interval
of the form [,R], [,R) or [,∞) ([, ] = {} is a trivial interval). Let Pn(t) denote a poly-
nomial of the form Pn(t) =  + t + · · · + tn– and P(t) = . Let ϕn denote the nth iterate of
a function ϕ : J → J .

Definition . [] Let r ≥ ; a function ϕ : J → J is said to be a gauge function of order r
on J if it satisfies the following conditions:

(i) ϕ(λt)≤ λrϕ(t) for all λ ∈ (, ) and t ∈ J ,
(ii) ϕ(t) < t for all t ∈ J \ {}.

The condition (i) of Definition . elicits ϕ() =  and ϕ(t)/tr is nondecreasing on
J \ {}. A gauge function ϕ : J → J is said to be a Bianchini-Grandolfi gauge function if∑∞

n= ϕn(t) < ∞ for all t ∈ J [].
Subsequently, in this paper let (X,d) be a b-metric space (unless specified otherwise)

with a coefficient s ≥ .We assume that f :D ⊂ X → X be an operator and there exist some
x ∈ D such that O(x) ⊂ D. Let the operator f satisfy the following iterated contractive
condition:

d
(
fx, f x

) ≤ ϕ
(
d(x, fx)

)
for all x ∈O(x) such that d(x, fx) ∈ J , (.)

where ϕ is a gauge function of order r ≥  on an interval J . We establish two convergence
theorems for iterative processes of the type

xn+ = fxn, n = , , , . . . , (.)

where f satisfies (.).

2 b-Bianchini-Grandolfi gauge functions
In [] Proinov proved his main results by assuming Bianchini-Grandolfi gauge functions
and the mapping f satisfying the contractive condition (.) when the underlying space
is endowed with a metric (see Corollary .). But in the setting of b-metric space for
some technical reasons we have to restrict ourselves to the gauge functions satisfying∑∞

n= snϕn(t) < ∞ for all t ∈ J where s is the coefficient of b-metric space. Furthermore,
taking into account such a crucial condition in order to calculate prior and posterior esti-
mates we consider the gauge functions of the form

ϕ(t) = t
φ(t)
s

for all t ∈ J , (.)

where s ≥  is the coefficient of b-metric d and φ is nonnegative nondecreasing function
on J such that

 ≤ φ(t) <  for all t ∈ J . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/266
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Remark . One can always define a nonnegative nondecreasing function φ on J satisfy-
ing (.) and (.) as follows:

φ(t) =

⎧⎨
⎩

sϕ(t)
t , if t ∈ J \ {},

, if t = ,
(.)

where s is the coefficient of b-metric d.

For a fixed s ≥ , let us consider the following simple examples of gauge functions of
order r:

(i) ϕ(t) = ct
s ,  < c <  is a gauge function of order  on J = [,∞);

(ii) ϕ(t) = ctr
s (c > , r > ) is a gauge function of order r on J = [,h) where h = ( c )


(r–) .

It is essential to mention here that to establish the fixed point theorem (see Theorem .)
we do not necessarily require the gauge functions ϕ satisfying (.), (.). But we con-
sider the gauge function such that

∑∞
n= snϕn(t) < ∞ for all t ∈ J where s is a coefficient of

b-metric space.

Lemma . Let ϕ be a gauge function of order r ≥  on J . If φ is a nonnegative and nonde-
creasing function on J satisfying (.) and (.), then:
()  ≤ φ(t)

s <  for all t ∈ J ,
() φ(μt) ≤ μr–φ(t) for all μ ∈ (, ) and t ∈ J .

Remark . When d is a simple metric, then s = . In such case every gauge function
satisfying

∑∞
n= ϕn(t) <∞ is of the form ϕ(t) = tφ(t) where φ is nonnegative nondecreasing

function on J (see []). Thus in such case the condition  ≤ φ(t) <  for all t ∈ J becomes
superfluous and directly follows from Lemma ..

The following lemma is fundamental to our main results.

Lemma . Let ϕ be a gauge function of order r ≥  on J . If φ is a nonnegative and nonde-
creasing function on J satisfying (.) and (.), then for every n≥  we have:
() ϕn(t)≤ t[ φ(t)

s ]Pn(r) for all t ∈ J ,
() φ(ϕn(t))≤ s[ φ(t)

s ]rn for all t ∈ J .

