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Abstract

Efficient and highly accurate channel state information (CSI) at the base station (BS) is essential to achieve the
potential benefits of massive multiple input multiple output (MIMO) systems. However, the achievable accuracy that
is attainable is limited in practice due to the problem of pilot contamination. It has recently been shown that
compressed sensing (CS) techniques can address the pilot contamination problem. However, CS-based channel
estimation requires prior knowledge of channel sparsity to achieve optimum performance, also the conventional CS
techniques show poor recovery performance for low signal to noise ratio (SNR). To overcome these shortages, in this
paper, an efficient channel estimation approach is proposed for massive MIMO systems using Bayesian compressed
sensing (BCS) based on prior knowledge of statistical information regarding channel sparsity. Furthermore, by utilizing
the common sparsity feature inherent in the massive MIMO system channel, we extend the proposed Bayesian
algorithm to a multi-task (MT) version, so the developed MT-BCS can obtain better performance results than the
single task version. Several computer simulation based experiments are performed to confirm that the proposed
methods can reconstruct the original channel coefficient more effectively when compared to the conventional
channel estimator in terms of estimation accuracy.

Keywords: Massive multiple input multiple output (MIMO), Channel estimation, Bayesian compressed sensing (BCS),
Pilot contamination, Channel state information (CSI), Multi-task Bayesian compressed sensing (MTBCS)

1 Introduction
Themain activity of recent research has identified that the
major targets for the next generation of mobile communi-
cations, the so-called fifth generation of mobile communi-
cations, are to achieve 1000 times the system capacity and
10 times the spectral efficiency, energy efficiency and data
rate, and 25 times the average cell throughput [1]. From
a high-level perspective, there is a promising technol-
ogy that enables reaching higher fifth generation targets,
called a massive multiple input multiple output (MIMO).
A massive MIMO can be defined as a system using a large
number of antennas at the base station; accordingly, a
significant beamforming can be achieved and the system
capacity can serve a large number of users [2].
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When comparing massive MIMO to the conventional
MIMO systems, massive MIMO shows several advanta-
geous aspects. Firstly, as the number of the antennas at
the base station goes to high values, the simplest coherent
combiner and linear precoder turn out to be optimal. Sec-
ondly, by exploiting the features of the channel reciprocity,
additional antennas increase the network capacity signifi-
cantly without the need for additional feedback overhead.
Thirdly, enabling the power reduction in the uplink and in
the downlink can provide the potential for small-cell size
shrinking [3].
The major limiting factor in massive MIMO is the avail-

ability of accurate, instantaneous channel state informa-
tion (CSI) at the base station. The CSI is typically acquired
by transmitting predefined pilot signals and estimating the
channel coefficients from the received signals by applying
an appropriate estimation algorithm [1–3].
Channel estimation accuracy depends on having per-

fect orthogonal pilots allocated to the users; however,
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to achieve high spectral efficiency, the same carrier fre-
quency should be used in the neighbouring cells by fol-
lowing a specific reuse pattern. This leads to the creation
of a spatially correlated inter-cell interference, known as
pilot contamination, which reduces the estimation perfor-
mance and spectral efficiency [1–3].
The pilot contamination problem was analyzed in [4]

and it has shown that the precoding downlink signal of the
base station in the serving cell contaminated the received
signal of the users roaming in other cells. The authors of
[5] analyzed the pilot contamination problems in multi-
cell massive MIMO systems relying on a large antennas at
the base station, and demonstrated that the pilot contam-
ination problem persisted in large-scale MIMO [6].
However, pilot contamination could be reduced by

reducing the number of pilots. A multi-user scenario
therefore needs to reduce the number of pilots with-
out affecting the channel impulse response (CIR) quality.
Hence, the development of efficient channel estimation
techniques for massive MIMO that are computationally
less complex and require a fewer number of pilots is a
challenge that should be thoroughly addressed [7].
Recently, compressed sensing (CS) techniques have

