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Abstract

Background: Y-Short Tandem Repeats (Y-STR) data consist of many similar and almost similar objects. This
characteristic of Y-STR data causes two problems with partitioning: non-unique centroids and local minima
problems. As a result, the existing partitioning algorithms produce poor clustering results.

Results: Our new algorithm, called k-Approximate Modal Haplotypes (k-AMH), obtains the highest clustering
accuracy scores for five out of six datasets, and produces an equal performance for the remaining dataset.
Furthermore, clustering accuracy scores of 100% are achieved for two of the datasets. The k-AMH algorithm records
the highest mean accuracy score of 0.93 overall, compared to that of other algorithms: k-Population (0.91),
k-Modes-RVF (0.81), New Fuzzy k-Modes (0.80), k-Modes (0.76), k-Modes-Hybrid 1 (0.76), k-Modes-Hybrid 2 (0.75),
Fuzzy k-Modes (0.74), and k-Modes-UAVM (0.70).

Conclusions: The partitioning performance of the k-AMH algorithm for Y-STR data is superior to that of other
algorithms, owing to its ability to solve the non-unique centroids and local minima problems. Our algorithm is also
efficient in terms of time complexity, which is recorded as O(km(n-k)) and considered to be linear.
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Background
Y-Short Tandem Repeats (Y-STR) data represent the num-
ber of times an STR motif repeats on the Y-chromosome.
It is often called the allele value of a marker. For ex-
ample, if there are eight allele values for the DYS391
marker, the STR would look like the following frag-
ments: [TCTA] [TCTA] [TCTA] [TCTA] [TCTA]
[TCTA] [TCTA] [TCTA]. The number of tandem
repeats has effectively been used to characterize and
differentiate between two people.
In modern kinship analyses, the Y-STR is very useful

for distinguishing lineages and providing information
about lineage relationships [1]. Many areas of study, in-
cluding genetic genealogy, forensic genetics, anthropo-
logical genetics, and medical genetics, have taken
advantage of the Y-STR method. For example, it has
been used to trace a similar group of Y-surname projects
to support traditional genealogical studies, e.g., [2-4].
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Further, in forensic genetics, the Y-STR is one of the pri-
mary concerns in human identification for sexual assault
cases [5], paternity testing [6], missing persons [7],
human migration patterns [8], and the reexamination of
ancient cases [9].
From a clustering perspective, the goal of partitioning Y-

STR data is to group a set of Y-STR objects into clusters
that represent similar genetic distances. The genetic dis-
tance of two Y-STR objects is based on the mismatch
results from comparing the Y-STR objects and their modal
haplotypes. For Y-surname applications, if two people
share 0, 1, 2, and 3 allele value mismatches for each mar-
ker, they are considered to be the most familially related.
Furthermore, for Y-haplogroup applications, the number
of mismatches is variant and greater than that typically
found in Y-surname applications. This is because the hap-
logroup application is based on larger family groups
branched out from the same ancestor, covering certain
geographical areas and ethnicities throughout the world.
The established Y-DNA haplogroups named by the letters
A to T, with further subdivisions using numbers and lower
case letters, are now available for reference (see [10] and
[11] for details).
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Efforts to group Y-STR data based on genetic distances
have recently been reported. For example, Schlecht et al.
[12] used machine learning techniques to classify Y-STR
fragments into related groups. Furthermore, Seman et al.
[13-19] used partitional clustering techniques to group
Y-STR data by the number of repeats, a method used in
genetic genealogy applications. In this study, we continue
efforts to partition the Y-STR data based on the parti-
tional clustering approaches carried out in [13-19]. Re-
cently, we have also evaluated eight partitional clustering
algorithms over six Y-STR datasets [19]. As a result, we
found that there is scope to propose a new partitioning
algorithm to improve the overall clustering results for
the same datasets.
A new partitioning algorithm is required to handle

the characteristics of Y-STR data, thus producing better
clustering results. Y-STR data are slightly unique com-
pared to the common categorical data used in [20-25].
The Y-STR data contain a higher degree of similarity of
Y-STR objects in their intra-classes and inter-classes.
(Note that the degree of similarity is based on the mis-
match results when comparing the objects and their
modal haplotypes.) For example, many Y-STR surname
objects are found to be similar (zero mismatches) and
almost similar (1, 2, and 3 mismatches) in their intra-
classes. In some cases, the mismatch values of inter-
class objects are not obviously far apart. Y-STR hap-
logroup data contain similar, almost similar, and also
quite distant objects. Occasionally, the Y-STR hap-
logroup data may include sub-classes that are sparse in
their intra-classes.