Proof () Set μ = φ(t)
s and let t ∈ J . Then from Lemma . we obtain  ≤ μ < . For μ = 

the case is trivial. We shall prove () by using mathematical induction. For n = ,  the
property () is trivially satisfied as it reduces to an equality. Let it also hold for any integer
n≥ , i.e.,

ϕn(t) ≤ tμPn(r).

Since ϕ is nondecreasing on J , we obtain (as tμPn(r) ∈ J because t ∈ J and μ < )

ϕn+(t) ≤ ϕ
[
tμPn(r)

] ≤ μrPn(r)ϕ(t) ≤ μrPn(r)t
φ(t)
s

= tμrPn(r)+ = tμPn+(r).

http://www.journalofinequalitiesandapplications.com/content/2014/1/266
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() By making use of Lemma . and monotonicity of φ, () leads to the following:

φ
(
ϕn(t)

) ≤ φ

(
t
[

φ(t)
s

]Pn(r))
≤

[
φ(t)
s

](r–)Pn(r)

φ(t)

= s
[
φ(t)
s

]+(r–)Pn(r)

= s
[
φ(t)
s

]rn

,

which completes the proof. �

Definition . Let q ≥  be a fixed real number. A nondecreasing function ϕ : J → J is
said to be a b-Bianchini-Grandolfi gauge function with a coefficient q on J if

σ (t) =
∞∑
n=

qnϕn(t) < ∞ for all t ∈ J . (.)

We note that a b-Bianchini-Grandolfi gauge function also satisfies the following func-
tional equation:

σ (t) = qσ
(
ϕ(t)

)
+ t. (.)

It is easy to see that every b-Bianchini-Grandolfi gauge function is also a Bianchini-
Grandolfi [] gauge function but the converse may not hold. A b-Bianchini-Grandolfi
gauge function having coefficient q ≥  is also a b-Bianchini-Grandolfi gauge function
having coefficient q ≥  for every q ≤ q.
From now on, we always assume that the coefficient of the b-Bianchini-Grandolfi gauge

function is at least as large as the coefficient of the b-metric space.

Lemma . Every gauge function of order r ≥  defined by (.) and (.) is a b-Bianchini-
Grandolfi gauge function with coefficient s≥ .

Proof It is immediately follows from the first part of Lemma . and using the fact that
Pn(r)≥ n for r ≥  and n ≥ . �

3 Fixed point theorems
For convenience we define a function E :D→ R

+ by E(x) = d(x, fx) and assume that there
exist some x ∈D such that O(x)⊂ D, so that the condition (.) can be put in the form

E(fx)≤ ϕ
(
E(x)

)
for all x ∈O(x) such that E(x) ∈ J . (.)

Lemma . Suppose x ∈ X is such that O(x) ⊂ D. Assume that E(x) ∈ J ; then E(xn) ∈ J
for all n ≥ .

Proof Note that x,x,x, . . . ,xn are well defined and belong to D. From (.) we have

E(x) = d(x,x) ≤ ϕ
(
d(x,x)

)
= ϕ

(
E(x)

) ∈ J
(
as E(x) ∈ J

)
.

Hence, E(x) ∈ J . Similarly, iterating successively we get E(xn) ∈ J for all n ≥ . �

http://www.journalofinequalitiesandapplications.com/content/2014/1/266
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Definition . Suppose x ∈ D is such that O(x) ⊂ D and E(x) ∈ J . Then for every
iterate xn ∈ D, n ≥  we define the closed ball B(xn,ρn) with center at xn and radius
ρn = sσ (E(xn)), where σ : J →R

+ is defined by (.).

Lemma . Suppose x ∈D is such thatO(x) ⊂D and E(x) ∈ J .Assume that B(xn,ρn) ⊂
D for some n≥ ; then xn+ ∈D and B(xn+,ρn+) ⊂ B(xn,ρn).