received attention since they can recover the unknown
signals from only a small number of measurements, thus
using significantly far fewer samples than is possible via
the conventional Nyquist rate, which is the signal recov-
ery scheme developed for CS to exploit the sparse nature
of signals (that is, only a small number of components in a
signal vector are non-zero). CS allows for accurate system
parameter estimation with fewer pilots; thereby, address-
ing the pilot contamination problem and improving the
bandwidth efficiency [8, 9]. However, classical CS algo-
rithms require prior knowledge of channel sparsity, which
is usually unknown in practical scenarios. In addition, to
apply CS algorithms, the sampling matrix must satisfy the
restricted isometry property (RIP) for guaranteeing reli-
able estimators. Such a condition cannot be easily verified
because it results computational demanding [10, 11].
To overcome the scarcity of CS-based channel estima-

tion in massive MIMO systems, in this paper, we propose
an improved channel estimation scheme based on the the-
ory of Bayesian CS (BCS) that introduces relevance vector
machines (RVM) and statistical learning information (SLI)
into standard CS; whereby, probabilistic a priori infor-
mation regarding the channel sparsity can be exploited
for more reliable channel recovery to mitigate the pilot
contamination problem. Also, the sampling matrix con-
dition is efficiently overcome based on probabilistic
formulation [12–14].
Compared with the classical based scheme, our simula-

tion results indicate that the proposed channel estimation
methods provide improved estimation accuracy and can
address the pilot contamination problem.

Furthermore, by exploiting the common statistical spar-
sity inherent in different multipath signals, we extend
the BCS algorithms to a multi-task version for simulta-
neously reconstructing multiple signals, thus leading to
MT-BCS [15, 16].
The main contributions of this paper are summarised as

follows:

• The BCS-based channel estimation algorithm has
been proposed for massive MIMO to address the
pilot contamination problem.

• We have also proposed to enhance the performance
of the BCS-based estimator through the principle of
thresholding to select the most significant taps to
improve the channel estimation accuracy.

• In addition, we have exploited the common statistical
sparsity distribution to enhance the estimation
accuracy performance through the proposed
MT-BCS-based estimator.

• To provide the benchmark for the minimum
performance error of the BSC and MT-BCS, the
Cramer Rao bound (CRB) has been drawn for BCS
and it has been derived and drawn for MT-BCS.

The remainder of this paper is organized as follows.
The multi-cell massive MIMO system model is presented
in Section 2. The BSC-based and the MT-BSC based
channel estimation details are reviewed in Sections 3
and 4, respectively. In section 5, we provide the Cramer-
Rao bound analysis. Section 6 presents the simulation
results. Finally, the final conclusions are drawn in
Section 7.
The following notation is adopted throughout the paper:

C denotes the complex number field. For A ∈ C, we have
A = AR + jAI , where j = √−1, while AR and AI are
the real and imaginary parts of A, respectively. For any
matrix A, Ai,j denotes the (i,j)th element. The transpose,
inverse and Hermitian transpose operators are denoted
by (.)T , (.)−1, and (.)H , respectively. Upper bold font are
used to denote matrices while lower light font are used
to denote vectors, lower and upper case represents the
time domain and frequency domain, respectively. The I
denotes an identity matrix, diag{X} denotes the diagonal
matrix with the diagonal entries equal to the elements of
X and X̂ represents the estimate of X̂. The Frobenius and
spectral norms of a matrix x are denoted by ‖x‖F and ‖x‖2
respectively.E{.} has been employed to denote expectation
with regard to all random variables within the brackets.
A Gaussian stochastic variable o is the denoted by o ∼
N(r, q), where r is the mean and q is the variance. Also, a
random vector x having the prober complex Gaussian dis-
tribution of mean μ and covariance � is indicated by x ∼
CN(x;μ,�), where,N(x;μ,�) = 1

det(π�)
e−(x−μ)�−1(x−μ),

for simplicity we refer to CN(x;μ,�) as x ∼ CN(μ,�).
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2 Massive MIMO systemmodel
We consider a time division duplexing (TDD) multi-cell
massive MIMO system with C cells as shown in Fig. 1.
Each cell comprises of M antennas at the BS and N sin-
gle antenna users. To improve the spectral efficiency,
orthogonal frequency division multiplexing (OFDM) is
adopted [17, 18].
At the beginning of the transmission, all mobile sta-

tions in all cells synchronously transmit OFDM pilot sym-
bols to their serving base stations. Let the OFDM pilot
symbol of user n in the c-th cell be denoted by xnc =
[Xn