Partitional clustering algorithms
Classically, clustering has been divided into hierarchical
and partitional methods. The main difference between
the two is that the hierarchical method breaks the data
up into hierarchical clusters, whereas the partitional
method divides the data into mutually disjoint partitions.
The pillar of the partitional algorithms is the k-Means
algorithm [26], introduced almost four decades ago. As a
consequence, the k-Means paradigm has been extended
to various versions, including the k-Modes algorithm
[25] for categorical data.
The k-Modes algorithm owes its existence to the inef-

fectiveness of the k-Means algorithm for handling cat-
egorical data. Ralambondrainy [27] attempted to rectify
this using a hybrid numeric–symbolic method based on
the binary characters 0 and 1. However, this approach
suffered from an unacceptable computational cost, par-
ticularly when the categorical attributes had many cat-
egories. Since then, a variety of k-Modes-type algorithms
have been introduced, such as k-Modes with new dis-
similarity measures [21,22], k-Population [23], and a new
Fuzzy k-Modes [20].
Partitional algorithms use an objective function in their
optimization process, and the determination of this func-
tion was described as the P problem by Bobrowski and
Bezdek [28] and Salim and Ismail [29]. When he proposed
the k-Modes clustering algorithm, Huang [25] split P into
P1 and P2. P1 denotes the minimization problem of
obtaining values for the partition matrix wli of 0 or 1
(for the hard clustering approach) or 0 to 1 (for the fuzzy
clustering approach); see Eq. (1b) as an example. Further-
more, P2 denotes the minimization problem of obtaining
the value that occurs most often (or the mode of a cat-
egorical data set) to represent the center of a cluster (often
called the centroid). The minimization of P2 by obtaining
the appropriate mode essentially causes the minimization
of problem P2, and vice versa. As an example of the
optimization process for problem P in the Fuzzy k-Modes
algorithm, we wish to solve Eq. (1) subject to Eqs. (1a),
(1b), and (1c).

P W ;Zð Þ ¼
Xk

l¼1

Xn

i¼1
w∝
li d Xi;Zlð Þ ð1Þ

subject to:Xk

l¼1
wli ¼ 1; 1≤i≤n; ð1aÞ

wli∈ 0; 1½ �; 1≤i≤n; 1≤l≤k ð1bÞ
And

0 <
Xn

i¼1
wli < n;1≤l≤k ð1cÞ

where:

� wli is a (k × n) partition matrix that denotes the
degree of membership of object i in the lth cluster
that contains a value of 0 to 1,

� k (≤ n) is a known number of clusters,
� Z is the centroid such that [Z1, Z2,. . .,Zk] ∊ Rmk,
� α ∊ [1, ∞) is a weighting exponent,
� d(Xi, Zl) is the distance measure between the object

Xi and the centroid Zl, as described in Eqs. (2) and (2a).

d x; zð Þ ¼
Xn

j¼1
δ xj; zj
� � ð2Þ

where:

δ xj; zj
� � ¼ 0; xj ¼ zj

1; xj≠zj

�
ð2aÞ

Huang and Ng [24] described the optimization process
of P1 and P2 as follows:

� Problem P1: Fix Z = Ẑ and solve the reduced problem
P(W, Ẑ) as in Eq. (3). This process obtains the
minimized values of 0–1 of the partition matrix wli.
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wli¼

1; If Xi ¼ Ẑ l

0; If Xi ¼ Ẑh; h≠l

1
Xk
h¼1

d Xi;Ẑ l

� �
d Xi;Ẑh
� �

" #1
α�1ð Þ

�
; If Xi≠Ẑ l; and Xi≠X̂ h;1≤h≤k

,
8>>>><
>>>>:

ð3Þ

� Problem P2: Fix W = Ŵ and solve the reduced
problem P(Ŵ, Z) as in Eq. (4) subject to Eq. (4a).
This process obtains the most frequent attributes, or
the modes, which give the centroids.

Zli ¼ a pð Þ
j ∈ DOM Aj

� � ð4Þ

where:

X
i;x

i;j¼a
pð Þ
j

w∝
li ≥

X
i;x

i;j¼a
tð Þ
j

w∝
li ∀ l; 1 ≤ t ≤ nj; 1 ≤ ≤ m

ð4aÞ

and α ∈ [1, ∞) is a weighting exponent.
Problem of partitioning Y-STR data
Due to the characteristics of Y-STR data, there are two
optimization problems for existing partitional algo-
rithms: non-unique centroids and local minima pro-
blems. These two problems are caused by the drawback
of the modes mechanism of determining the centroids.
Non-unique centroids would result in empty clusters,
whereas the local minima problem leads to poorer
Class Object Attribute 1