Proof Since E(x) ∈ J , Lemma . implies E(xn) ∈ J for all n ≥ . The condition (.) im-
plies σ (t)≥ t for all t ∈ J . We have

d(xn,xn+) ≤ σ
(
d(xn,xn+)

) ≤ sσ
(
d(xn,xn+)

)
= ρn.

Thus xn+ ∈ B(xn,ρn) ⊂D. Now let x ∈ B(xn+,ρn+). As E(xn) ∈ J so that from (.) we have
E(xn+)≤ ϕ(E(xn)). By making use of (.) we get

d(x,xn) ≤ s
[
d(x,xn+) + E(xn)

]
≤ s

[
ρn+ + E(xn)

]
= s

[
sσ

(
E(xn+)

)
+ E(xn)

]
≤ s

[
sσ

(
ϕ
(
E(xn)

))
+ E(xn)

]
= sσ

(
E(xn)

)
= ρn.

Hence, x ∈ B(xn,ρn). �

Definition . (Initial orbital point) We say that a point x ∈ D is an initial orbital point
of f if E(x) ∈ J and O(x)⊂ D.

The following lemma is obvious.

Lemma . For every initial orbital point x ∈D of f and every n≥  we have

E(xn+)≤ ϕ
(
E(xn)

)
and E(xn) ≤ ϕn(E(x)).

Furthermore, if ϕ is a gauge function of order r ≥  defined by (.) and (.), then

E(xn)≤ E(x)μPn(r) and φ
(
E(xn)

) ≤ sμrn = φ(x)μrn–,

where μ = φ(E(x))
s and φ is nonnegative nondecreasing on J satisfying (.) and (.).

Proof Bymaking use of Lemma .we obtain E(xn+) ≤ ϕ(E(xn)). Since ϕ is nondecreasing,
it easily follows that E(xn) ≤ ϕn(E(x)). Now from Lemma .() we have

E(xn)≤ ϕn(E(x)) ≤ E(x)
[

φ(E(x))
s

]Pn(r)

= E(x)μPn(r).

By using Lemma .() we obtain

φ
(
E(xn)

) ≤ φ
(
ϕn(E(x))) ≤ s

[
φ(E(x))

s

]rn

= sμrn . �

http://www.journalofinequalitiesandapplications.com/content/2014/1/266
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The following lemma gives bounds for inclusion radii and throughout its proof we will
make use of the following facts:

 ≤ φ(t) < , Pj(r)≥ j,  ≤ μrn < ,

where r ≥ , μ = φ(E(x))
s and j = , , , . . . .

Lemma . Suppose x ∈ D is an initial orbital point of f and ϕ is a gauge function of
order r ≥ . Let φ be nonnegative and nondecreasing on J defined by (.) and (.). Then
for radii ρn = sσ (E(xn)), n = , , , . . . , the following estimates hold:
() ρn ≤ sE(xn)

∑∞
j=[φ(E(xn))]

Pj(r) ≤ sE(xn)
–φ(E(xn)) ,

() ρn ≤ sE(xn)
∑∞

j=[φ(E(x))μrn–]Pj(r) ≤ sE(xn)
–φ(E(x))μrn– ,

() ρn ≤ sE(x)μPn(r)
∑∞

j=[φ(E(x))μrn–]Pj(r) ≤ sE(x) μPn(r)

–φ(E(x))μrn– ,
() ρn+ ≤ sϕ(E(xn))

∑∞
j=[φ(ϕ(E(xn)))]

Pj(r) ≤ sϕ(E(xn))
–φ(ϕ(E(xn))) ,

() ρn+ ≤ sϕ(E(xn))
∑∞

j=[φ(E(x))μrn+–]Pj(r) ≤ sϕ(E(xn))
–φ(E(x))μrn+– ,

where μ = φ(E(x))
s .

Proof () From definition of ρn we have

ρn = sσ
(
E(xn)

)
= s

∞∑
j=

sjϕj(E(xn))

≤ s
∞∑
j=

sjE(xn)
[

φ(E(xn))
s

]Pj(r)

(using Lemma .)

= sE(xn)
∞∑
j=

sj
[

φ(E(xn))
s

]Pj(r)

≤ sE(xn)
∞∑
j=

[
φ
(
E(xn)

)]j = sE(xn)
 – φ(E(xn))

. (.)