c [ 1] Xn
c [ 2] · · ·Xn

c [K] ]T , whereK is the number of sub-
carriers. The OFDM transmission partition the multipath
channel between the user and each antenna of the BS
into K parallel independent additive white Gaussian noise
(AWGN) sub-channels in the frequency domain. Each
sub-channel is associated with a subcarrier. Let Hn

c∗,c,i[ k]
denote the k-th sub-channel coefficient between the n-th
user in the c-th cell and the i-th antenna of the BS of cell
c∗ in the uplink.
The received signal Yc∗,i by the i-th antenna element of

the cell c∗ at the k-th subcarrier can be expressed as

Yc∗,i[ k] =
N∑

n=1
Hn
c∗ ,c∗,i[ k]X

n
c∗ [ k]

+
C∑

c=1,c�=c∗

N∑
n=1

Hn
c∗,c,i[ k]X

n
c [ k]+Vc∗,i[ k] , (1)

for all 1 ≤ i ≤ M and 1 ≤ c ≤ C, where Vc∗,i[ k] is the
AWGN at the i-th antenna of the BS in cell c∗ at the k-th

Fig. 1 Illustration of the system model of a multi-cell multi-user
massive MIMO

subcarrier. Letting yc∗,i =[Yc∗,i[ 1] · · ·Yc∗,i[K] ]T , we can
write (1) for all subcarriers at the i-th antenna of the BS in
cell c∗ in the compact form as

yc∗,i =
N∑

n=1
Xn
c∗h

n
c∗,c∗,i +

C∑
c=1,c�=c∗

N∑
n=1

Xn
chnc∗,c,i

+ vc∗,i, (2)

where Xn
c∗ = diag{xnc∗}, hnc∗ ,c,i =[Hn

c∗,c,i[ 1] · · ·Hn
c∗,c,i[K] ]T

and vc∗,i =[Vc∗,i[ 1] · · ·Vc∗,i[K] ]T ∼ CN(0, σ 2
v ). Let

gnc∗,c,i =[ gnc∗,c,i[ 1] · · · gnc∗,c,i[ �] · · · gnc∗,c,i[ L] ]T collect the
samples of the sampled multipath CIR between the n-th
user of the c-th cell and the i-th antenna of the BS in cell
c∗, where L is the number of the channel taps and gnc∗,c,i[ �]
corresponds to the �-th channel tap. The K frequency
domain channel coefficients, i.e., hnc∗,c,i, can be calculated
as the K-point DFT of the CIR samples, i.e., gnc∗,c,i ∈ C

L×1,
e.g., [18].
Hence,

hnc∗,c,i = Fg′n
c∗,c,i, (3)

where F ∈ C
K×K represents the discrete Fourier trans-

form (DFT) matrix, whose element in row s and column
r is given by [ 1√

K
e−j2π∗(K−r)(K−s)/K ], 1 ≤ r ≤ K and

1 ≤ s ≤ K and g′n
c∗,c,i ∈ C

K×1 is gnc∗,c,i ∈ C
L×1 augmented

with K − L zeros. Using (3) in (2), we get

yc∗,i =
N∑

n=1
Xn
c∗Fg

′n
c∗,c,i +

C∑
c=1,c�=c∗

N∑
n=1

Xn
cFg′n

c∗,c,i

+ vc∗,i. (4)

The channel coefficient is modelled as gnc∗,c,i[ �]=√
φc∗,c,i[ �]ψc∗,c,i[ �] for 1 ≤ � ≤ L, where φc∗,c,i model

the path-loss and shadowing (large-scale fading), while the
term ψc∗,c,i is assumed to be independent identical distri-
bution (i.i.d) of unknown random variables with CN(0, 1)
(small-scale fading) [3].
The received signal of (4) can be re-written as

yc∗,i =
N∑

n=1
Xn
c∗Fg

′n
c∗,c,i + zc∗,i, (5)

where the term zc∗,i = ∑C
c=1,c�=c∗

∑N
n=1 Xn

cFg′n
c∗,c,i + vc∗,i

in (5) represents the net sum of inter-cell interference
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plus the receiver noise, the variance interference σ 2
I of the

inter-cell interference term caused during pilot transmis-
sion can be expressed as