A

A1 a1

A2 a1

A3 a1

B

B1 a1

B2 a1

B3 a1

C

C1 b1

C2 b1

C3 b1

Figure 1 Artificial Example 1. An example of higher degree of similarity
clustering results. Both problems are a result of the
obtained centroids, which are not sufficient to represent
their classes.
Therefore, problems will occur for the following two

cases:
i)The total number of objects in a dataset is small

while the number of classes is large. To illustrate this
case, consider the following example.
Example I: Figure 1 shows an artificial example of a

dataset consisting of nine objects in three classes: Class
A = {A1, A2, A3}, Class B = {B1, B2, B3}, and Class C =
{C1, C2, C3}. Each object is composed of three attributes,
represented in lower case; e.g., for object A1, the attri-
butes are a1, a2, and a3. The dataset is considered to
have a higher degree of similarity between objects in
intra-classes, while the number of objects is small and
number of classes is large. Thus, the appropriate modes
for representing the classes are: Class A – [a1, a2, a3],
lass B – [a1, b2, c3], and Class C – [b1, c2, d4]. However,
attribute a1 in DOMAIN (A1), a2 in DOMAIN (A2), and
c3 in DOMAIN (A3) are too dominant, and would there-
fore dominate the process of updating P2. Figure 2
shows the possibility that each cluster is formed by the
dominant attributes.
As a result, the mode that consists of [a1, a2, c3]

would be obtained twice. Thus, P2 would not be mini-
mized due to this non-unique centroid. Another possi-
bility is that the two modes are different, but are not
distinctive enough to represent their clusters, such as
modes [a1, a2, a3] or [a1, a2, b3] for Cluster 2. As a
consequence, this case would fall into a local minima
problem.
Attribute 2 Attribute 3

a2 a3

a2 a3

a2 b3

b2 b3

b2 c3

b2 c3

a2 c3

c2 d4

c2 d4

between objects.



Figure 2 The dominant attributes form centroid 1 (a1, a2, c3), centroid 2 (a1, a2, c3) and centroid 3 (b1, c2, d3). In this case, there are
possibilities that each cluster is formed by the dominant attributes, e.g. attribute a1, a2 and c3. This scenario of non-unique centroids would result
in empty clusters; otherwise the centroids would lead to local a minima problem and produce poorer clustering results.
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ii)An extreme distribution of objects in a class. To
illustrate this case, consider the following example.
Example II: Figure 3 shows a dataset consisting of eight

objects in two classes: Class A = {A1, A2, A3, A4, A5, A6}
and Class B = {B1, B2}. Each object consists of three attri-
butes, again represented in lower case. The appropriate
modes to represent the classes are: Class A – [a1, a2, b3]
and Class B – [a1, b2, c3] or [a1, b2, d3]. The distribution of
objects in Class A is considerably larger than in Class B,
Class Object Attribute 1

A

A1 a1

A2 a1

A3 a1

A4 a1

A5 a1

A6 a1

B
B1 a1

B2 a1

Figure 3 Artificial Example 2. An example of the extreme distribution of
covering approximately 75% of the total set of objects.
This characteristic of the data is found to be problematic
for P2, particularly for the fuzzy approach. The problem is
actually caused by the initial centroid selection. Figure 4
shows the objects in Class A would be equally distributed
into clusters 1 and 2.
As a result, object A becomes dominant in both clusters,

and so the obtained modes might be represented solely by
objects in Class A, e.g., [a1, a2, a3] and [a1, a2, b3].
Attribute 2 Attribute 3

a2 a3

a2 a3

a2 b3

a2 b3

a2 b3

a2 b3

b2 c3

b2 d3

objects in a class.



Figure 4 The extreme distribution of objects A forms centroid 1 (a1, a2, a3) and centroid 2 (a1, a2, b3). In this case, the objects in Class A
are equally distributed into clusters 1 and 2. Therefore, the obtained centroids are not sufficient to represent their classes.
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The above situations cause P not to be fully optimized,
thus producing poor clustering results. Therefore, a new
algorithm with a new concept of P2 is proposed in order
to overcome these problems and improve the clustering
accuracy results of Y-STR data.
Methods
The center of a cluster
The mode mechanism for the center of a cluster (problem
P2) is not appropriate for handling the characteristics of
Y-STR data, and therefore, it cannot be used as a mechan-
ism to represent the center of a cluster (centroid). Instead,
the center of Y-STR data should be the modal haplotypes,
which are required to calculate the distance of Y-STR
objects. The distance between a Y-STR object and its
Table 1 Example of dominant objects

Objects Membership Values

c1 c2

x1 0.7 0.3

x2 0.4 0.6

x3 0.6 0.4

x4 0.3 0.7
modal haplotype can be formalized as in Eq. (5) subject to
Eq. (5a).

dystr X;Hð Þ ¼
Xm

j¼1
xj; hj
� � ð5Þ

subject to:

y xj; hj
� � ¼ 0; xj ¼ hj

1; xj ≠ hj

�
ð5aÞ

where m is the number of markers.
The modal haplotype is controlled by groups of

objects that are similar or almost similar in Y-STR data.
The similar and almost similar objects have a lower dis-
tance, or a higher degree of membership values in a
fuzzy sense. Thus, these two groups are considerably the
Probability of being the dominant object in the cluster

c1 c2

100% (1.0) 50% (0.5)

50% (0.5) 100% (1.0)

100% (1.0) 50% (0.5)

50% (0.5) 100% (1.0)
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most dominant objects required to find the Approximate
Modal Haplotype. Consider four objects x1, x2, x3, and
x4 and two clusters c1 and c2. The membership value for
each object and its cluster are as shown in Table 1,
whereby objects x1 and x3 have a 100% chance of being
the most dominant object in cluster c1, but only a 50%
chance of being the dominant object in cluster c2, and
so on. A dominant weighting value of 1.0 is given to any
dominant object and a weight of 0.5 is given to the
remaining objects.