() From (.) we have

ρn ≤ sE(xn)
∞∑
j=

[
φ
(
E(xn)

)]Pj(r)

≤ sE(xn)
∞∑
j=

[
sμrn]Pj(r) (using second part of Lemma .)

= sE(xn)
∞∑
j=

[
φ
(
E(x)

)
μrn–]Pj(r)

≤ sE(xn)
∞∑
j=

[
φ
(
E(x)

)
μrn–]j

=
sE(xn)

 – φ(E(x))μrn– .

http://www.journalofinequalitiesandapplications.com/content/2014/1/266
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() By making use of first part of Lemma . above we have

ρn ≤ sE(xn)
∞∑
j=

[
φ
(
E(x)

)
μrn–]Pj(r)

≤ sE(x)μPn(r)
∞∑
j=

[
φ
(
E(x)

)
μrn–]j

≤ sE(x)μPn(r)

 – φ(E(x))μrn– .

() Now by making use of Lemma . we have

ρn+ = sσ
(
E(xn+)

)
=

∞∑
j=

sjϕ
(
E(xn+)

)

≤ sE(xn+)
∞∑
j=

sj
[

φ(E(xn+))
s

]Pj(r)

≤ sϕ
(
E(xn)

) ∞∑
j=

[
φ
(
ϕ
(
E(xn)

))]Pj(r)
(
as E(xn+) ≤ ϕ

(
E(xn)

)
and φ is nondecreasing

)
≤ sϕ

(
E(xn)

) ∞∑
j=

[
φ
(
ϕ
(
E(xn)

))]j

=
sϕ(E(xn))

 – φ(ϕ(E(xn)))
.

() From () we have

ρn+ ≤ sϕ
(
E(xn)

) ∞∑
j=

[
φ
(
E(xn+)

)]Pj(r)

≤ sϕ
(
E(xn)

) ∞∑
j=

[
φ
(
E(x)

)
μrn+–]Pj(r) (using Lemma .)

≤ sϕ(E(xn))
 – φ(E(x))μrn+–

. �

Now we proceed to formulate the following fixed point theorems.

Theorem . Let f :D ⊂ X → X be an operator on a complete b-metric space (X,d) such
that the b-metric is continuous and f satisfies (.) with a b-Bianchini-Grandolfi gauge
function ϕ of order r ≥  on an interval J with coefficient s≥ .Then starting from an initial
orbital point x of f the iterative sequence (.) remains in B(x,ρ) and converges to a point
ξ which belongs to each of the closed balls B(xn,ρn), n = , , , . . . ,where ρn = sσ (d(xn,xn+)),
σ defined in (.) and s ≥  is a coefficient of b-metric space. Furthermore, for each n ≥ 
we have

d(xn+,xn) ≤ ϕ
(
d(xn,xn–)

)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/266
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If ξ ∈D and the function E(x) = d(x, fx) on D is f -orbitally lower semi-continuous at ξ , then
ξ is a fixed point of f .

Proof Since x ∈D is an initial orbital point of f , from Lemma . we have

B(xn+,ρn+)⊂ B(xn,ρn) for all n≥ .

Thus xn ∈ B(x,ρ) for all n ≥ . According to the definition of ρ and using Lemma . we
have

ρn = sσ
(
E(xn)

) ≤ sσ
(
ϕn(E(x)))

= s
∞∑
j=

sjϕj(ϕn(E(x)))

=


sn–

∞∑
j=n

sjϕj(ϕn(E(x))) for all n≥ . (.)

Since ϕ is a b-Bianchini-Grandolfi gauge function, from (.) we obtain

ρn →  as n→ ∞, (.)

which implies that {B(xn,ρn)} is a nested sequence of closed balls. By Cantor’s theorem
(for complete b-metric spaces), we deduce that there exists a unique point ξ such that
ξ ∈ B(xn,ρn) for all n ≥  and xn → ξ or equivalently, limn→∞ d(xn, ξ ) = . From (d) of
Definition . we have

d(ξ , fxn) ≤ s
[
d(ξ ,xn) + d(xn, fxn)

]
= s

[
d(ξ ,xn) + d(xn,xn+)

]
.