σ 2
I = E

⎧⎨
⎩
⎛
⎝ C∑

c=1,c�=c∗

N∑
n=1

Xn
cFg′n

c∗,c,i

⎞
⎠

×
⎛
⎝ C∑

c=1,c�=c∗

N∑
n=1

Xn
cFg′n

c∗,c,i

⎞
⎠

H⎫⎬
⎭ . (6)

We define the measurement matrix An
c∗ = Xn

c∗F, then
(5) can be rewritten as

yc∗,i =
N∑

n=1
An
c∗g

′n
c∗,c,i + zc∗,i. (7)

Based on the physical properties of outdoor electromag-
netic propagation, the CIR in wireless communications
usually contain a few significant channel taps as can be
shown in Fig. 2, i.e., the CIR are sparse; hence, the num-
ber of non-zero taps of the channel is much smaller than
the channel length, then the CS techniques can be applied
for sparse channel estimation. This sparse property can
be exploited to reduce the necessary channel parameters
to be estimated. In this case, we can address the pilot
contamination problem by using fewer pilots than the
unknown channel coefficients [7, 19, 20].

3 BCS-based channel estimation
In common literature, channel estimation methods are
classified into parametric and Bayesian approaches. A
standard parametric approach is the best linear unbiased
estimator, which is often referred to as least squares chan-
nel estimation. In contrast to parametric methods, the
Bayesian approach treats the desired parameters as ran-
dom variable with a-priori known statistics. Clearly, the
a priori probability density function (PDF) of the chan-
nel is assumed to be perfectly known at the receiver

[21, 22]. Based on the Bayesian channel estimation phi-
losophy, the estimation of unknown parameters is the
expectation of the posterior probabilistic distribution that
is proportional to the prior probability and the likelihood
of the unknown parameters.
In this section, BCS-based channel estimation is pre-

sented in the context of massive MIMO channel estima-
tion. Following the general procedure of BCS in [23] and
[24], the full posterior distribution over unknown param-
eters of interest for the problem at hand can be given as

P
(
g′n
c∗ ,c∗ ,i,β , σ

2|yc∗ ,i
)= P

(
yc∗ ,i|g′n

c∗ ,c∗ ,i,β , σ 2)P (g′n
c∗ ,c∗ ,i,β , σ 2)

P(yc∗ ,i)
,

(8)

where β represents the hyperparameters that control the
sparsity of the channel while σ 2 is the net sum of the noise
variance and interference variance.
However, the probability of the observation vector,

P(yc∗,i), is defined by the following equation

P(yc∗,i) =
∫ ∫ ∫

P(yc∗,i|g′n
c∗ ,c∗,i, σ

2,β)

P(g′n
c∗,c∗,i,β , σ

2)dg′ dβ dσ 2, (9)

cannot be computed analytically. So, the posterior distri-
bution can be decomposed as

P
(
g′n
c∗,c∗,i,β , σ

2|yc∗,i
) ≡ P

(
g′n
c∗,c∗,i|yc∗,i,β , σ 2)

P
(
β , σ 2|yc∗,i

)
. (10)

The first term of (10), P
(
g′n
c∗,c∗,i|yc∗,i,β , σ 2), the pos-

terior distribution over the channel coefficient can be
expressed based on Bayes’ rule as

P
(
g′n
c∗,c∗,i|yc∗,i,β , σ 2) = P

(
yc∗,i|g′n

c∗,c∗,i, σ 2)P (g′n
c∗,c∗,i|β

)
P
(
yc∗,i|β , σ 2) .

(11)

Fig. 2 Illustration of the rich scatterers wireless channel and the resulting channel impulse response is sparse
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The posterior distribution given above is Gaussian dis-
tribution with mean μn

c∗,c∗,i and the variance �n
c∗,c∗,i are

given by

μn
c∗,c∗,i = σ−2�An

c∗yc∗,i, (12)

�n
c∗,c∗,i =

(
ζ + σ−2 (An

c∗
)H An

c∗
)−1

, (13)

where ζ = diag{β1,β2, . . . ,βK }.
The estimated channel based on Bayesian estimation

approaches to minimize the mean square error (MSE) is
the expectation of P

(
g′n
c∗ ,c∗,i|yc∗,i,β , σ 2), so the estimated

channel can be expressed as

ĝ′n
c∗,c∗,i = E

(
P
(
g′n
c∗,c∗,i|yc∗,i,β , σ 2)) = μn

c∗,c∗,i. (14)