The k-AMH algorithm
Let X ={X1, X2,. . ., Xn} be a set of n Y-STR objects and
A ={A1,A2,. . ., Am} be a set of markers (attributes) of a
Y-STR object. Let H = {H1, H2,..,Hk} ∈ X be the set of
Approximate Modal Haplotypes for k clusters. Sup-
pose k is known a priori. Let Hl be the Approximate
Modal Haplotype, represented as [hl,1, hl,2,. . .,hl,m],
and therefore, Hl,j = Xi,j for 1≤ j ≤ m and 1≤ i ≤ n.
The objective of the algorithm is to partition the cat-
egorical objects X into k clusters. Thus, the Hl can be
replaced by Xi until n provided they satisfy the condi-
tion described in Eq. (6).

P �A
� �s

> P �A
� �t

; s ≠ t; ∀t; 1 ≤ t ≤ n� kð Þ:
ð6Þ

Here, P(Á) is the cost function described in Eq. (7), which
is subject to Eqs. (7a), (8), (8a), (8b), (9), (9a), (9b), and (9c).

P �A
� �

¼
Xk

l¼1

Xn

i¼1
�Ali ð7Þ

subject to:

�Ali ¼ W∝
li Dli ð7aÞ

� Wli
∝ is a (k × n) partition matrix that denotes the

degree of membership of Y-STR object i in the lth
cluster that contains a value of 0 to 1 as described in
Eq. (8), subject to Eqs. (8a) and (8b).
W∝
li ¼

1;
0;

1
Xk
z¼1

dystr Xi;Hl
� �

dystr Xi;Hzð Þ
� 	1 ∝�1ð Þ

�
; If Hi ≠ Xj

,
0
BBB@

8>>>><
>>>>:
� subject to:

w∝
li ∈ 0; 1½ �; 1 ≤ i ≤ n; 1 ≤ l ≤ k; ð8aÞ

and

0 <
Xn

i¼1
w∝
li < n; 1 ≤ l ≤ k ð8bÞ

where,
� k (≤ n) is a known number of clusters.
� H is the Approximate Modal Haplotype (centroid)

such that [H1, H2,. . .,Hk] ∈ X.
� α ∈ [1, ∞) is a weighting exponent and used to

increase the precision of the membership degrees.
Note that this alpha is typical based on 1.1 until 2.0
as introduced by Huang and Ng [24].

� dystr(Xi,Hl) is the distance measure between the Y-STR
object Xi and the Approximate Modal Haplotype Hl

as described in Eq. (5) and subject to Eq.(5a).
� Dli is another (k × n) partition matrix which

contains a dominant weighting value of 1.0 or 0.5, as
explained above (See Table 1). The dominant
weighting values are based on the value of Wli

∝

above. Dli is described in Eq. (9), subject to
Eqs. (9a), (9b), and (9c).

dli ¼ 1:0; if w∝
li ¼ maxw

∝
li ; 1 ≤ l ≤ k

0:5; otherwise

�
ð9Þ

subject to:

dli ∈ 1; 0:5f g; 1 ≤ i ≤ n; 1 ≤ l k ð9aÞ

1:5 ≤
Xk

l¼1
dli ≤ k; 1 ≤ i ≤ n ð9bÞ

1:5 ≤
Xk

l¼1
dli ≤ n; 1 ≤ i ≤ k ð9cÞ
If ; Xi ¼ Hi

If ; Xi ¼ Hz; z ≠ l

and Xi ≠ Hz; 1 ≤ z ≤ k

1
CCCA

∝

ð8Þ



�
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The basic idea of the k-AMH algorithm is to find k
clusters in n objects by first randomly selecting an ob-
ject to be the Approximate Modal Haplotype h for
each cluster. The next step is to iteratively replace the
objects x one-by-one towards the Approximate Modal
Haplotype h. The replacement is based on Eq. (6) if
the cost function as described in Eq. (7) and subject to
(7a), (8), (8a), (8b), (9), (9a), (9b) and, (9c) is maxi-
mized. Thus, the differences between the k-AMH algo-
rithm and the other k-Mode-type algorithms are as
follows.

i. The objects (the data themselves) are used as the
centroids instead of modes. Since the distance of
Y-STR objects is measured by comparing the
objects and their modal haplotypes, we need to
approximately find the objects that can represent
the modal haplotypes. In finding the final
Approximate Modal Haplotype for a particular
group (cluster), each object needs to be tested one-
by-one and replaced on a maximization of a cost
function.

ii. A maximization process of the cost function is
required instead of minimizing it as in the k-mode-
type algorithms.