Letting n → ∞ and since the b-metric is continuous, we obtain

lim
n→∞d(ξ , fxn) = .

If ξ ∈D and E(x) = d(x, fx) is f -lower semi-continuous at ξ , then

d(ξ , f ξ ) = E(ξ )≤ lim
n→∞ infE(xn) = lim

n→∞ infd(xn,xn+) = ,

which infers ξ = f ξ . Furthermore, from Lemma . we obtain the following:

d(xn,xn+) = E(xn) ≤ ϕ
(
E(xn–)

)
= ϕ

(
d(xn–,xn)

)
. �

Remark . Theorem . gives a generalization of [, Theorem .] and extends it to the
case of b-metric spaces. It reduces to [, Theorem .] when s = . Hence Theorem . not
only extends the result of Proinov [] but in turn it also includes results of Bianchini and
Grandolfi [] and Hicks [] as special cases.

http://www.journalofinequalitiesandapplications.com/content/2014/1/266
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Corollary . [, Theorem .] Let (X,d) be a complete metric space and f : D ⊂ X → X
be an operator satisfying

d
(
fx, f x

) ≤ ϕ
(
d(x, fx)

)
for all x ∈D and fx ∈ D with d(x, fx) ∈ J , (.)

where ϕ is a Bianchini-Grandolfi gauge function on an interval J . Then starting from
an initial orbital point x of f the iterative sequence {xn} remains in B(x,ρ) and con-
verges to a point ξ which belongs to each of the closed balls B(xn,ρn), n = , , . . . where
ρn = σ (d(xn, fxn)) and σ (t) =

∑∞
n= ϕn(t).Moreover, if ξ ∈ D and f is continuous at ξ , then

ξ is a fixed point of f .

Proof It follows from Lemma . that E(xn) ∈ J for n = , , , . . . . Thus from (.) we have

d
(
fx, f x

) ≤ ϕ
(
d(x, fx)

)
for all x ∈O(x) with d(x, fx) ∈ J . (.)

Thus Theorem . yields xn → ξ ∈ X. Also since the iterative sequence {xn} ∈ O(x) and
the mapping f is continuous at point t, we have fxn → f ξ . Thus

E(ξ ) = d(ξ , f ξ ) ≤ lim
n→∞ s

[
d(ξ ,xn+) + d(xn+, f ξ )

]
=  ≤ lim

n→∞ infE(xn).

This implies f -orbital lower semi-continuity of E(x) = d(x, fx) at point ξ . Hence the con-
clusion follows from Theorem .. �

Theorem . Let f :D ⊂ X → X be an operator on a complete b-metric space (X,d) such
that the b-metric is continuous and let f satisfy (.) with a b-Bianchini-Grandolfi gauge
function ϕ of order r ≥  and a coefficient s on an interval J . Further, suppose that x ∈ D
is an initial orbital point of f , then the following statements hold true.
() The iterative sequence (.) remains in B(x,ρ) and converges with rate of

convergence at least r ≥  to a point ξ which belongs to each of the closed balls
B(xn,ρn), n = , , . . . , and

ρn = sd(xn,xn+)
∞∑
j=

[
φ
(
d(xn,xn+)

)] ≤ sd(xn,xn+)
 – φ(d(xn,xn+))

, (.)

where φ is nonnegative and nondecreasing function on J satisfying (.) and (.).
() For all n≥  the following prior estimate holds:

d(xn, ξ ) ≤ E(x)
sn–

∞∑
j=n

φ
(
E(x)

)Pj(r) = d(x, fx)
φ(E(x))Pn(r)

sn–[ – φ(E(x))rn ]
. (.)

() For all n≥  the following posterior estimate holds:

d(xn, ξ ) ≤ sϕ
(
d(xn,xn–)

) ∞∑
j=

[
φ
(
ϕ
(
d(xn,xn–)

))]Pj(r)

≤ sϕ(d(xn,xn–))
 – φ[ϕ(d(xn,xn–))]

≤ sϕ(d(xn,xn–))
 – φ(d(xn,xn–))[ φ(d(xn ,xn–))

s ]r–
. (.)
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() We have

d(xn+,xn) ≤ ϕ
(
d(xn,xn–)

) ≤ μPn(r)d(x, fx) (.)

for all n≥ .
() If ξ ∈D and the function G(x) = d(x, fx) on D is f -orbitally lower semi-continuous at

ξ , then ξ is a fixed point of f .