Now, to obtain the estimated channel ĝ′n
c∗,c∗,i, we need to

find the heyparmarpater σ 2 and β that can be obtained
from the second term on the right-hand side of (10) by
applying a type−II maximum likelihood procedure by
operating a RVM.
Based on Bayes’ theorem, the posterior distribution

P
(
β , σ 2|yc∗,i

)
is proportional P

(
yc∗,i|β , σ 2) [23], Then,

the type−II maximum likelihood is applied to the log
marginal likelihood as follows

P(yc∗,i|β , σ 2) =
∞∫

−∞
P
(
yc∗,i|g′n

c∗ ,c∗,i, σ
2)P (g′n

c∗ ,c∗,i|β
)
dg′.

(15)

Based on the assumption of the RVM approach in [23],
the term P(g′n

c∗,c∗,i|β) follows zero-mean Gaussian distri-
bution and can be expressed as

P
(
g′n
c∗ ,c∗,i|β

) = (2π)
−K
2

K∏
i=1

β
1
2
k

exp
[−1

2
g′n
c∗,c∗,iβk

(
g′n
c∗ ,c∗,i

)H] , (16)

while the Gaussian likelihood function of yc∗,i according
to the probability theory, can be written as

P
(
yc∗ ,i|g′n

c∗ ,c∗ ,i, σ
2)=(2π

σ 2

)−K
2
exp

(−σ 2

2
||yc∗ ,i − An

c∗g
′n
c∗ ,c∗ ,i||22

)
.

(17)

By substituting (16) and (17) into (15), marginal likeli-
hood P(yc∗,i|β , σ 2) can be expressed as

P(yc∗,i|β , σ 2) = log
{(

βk
2π

) K
2
(

1
2π

) K
2 K∏
k=1

β
1
2
k

∞∫
−∞

exp
(−βk

2
||yc∗ ,i − An

c∗g
′n
c∗ ,c∗,i||22

)

+ 1
2
(
g′n
c∗,c∗,i

)H
βkg′n

c∗,c∗,i)

}
, (18)

β can be obtained by differentiating the log marginal like-
lihood with regard to σ 2, and equating it to zero and it can
be given as

(βk)
ii = I − βk

(
�n

c∗,c∗,i
)
k(

μn
c∗,c∗,i

)2
k

. (19)

While σ 2 is obtained by differentiating (19) with regard
to β and set these derivations to zero and can be
expressed as

(σ 2)ii = ||yc∗ ,i − An
c∗g

′n
c∗,c∗,i||22

(M − I +∑K
k=1 βk)

. (20)

The βk and σ 2
k which maximize the log marginal like-

lihood are then found iteratively by setting β and σ 2 to
initial values and then finding values forμn

c∗,c∗,i and�n
c∗,c∗,i

from (12) and (13). These values are then repeatedly used
to calculate a new estimate for βk and σ 2 and until a
convergence criteria is met.
Further details of the BCS algorithm can be found in [23,

24]. The procedure for implementation of the proposed
technique is summarized in Algorithm 1.

Algorithm 1 BCS-Based Channel Estimation Algorithm
INPUTS:
1) Pilot signal xnc∗ .
2) observation matrix An

c∗ = xnc∗F.
Initial Configuration:
1: Select a suitable value for convergence δ.
2: ii ← 1
3: Select a start value for σ 2 and β .

4: Compute �n
c∗ ,c∗ ,i =

(
ζ + β

(
An
c∗
)H An

c∗
)−1

.
5: Compute μn

c∗ ,c∗ ,i = β�n
c∗ ,c∗ ,iA

n
c∗yc∗ ,i.

repeat

6:Update (βk)
ii= I−βk(�

n
c∗ ,c∗ ,i)k

(μn
c∗ ,c∗ ,i)

2
k

and (σ 2)ii= ||yc∗ ,i−An
c∗g

′n
c∗ ,c,i||22

(M−I+∑K
k=1 βk)

.