A detailed description of the k-AMH algorithm is
given below.

Step 1 – Select k initial objects randomly as
Approximate Modal Haplotype (centroids).
E.g. if k = 4, then choose randomly 4
objects as the initial Approximate Modal
Haplotype.

Step 2 – Calculate distance dystr(Xi,Hl) according to
Eq. (5) and subject to (5a).

Step 3 – Calculate partition matrix wli
∝ according to

Eq. (8), subject to Eqs. (8a) and (8b). Note
that the wli

∝ is based on the distance
calculated in Step 2.

Step 4 – Assign a weighting dominant of 1.0 or 0.5 for
partition matrix Dli according to Eqs. (9), (9a),
(9b) and (9c).

Step 5 – Calculate cost function P(Á) based on Wli
∝Dli

according to Eqs (7) and (7a).
Step 6 – Test for each initial modal haplotype by the

other objects one-by-one. If current cost
function is greater than previous cost function
according to Eq. (6), then replace it.

Step 7 – Repeat Step 2 until Step 6 for each x and h
Step 8 – Once the final Approximate Modal

Haplotypes are obtained for all clusters, assign
the objects to their corresponding crisp clusters
Cli according to Eq. (10).
Cli ¼ 1; if l ¼ arg max w∝
li ; 1 ≤ j ≤ c

0; otherwise

ð10Þ

Furthermore, the implementation of the steps above of
the algorithm is formalized in the form of pseudo-code
as follows.
INPUT: Dataset, X, the number of cluster, k, the num-
ber of dimensional, d and the fuzziness index,
OUTPUT: A set of clusters, k
01: Select Hl randomly from X such that 1≤l≤ k
02: for each Hl an Approximate Modal Haplotype do
03: for each Xi do
04: Calculate P(À) =

P
l = 1
k P

i = 1
n Àli

05: if P(À) =
P

l = 1
k P

i = 1
n Àli is maximized, then

06: Replace Hl by Xi

07: end if
08: end for
09: end for
10: Assign Xi to Cl for all l, 1≤ l ≤ k; 1≤i≤ n as Eq. (10)
11: Output Results
Optimization of the problem P
In optimizing the problem P, the k-AMH algorithm uses
a maximization process instead of the minimization
process imposed by the k-Mode-type algorithms. This
process is formalized in the k-AMH algorithm as fol-
lows.

Step 1 - Choose an Approximate Modal Haplotype,
H(t)∈ X. Calculate P(Á); Set t=1

Step 2 - Choose X(t+1) such that P(Á)t+1 is maximized;
Replace H1 by X(t+1)

Step 3 - Set t=t+1; Stop when t=n; otherwise go to Step 2.
*Note: n is the number of objects

The convergence of the algorithm is proven as P1 and
P2 are maximized accordingly. The function P(Á) incor-
porates the P(W, H) function imposed by the Fuzzy k-
Modes algorithm, where W is a partition matrix and H
is the approximate modal haplotype that defines the cen-
ter of a cluster. Thus, P1 and P2 are solved by Theorems
1 and 2, respectively.

Theorem 1 – Let Ĥ be fixed. P(W, Ĥ) is maximized if
and only if



W∝
li ¼

1; If ; Xi ¼ Hi

0; If ; Xi ¼ Hz; z ≠ l

1
Xk
z¼1

dystr Xi;Hl
� �

dystr XiHzð Þ
� 	1 ∝�1ð Þ

�
; If Hi ≠ Xj and Xi ≠ Hz; 1 ≤ z ≤ k

,
0
BBB@

1
CCCA

∝8>>>><
>>>>:
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Proof
Let X= {X1,X2,..,Xn} be a set of n Y-STR categorical

objects and H= {H1,H2,..,Hk} be a set of centroids
(Approximate Modal Haplotypes) for k clusters. Suppose
that P= {P1,P2,..,Pk} is a set of dissimilarity measures
based on dystr(Xi,Hl), as described in Eqs. (5) and subject
to (5a), ∀ i and l 1 ≤ i ≤ n; 1 ≤ l ≤ k

Definition 1 - For Xi = Hl and Xi = Hz, where z ≠ l,
the membership value for all i is

w∝
li ¼ 1; if Xi ¼ Hl

0; if Xi ¼ Hz; z ≠ l


 �∝�

For any P that is obtained from dystr(Xi,Hl) where
Xi = Hl, the maximum value of wli

∝ is 1 and Xi = Hz,
z ≠ l the value of wli

∝ is 0. Therefore, because Hl is
fixed, wli

∝ is maximized.