Proof () From Theorem . it follows that the iterative sequence (.) converges to t ∈ X
and further t ∈ B(xn,ρn) for all n = , , , . . . . Moreover, estimate () of Lemma . implies

ρn ≤ sd(xn,xn+)
∞∑
j=

[
φ
(
d(xn,xn+)

)]Pj(r) ≤ sd(xn,xn+)
 – φ(d(xn,xn+))

.

() Form > n,

d(xn,xm) ≤ sd(xn,xn+) + sd(xn+,xn+) + · · · + sm–n–d(xm–,xm–) + sm–nd(xm–,xm)

=


sn–

m–∑
j=n

sjE(xj)

≤ 
sn–

m–∑
j=n

sjϕj(E(x)) (
from Lemma .,E(xn) ≤ ϕn(E(x)))

≤ 
sn–

m–∑
j=n

sjE(x)
[

φ(E(x))
s

]Pj(r)

(using Lemma .)

≤ E(x)
sn–

m–∑
j=n

λPj(r),

where λ = φ(E(x)). Keeping n fixed and letting m → ∞ we get

d(xn, ξ ) ≤ E(x)
sn–

∞∑
j=n

λPj(r) =
d(x, fx)

sn–

∞∑
j=n

λPj(r). (.)

Since

rn + rn+ ≥ rn, rn + rn+ + rn+ ≥ rn, . . . ,

we have

λrn+rn+ ≤ λrn , λrn+rn++rn+ ≤ λrn , . . . .

Thus it implies

∞∑
j=n

λPj(r) = λPj(r) + λPj+(r) + · · ·

= λPn(r)
[
 + λrn + λrn+rn+ + λrn+rn++rn+ + · · · ]
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≤ λPj(r)
[
 + λrn + λrn + λrn + · · · ]

=
λPn(r)

 – λrn . (.)

Hence from (.) we obtain

d(xn, ξ ) ≤ E(x)
sn–

∞∑
j=n

φ
(
E(x)

)Pj(r) = d(x, fx)
φ(E(x))Pn(r)

sn–[ – φ(E(x))rn ]
.

() From (.) we have for n≥ ,

d(xn, ξ ) ≤ d(x,x)
sn–

∞∑
j=n

[
φ
(
d(x,x)

)]Pj(r).
Setting n = , y = x, and y = x we have

d(y, ξ ) ≤ sd(y, y)
∞∑
j=

[
φ
(
d(y, y)

)]Pj(r).
Setting again y = xn and y = xn+ gives

d(xn, ξ ) ≤ sd(xn,xn+)
∞∑
j=

[
φ
(
d(xn,xn+)

)]Pj(r)

≤ sϕ
(
d(xn,xn–)

) ∞∑
j=

[
φ
(
ϕ
(
d(xn,xn–)

))]Pj(r)

≤ sϕ
(
d(xn,xn–)

) ∞∑
j=

[
φ
(
ϕ
(
d(xn,xn–)

))]j

=
sϕ(d(xn,xn–))

 – φ(ϕ(d(xn,xn–)))
. (.)

From Lemma .() we obtain

φ
(
ϕ
(
d(xn,xn–)

)) ≤ s
[
φ(d(xn,xn–))

s

]r

= φ
(
d(xn,xn–)

)[φ(d(xn,xn–))
s

]r–

, (.)

which implies


 – φ(ϕ(d(xn,xn–)))

≤ 
 – φ(d(xn,xn–))[ φ(d(xn ,xn–))

s ]r–
. (.)

Thus from (.) and (.) we deduce for n≥ ,

d(xn, ξ ) ≤ sϕ(d(xn,xn–))
 – φ(ϕ(d(xn,xn–)))

≤ sϕ(d(xn,xn–))
 – φ(d(xn,xn–))[ φ(d(xn ,xn–))

s ]r–
.
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() We have

d(xn+,xn) = E(xn) ≤ ϕ
(
E(xn–)

)
= E(xn–)

φ(E(xn–))
s

≤ E(x)μPn–(r)μrn– (using Lemma .)