7: Until δ > �ii=1(σ 2)ii+1 − (σ 2)ii.
8: Compute ĝ′n

c∗ ,c∗ ,i = μn
c∗ ,c∗ ,i = E

(
P
(
g′n
c∗ ,c∗ ,i|yc∗ ,i,β , σ 2)).

OUTPUTS: Return the Estimated Channel ĝ′n
c∗ ,c∗ ,i.
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In contrast to the conventional BCS-based estimator,
it can also improve the performance of the BCS estima-
tor based on the principle of thresholding, which can be
applied to keep the most significant taps. The proposed
algorithm applies a threshold approach by retaining the
channel taps that have energy above a threshold value of 

and set the other taps to zero. The value of 
 is the energy
of the channel impulse response.

4 Multi-task BCS based channel estimation
With a high probability of user movements, the mas-
sive MIMO system channel may vary. Consequently, the
channels at different time instants/locations are differ-
ent but share the same common statistical property. As a
result, to estimate the current channel, we can exploit the
previous compressive vectors in addition to the current
compressive vector [15].
Given the system model in II, the received signals of (7)

can have the following formulation

yc∗,i,j =
N∑

n=1
An
c∗,jg

′n
c∗,c∗,i,j + zc∗,i,j, (21)

for j = 1, 2, . . . J where J is the number of the task, An
c∗,j,

g′n
c∗,c∗,i,j and zc∗,i,j represents the jth measurement matri-

ces,channel vector and the noise vector, respectively [15].
The main target is to estimate the channel g′n

c∗ ,c∗,i,j which
can be computed based on Bayesian channel estimation
philosophy as the mean of the channel posterior distribu-
tion that can be represented as

ĝ′n
c∗,c∗,i,j = E(P(g′n

c∗,c∗,i,j|yc∗,i,j,�j, ξ0)), (22)

where ξ0 represents the inverse of the net sum of the noise
variance and interference variance, while �j represent the
hyperparameters that control the sparsity of the chan-
nel. Based on Bayes’ rule the posterior distribution can be
given as

P
(
g′n
c∗,c∗,i,j|yc∗,i,j,�j, ξ0

)

=
P
(
yc∗,i,j|g′n

c∗ ,c∗,i,j, ξ0
)
P
(
g′n
c∗ ,c∗,i,j|�j

)
∫
P
(
yc∗,i,j|g′n

c∗,c∗,i,j, ξ0
)
P
(
g′n
c∗,c∗,i,j,�j

)
dg′

∼ N
(
μn
c∗,i,j,�

n
c∗,i,j
)
, (23)

the mean and covariance can be given by

μn
c∗,i,j = ξ0�

n
c∗,i,jA

n
c∗,jyc∗,i,j, (24)

�n
c∗,i,j =

(
ψ + �j(An

c∗,j)
HAn

c∗,j
)−1

, (25)

where ψ = diag(ψ0,ψ1,ψ2, . . . ,ψK ).

The likelihood function for the parameter g′n
c∗,c∗,i,j and ξ0

based on the received signal yc∗,i,j and can be expressed as

P
(
yc∗,i,j|g′n

c∗,c∗,i,j, ξ0
)

=
(
2π
ξ0

)−N
2

exp
(−ξ0

2
||yc∗,i,j − An

c∗,jg
′n
c∗,c∗,i,j||22

)
.

(26)

The channel coefficients g′n
c∗,c∗,i,j are assumed to be

drawn from a product of zero-mean Gaussian distribu-
tions that are shared by all tasks as follow

P
(
g′n
c∗,c∗,i,j|�j

)
=

N∏
i=1

(
g′n
c∗,c∗,i,j|0,�−1

j

)

= (2π)
−N
2

N∏
i=1

�
1
2
j

× exp
[−1

2

(
g′n
c∗,c∗,i,j

)H
�jg′n

c∗ ,c∗,i,j

]
.