Definition 2 – For the case of Hi ≠ Xi and Xi ≠
Hz, ∀ z, 1 ≤ z ≤ k, the membership value for all i is

w∝
li ¼ 1 Xk

z¼1

dystr Xi;Ĥ l
� �

dystr Xi;Ĥ z
� �

" #1=ð∝�1Þ, 1
CA

∝0
B@

8><
>:

Suppose that pli ∈ P is the minimum value, we write as

w∝
li ¼ 1 Xk

z¼1
Pli
Pzi½ �

1=ð∝�1Þ

 �, 1

CCA
∝

where 1 ≤ l k; 1 ≤ z k

0
BB@

8>><
>>:

¼ 1

Pli
P1i

h i1=ð∝�1Þ
þ Pli

P2i

h i1=ð∝�1Þ
þ Pli

Pzi

h i1=ð∝�1Þ
þ Pli

Pki

h i1=ð∝�1Þ

 �,0

BB@
8>><
>>:

1
CCA

∝

Therefore,

¼ Pli
Pli

� 	1= ð∝�1Þ
¼ 1 > ¼ Pli

Pzi

� 	1= ð∝�1Þ
;

where z ≠ l

Thus,
Xk

z¼1

Pli

zi

� 	1= ð∝�1Þ

<
Xk

z¼1

Pti

Pzi

� 	1
∝�1ð Þ=

where

t ≠ l and ∀ z and t, 1 ≤ z ≤ k; 1 ≤ t ≤ k It follows
that

w∝
li ¼ 1 Xk

z¼1

Pli
Pzi

� 	1=ð∝�1Þ
 !, 1

CCCA
∝

0
BBBB@

8>>>><
>>>>:

> 1 Xk

z¼1

Pti
Pzi

� 	1
∝�1ð Þ=

 !, 1
CCCCA

∝0
BBBB@

where t ≠ l
Therefore, based on definitions 1 and 2, wli

∝ is max-
imal. Because Ĥ is fixed, P W ; Ĥ

� �
is maximized.

Theorem 2 – Let hl ∈ X be the initial center of a clus-
ter for 1 ≤ l ≤ k. hl is replaced by xi as the Approximate
Modal Haplotype if and only if

P �A
� �s

> P �A
� �t

; s ≠ t; ∀t; 1 ≤ t ≤ n� kð Þ:

Proof
Let D= {D1,D2,..,Dk} be a set of dominant weighting

values. For any maximum value of wli
∝ as proved by The-

orem 1, we assign an optimum value of 1.0 as a domin-
ant weighting value, otherwise 0.5 as described in Eq, (9)
and subject to Eqs. (9a), (9b) and (9c). We write

P Að Þ ¼
Xk

l¼1

Xn

i¼1
Ali

¼
Xk

l¼1

Xn

i¼1
W α

li Dli

Because wli
∝ and Dli are non-negative, the product

Wli
∝Dli must be maximal. It follows that the sum of all



Seman et al. BMC Research Notes 2012, 5:557 Page 9 of 13
http://www.biomedcentral.com/1756-0500/5/557
quantities
P

l = 1
k P

i = 1
n Áli is also maximal. Hence, the

result follows.

Y-STR Datasets
The Y-STR data were mostly obtained from a database
called worldfamilies.net [30]. The first, second, and third
datasets represent Y-STR data for haplogroup applica-
tions, whereas the fourth, fifth, and sixth datasets repre-
sent Y-STR data for Y-surname applications. All datasets
were filtered for standardization on 25 similar attributes
(25 markers). The chosen markers include DYS393,
DYS390, DYS19 (394), DYS391, DYS385a, DYS385b,
DYS426, DYS388, DYS439, DYS389I, DYS392, DYS389II,
DYS458, DYS459a, DYS459b, DYS455, DYS454, DYS447,
DYS437, DYS448, DYS449, DYS464a, DYS464b, DYS464c,
and DYS464b. These markers are more than sufficient for
determining a genetic connection between two people.
According to Fitzpatrick [31], 12 markers (Y-DNA12 test)
are already sufficient to determine who does or does not
have a relationship to the core group of a family.
All datasets were retrieved from the respective web-

sites in April 2010, and can be described as follows:

1) The first dataset consists of 751 objects of the Y-STR
haplogroup belonging to the Ireland yDNA project
[32]. The data contain only 5 haplogroups, namely E
(24), G (20), L (200), J (32), and R (475). Thus, k = 5.

2) The second dataset consists of 267 objects of the Y-
STR haplogroup obtained from the Finland DNA
Project [33]. The data are composed of only 4
haplogroups: L (92), J (6), N (141), and R (28). Thus,
k = 4.

3) The third dataset consists of 263 objects obtained
from the Y-haplogroup project [34]. The data
contain Groups G (37), N (68), and T (158). Thus,
k = 3.