= E(x)μPn–(r)+rn–

= E(x)μPn(r) = μPn(r)d(x, fx).

() Its proof runs along the same lines as the proof of Theorem .. �

Remark . For s = , Theorem . reduces to [, Theorem .]. It also generalizes (tak-
ing s =  and ϕ(t) = λt,  < λ < ) results of Ortega and Rheinboldt [, Section ..],
Kornstaedt [, Satz .], Hicks and Rhoades [], and Park [, Theorem ]. The first
two conclusions of Theorem . are due to Gel’man [, Theorem ] (taking s =  and
ϕ(t) = ctr , c≥ , r ≥ ). It also yields some results of Hicks [, Theorem ].

Corollary . Let f : X → X be an operator on a complete b-metric space (X,d) such that
the b-metric is continuous. Further, assume that f satisfies

d(fx, fy) ≤ ϕ
(
d(x, y)

)
for all x, y ∈ X with d(x, y) ∈ J , (.)

where ϕ is a b-Bianchini-Grandolfi gauge function of order r ≥  on an interval J and with
coefficient s ≥ . Assume that x ∈ X is such that d(x, fx) ∈ J . Then the following state-
ments hold.

(i) The iterative sequence (.) converges to a fixed point ξ of f .
(ii) The operator f has a unique fixed point in S = {x ∈ X : d(x, ξ ) ∈ J}.
(iii) The estimates (.)-(.) are valid.

Proof From (.) we have

d(fx, fy) ≤ ϕ
(
d(x, y)

)
< d(x, y),

which gives the continuity of f in b-metric space (X,d). Thus conclusions (i) and (iii) follow
immediately from Theorem .. Let ξ ′ be another fixed point of f in S; then d(ξ , ξ ′) ∈ J .
It follows from (.) that d(ξ , ξ ′) ≤ ϕ(d(ξ , ξ ′)), which yields ξ ′ = ξ . �

Remark . For s =  when the b-metric space under consideration is a simple metric
space, the above corollary coincides with [, Corollary .]. Thus the conclusions of Corol-
lary . are consequences of the results of Matkowski [].

4 Application and illustrative example
The following example illuminates the degree of generality of our result.

Example . Let X := {x,x,x}. Define a function d : X ×X →R
+ as

d(x,x) =

k

, d(x,x) =


k – 
, d(x,x) =


k
,

d(xi,xj) = d(xj,xi) and d(xi,xi) =  for all i, j = , , ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/266


Samreen et al. Journal of Inequalities and Applications 2014, 2014:266 Page 14 of 16
http://www.journalofinequalitiesandapplications.com/content/2014/1/266

where k ≥  is any positive integers. It is an easy exercise to see that d is a b-metric with
coefficient s≥ k

k– > . Define f : X → X as

fx = x, fx = x, fx = x.

Setting ϕ(t) = t on J = [, 
k– ] then ϕ is a b-Bianchini-Grandolfi gauge function with co-

efficient k
(k–) having order .Moreover, it is easily seen that all conditions of Theorem .

are satisfied.
On the other hand, assume that x, x, x are real numbers and the set {x,x,x} is

endowedwith the Euclideanmetric de. For each gauge function ϕ defined on some interval
[,h) one can find 

n
∈ [,h) for some n ∈ N. In such a case, identifying x = 

n
, x = 

n
,

x = 
n
, we assume f as defined above; then w.r.t. Euclidean metric de we have

de
(
f

n

, f

n

)
= de

(

n

,

n

)
=


n

≤ ϕ

(
de

(

n

,

n

))
= ϕ

(

n

)
,

which contradicts the definition of ϕ. Hence, one cannot invoke the main results of
Proinov [, Theorems ., ., Corollary .].

Theorem . Consider the following initial value problem:

x′(t) = f
(
t,x(t)

)
, x(t) = x. (.)