4) The fourth dataset consists of 236 objects combining
four surnames: Donald [35], Flannery [36], Mumma
[37], and William [38]. Thus, k = 4.
Table 2 Clustering accuracy scores for all datasets

ALGORITHM

1 2

k-Modes 0.70 0.79

k-Modes-RVF 0.79 0.83

k-Modes-UAVM 0.65 0.75

k-Modes-Hybrid 1 0.67 0.81

k-Modes-Hybrid 2 0.56 0.82

Fuzzy k-Modes 0.56 0.74

k-Population 0.80 0.90

New Fuzzy k-Modes 0.71 0.84

k-AMH 0.83 0.93
5) The fifth dataset consists of 112 objects belonging to
the Philips DNA Project [39]. The data consist of
eight family groups: Group 2 (30), Group 4 (8), Group
5 (10), Group 8 (18), Group 10 (17), Group 16 (10),
Group 17 (12), and Group 29 (7). Thus, k = 8.

6) The sixth dataset consists of 112 objects belonging
to the Brown Surname Project [40]. The data consist
of 14 family groups: Group 2 (9), Group 10 (17),
Group 15 (6), Group 18 (6), Group 20 (7), Group 23
(8), Group 26 (8), Group 28 (8), Group 34 (7),
Group 44 (6), Group 35 (7), Group 46 (7), Group 49
(10), and Group 91 (6). Thus, k = 14.

The values in parentheses indicate the number of
objects belonging to that particular group. Datasets 1–3
represent Y-STR haplogroups and datasets 4–6 represent
Y-STR surnames.

Results and discussion
The following results compare the performance of the k-
AMH algorithm with eight other partitional algorithms:
the k-Modes algorithm [25], k-Modes with RVF [21-22,41],
k-Modes with UAVM [21], k-Modes with Hybrid 1 [21],
k-Modes with Hybrid 2 [21], the Fuzzy k-Modes algo-
rithm [24], the k-Population algorithm [23], and the New
Fuzzy k-Modes algorithm [20].
Our analysis was based on the average accuracy scores

obtained from 100 runs for each algorithm and dataset.
During the experiments, the objects in the datasets were
randomly reordered from the preceding run. The mis-
classification matrix proposed by Huang [25] was used
to obtain the clustering accuracy scores for evaluating
the performance of each algorithm. The clustering ac-
curacy r defined by Huang [25] is given by Eq. (11):

r ¼
Xk

i¼1
ai

n
ð11Þ
DATASET

3 4 5 6

0.84 0.84 0.74 0.62

0.87 0.78 0.87 0.72

0.83 0.87 0.56 0.54

0.85 0.77 0.80 0.64

0.83 0.79 0.81 0.70

0.74 0.97 0.76 0.66

0.97 1.00 0.97 0.84

0.77 1.00 0.77 0.69

0.96 1.00 1.00 0.87



Table 3 Clustering accuracy scores for all Y-STR datasets

N Mean Std. Dev. 95% Confidence Interval for Mean Min Max

Lower Bound Upper Bound

k-Mode 600 0.76 0.13 0.75 0.77 0.45 1.00

k-Mode-RVF 600 0.81 0.11 0.80 0.82 0.56 1.00

k-Mode-UAVM 600 0.70 0.17 0.69 0.71 0.38 1.00

k-Mode-Hybrid 1 600 0.76 0.13 0.75 0.77 0.38 1.00

k-Mode-Hybrid 2 600 0.75 0.14 0.74 0.76 0.45 1.00

Fuzzy k-Mode 600 0.74 0.16 0.73 0.75 0.32 1.00

k-Population 600 0.91 0.09 0.91 0.92 0.59 1.00

New Fuzzy k-Mode 600 0.80 0.13 0.79 0.81 0.44 1.00

k-AMH 600 0.93 0.07 0.93 0.94 0.79 1.00
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where k is the number of clusters, ai is the num-
ber of instances occurring in both cluster i and its
corresponding haplogroup or surname, and n is
the number of instances in the dataset.

Clustering performance
Table 2 shows the clustering accuracy scores for all data-
sets (boldface indicates the highest clustering accuracy).
Based on these results, the performance of the k-AMH
algorithm was very promising. Out of six datasets, our
algorithm obtained the highest clustering accuracy
scores for datasets 1, 2, 4, 5, and 6. In fact, the algorithm
also achieved the optimal clustering accuracy for two
datasets (4 and 5). However, for dataset 3, the results
show that the accuracy of the k-AMH algorithm was
0.01 lower than that of the k-Population algorithm. A
statistical t-test was carried out for further verification.
This indicated that t(101.39) = 0.65, and p = 0.51. Thus,
there was no significant difference at the 5% level be-
tween the accuracy score of our k-AMH algorithm and
the k-Population algorithm. This means that both algo-
rithms displayed an equal performance for this dataset.
During the experiments, the k-AMH algorithm did not

encounter any difficulties. However, the Fuzzy k-Modes
Table 4 Multiple comparisons for the k-AMH algorithm

Accuracy Games–Howell

(I) Algorithm (J) Algorithm Mean Diff. (I-J) St

k-AMH k-Mode 0.17*

k-Mode-RVF 0.12*

k-Mode-UAVM 0.23*

k-Mode-Hybrid 1 0.17*

k-Mode-Hybrid 2 0.18*

Fuzzy k-Mode 0.19*

k-Population 0.02*

New Fuzzy k-Modes 0.13*

*Note: p < 0.05.
and the New Fuzzy k-Modes algorithms faced problems
with datasets 1, 5, and 6. For dataset 1, the problem was
caused by the extreme number of objects in Class R
(475), which covered about 63% of the total objects. Fur-
ther, for datasets 5 and 6, the problem was caused by
many similar objects in a larger number of classes. In
particular, both algorithms faced the problem P2 caused
by the initial centroid selections. Note also that the
results for both algorithms were based on the diverse
method, an initial centroid selection proposed by Huang
[25].
For an overall comparison, Table 3 shows the results of

all Y-STR datasets. It clearly indicates that the k-AMH
algorithm obtained the highest accuracy score of 0.93. The
closest score of 0.91 belongs to the k-Population algo-
rithm. Furthermore, the k-AMH algorithm also recorded
the best results in terms of standard deviation (0.07), the
lower bound (0.93), the upper bound (0.94), and the mini-
mum accuracy score (0.79).
For further verification, a one-way ANOVA test was

carried out. This indicated that the assumption of
homogeneity of variance was violated; therefore, the
Welch F-ratio is reported. There was a significant vari-
ance in the clustering accuracy scores among the
d. Error p-value 95% Confidence Interval

Lower Bound Upper Bound

0.01 < 0.00001 0.16 0.19

0.01 < 0.00001 0.11 0.14

0.01 < 0.00001 0.21 0.25

0.01 < 0.00001 0.16 0.19

0.01 < 0.00001 0.16 0.20

0.01 < 0.00001 0.17 0.21

0.00 0.00271 0.01 0.03

0.01 < 0.00001 0.12 0.15
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nine algorithms, in which F(8, 2230) = 378, p < 0.001,
and ω2 = 0.25. Thus, the Games–Howell procedure was
used for a multiple comparison among the nine algo-
rithms. Table 4 shows the result of this comparison with
regard to the k-AMH algorithm against the other eight
algorithms. At the 5% level of significance, it is clearly
shown that the k-AMH algorithm (M = 0.93, 95% CI
[0.93, 0.94]) differed from the other eight algorithms
(all P values < 0.001). Thus, the performance of k-AMH
algorithm exhibited a very significant difference com-
pared to the other algorithms.
Figure 5 Scalability Testing. a Execution time to cluster 65,000 data into
number of data into three clusters.
Efficiency
We now consider the time efficiency of the k-AMH algo-
rithm. The computational cost of the algorithm depends
on the nested loop for k(n-k), where k is the number of
clusters and n is the number of data required to obtain the
cost function, P(À). The function P(À) involves the num-
ber of attributes m in calculating the distances and the
membership values for its partition matrix wli. Thus, the
overall time complexity is O(km(n-k)). However, the time
efficiency of the k-AMH algorithm will not reach O(n2)
because the value of k in the outer loop will not become
different numbers of clusters. b Execution time to cluster a different
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equivalent to the value of n-k in the inner loop. See
pseudo-code for a detailed implementation of these loops.
A scalability test was also carried out for the k-AMH

algorithm. These experiments were based on a dataset
called Connect [42]. This dataset consisted of 65,000
data, 42 attributes, and three classes. Two scalability
tests were conducted: (a) scalability against the number
of objects, when the number of clusters was three, and
(b) scalability against the number of clusters, when the
number of objects was 65,000. The test was performed
on a personal computer with an Intel® Core™ 2 DUO
Processor with 2.93 GHz and 2.00 GB memory. Figure 5
(a) and (b) illustrate the results of the tests. In conclu-
sion, the runtime of the k-AMH algorithm increased
linearly with the number of clusters and data.
Conclusions
Our experimental results indicate that the performance of
the proposed k-AMH algorithm for partitioning Y-STR
data was significantly better than that of the other algo-
rithms. Our algorithm handled all problems, as described
previously, and was not too sensitive to P0, the initial cen-
troid selection, even though the datasets contained a lot of
similar objects. Moreover, the concept of P2 in using the
object (the data itself) as the approximate center of a clus-
ter has significantly improved the overall performance of
the algorithm. In fact, our algorithm is the most consistent
of those tested because the difference between the mini-
mum and maximum scores is smaller. The k-AMH algo-
rithm always produces the highest minimum score for
each dataset. In conclusion, the k-AMH algorithm is an ef-
ficient method of partitioning Y-STR categorical data.
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