Assume that the following conditions hold:
(i) f is continuous;
(ii) f satisfies the condition

∣∣f (t,x) – f (t, y)
∣∣ ≤ k

∣∣x(t) – y(t)
∣∣r for (t,x), (t, y) ∈ R; (.)

(iii) f is bounded on R, i.e.,

∣∣f (t,x)∣∣ ≤ kr


, (.)

where R = {(t,x) : |t – t| ≤ ( k )
r–, |x – x| ≤ k

 }, r ≥  and  < k < .
Then the initial value problem (.) has a unique solution on the interval I = [t –

( k )
r–, t + ( k )

r–].

Proof Let C(I) be the space of all continuous real valued functions on I where I = [t –
( k )

r–, t + ( k )
r–] with the usual supremummetric, i.e.,

d(x, y) =max
t∈I

∣∣x(t) – y(t)
∣∣.

Integrating (.) gives

x(t) = x +
∫ t

t
f
(
τ ,x(τ )

)
dτ . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/266
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Indeed finding the solution of initial value problem (.) is equivalent to finding the fixed
point of the self-mapping T : X → X defined by

Tx(t) = x +
∫ t

t
f
(
τ ,x(τ )

)
dτ , (.)

where X = {x ∈ C(I) : |x(t) – x| ≤ k
 ;k > }; then X is a closed subspace of C(I). We see

that if τ ∈ I , then |τ – t| ≤ ( k )
r– and x ∈ X gives |x(τ ) – x| ≤ k

 . Thus (τ ,x(τ )) ∈ R, and
since f is continuous on R, the integral in (.) exists and T is defined for each x ∈ X. To
see this, observe that T maps X to itself. We use (.) to write

∣∣Tx(t) – x
∣∣ = ∣∣∣∣

∫ t

t
f
(
τ ,x(τ )

)
dτ

∣∣∣∣
≤

∫ t

t

∣∣f (τ ,x(τ ))∣∣dτ

≤ kr


|t – t| (using (.))

≤ kr



(

k

)r–

=
k

.

Now by using (.) we have

∣∣Tx(t) – Ty(t)
∣∣ ≤

∫ t

t

∣∣f (τ ,x(τ )) – f
(
τ , y(τ )

)∣∣dτ

≤ k
∫ t

t

∣∣x(τ ) – y(τ )
∣∣r dτ

≤ k
(
max
τ∈I

∣∣x(τ ) – y(τ )
∣∣)r|t – t|

≤ k
(
max
τ∈I

∣∣x(τ ) – y(τ )
∣∣)r

(

k

)r–

=
(

k

)r–(
max
τ∈I

∣∣x(τ ) – y(τ )
∣∣)r

. (.)

Thus (.) implies

d(Tx,Ty) ≤
(

k

)r–(
d(x, y)

)r . (.)

We take J = [,k]. Thus it suffices to take ϕ(u) = ( k )
r–ur for u ∈ [,k], k < ; then ϕ is a

gauge function of order r ≥ . Also, for u ∈ J – {} we have

ϕ(u) =
(

k

)r–

ur =
(

k

)r–

uur– ≤
(

k

)r–

ukr– = u < u. (.)

Thus from (.) we obtain d(Tx,Ty) ≤ ϕ(d(x, y)) for all x, y ∈ X and d(x, y) ∈ J . Further, for
any x ∈ X it is easily seen that d(x,x) ≤ k

 , which yields d(x, y)≤ k for x, y ∈ X. Therefore,
all the conditions of Corollary . are satisfied. Hence the iterative sequence xn = Txn–;
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n = , , . . . converges to the unique fixed point t of T at a rate of convergence r ≥ . On
the other hand, Picard’s iterations converge to the solution linearly. �

5 Conclusion
In Section  we have established two convergence theorems in the setting of a b-metric
such that the self-mapping satisfies a contraction condition involving a gauge function
of order r ≥ . The gauge function ϕ has to satisfy the condition

∑∞
n= snϕn(t) < ∞ where

s ≥  is the coefficient of the underlying b-metric space. An example has been furnished to
assess the degree of generality of our results. In Section  we established an existence the-
orem for the solution of an initial value problem, which not only gives the unique solution
but also locates the domain for the solution.
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