(27)

To obtain the estimated channel, we need to estimate
�j and ξ0 by applying the same procedure in Section 3
to the posterior distribution P

(
yc∗,i,j|,�j, ξ0

)
that can be

inference as [16]

P
(
yc∗,i,j|�j, ξ0

) ≡ P
(
yc∗,i,j|g′n

c∗,c∗,i,j, ξ0
)

P
(
g′n
c∗,c∗,i,j|�j

)
. (28)

Now, by maximizing the log marginal likelihood and
then differentiating with respect to �j and ξ0 and setting
to zero yields

(�j)
new = J − �j

∑J
j=1 �n

c∗,c∗,i,j∑J
j=1

(
μn
c∗,c∗,i,j

)2 , (29)

(ξ0)
new =

∑J
j=1

(
K − J +∑J

i=1 �n
c∗,c∗,i,j�j

)
∑J

j=1 ||yc∗,i,j − An
c∗,jg

′n
c∗,c∗,i,j||22

. (30)

Further information on MT-BCS can be found in [16].

5 CRB for BCS-based estimator
In this section, we analyse the CRB for the proposed BCS
andMT-BCS based channel estimation techniques to pro-
vide a benchmark for the minimum estimation error that
can be achieved by the proposed algorithm. The CRB on
the covariance of any estimator θ̂ can be given as

E
{
(θ̂ − θ)(θ̂ − θ)H

}
≥ J−1(θ), (31)
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where J(θ) is the Fisher information matrix (FIM) corre-
sponding to the observation f, and can be given as

J(θ) = E
(

∂

∂θ
logl(θ , f )

)(
∂

∂θ
logl(θ , f )

)T
, (32)

where l(θ , f ) is the likelihood function corresponding to
the observation f, parameterized by θ [25].
Therefore, given the system model in 2, the closed form

expression of the Bayesian CRB (BCRB) for the proposed
BCS can be given as

J(g′n
c∗,c∗,i) ≥

(
1
β

+ An
c∗(A

n
c∗)

H

σ 2

)−1

. (33)

Theorem 1 Given (28), the closed form expression of the
BCRB for the proposed MT-BCS can be given as

J
(
g′n
c∗,c∗,i,j

)
≥
⎛
⎜⎝ 1

� j
+

An
c∗,j

(
An
c∗,j

)H
ξ0

⎞
⎟⎠

−1

. (34)

Proof See Appendix 1.

6 Simulation results
To verify the accuracy of our analytical results, the sim-
ulation parameters can be summarized as follows: the
number of antennas is 100, the number of users is 100,
the number of the channel taps is 500, the number of
subcarrier K is 4096 and the convergence δ is 10−6. The
simulation results are obtained by averaging over 1000
realizations.
To compare the accuracy of the channel estimation

techniques, the normalized (MSE) is used for perfor-
mance evaluation and is computed as

MSE = ||ĝ′n
c∗,c,i,j − g′n

c∗ ,c,i,j||22
||g′n

c∗ ,c,i,j||22
. (35)

Figure 3 shows the MSE performance comparison
among a BCS-based channel estimation of three scenar-
ios under small pilot contamination (φc∗,c∗,i = 1 and
φc∗,c,i = 0.1), strong pilot contamination (φc∗,c∗,i = 1 and
φc∗,c,i = 0.5), very strong pilot contamination (φc∗,c∗,i = 1
and φc∗,c,i = 0.9), regularized least square (RLS)-based
estimator with no pilot contamination as a benchmark
and the BCRB for BCS as a reference line. The results
have shown significant improvement in estimation accu-
racy and addressing the pilot contamination problem for
SNR values of −40 to 40 dB for the proposed technique
compared with R-LS. This is a result of exploiting the prior
statistical of channel sparsity. Furthermore, the results still
show enhanced estimation performance for high SNR.
Figure 4 shows the (MSE) performance versus SNR

with a different value of setting to the number of subcar-

Fig. 3MSE performance comparison between BSC, BCRB for
φc∗,c,i = {0.1, 0.5, 0.9} and R-LS versus SNR

rier K = {100, 200 and 300}, so the compression ratio
(CR) (i.e., L/K) is to be CR = {0.2, 0.1and 0.06}, while
the experiment is run under small pilot contamination
(φc∗,c∗,i = 1 and φc∗,c,i = 0.1). The results prove that
the estimation accuracy is better performed by decreasing
the values of the number of subcarriers, accordingly with
increasing CR.
Figure 5 demonstrates the MSE of the BSC-based chan-

nel estimation versus SNR for three scenarios of different
settings to the number of antennas at the base station
M = {100, 200, and 300}, the system under strong pilot
contamination (φc∗,c∗,i = 1 and φc∗,c,i = 0.7). The results
show that the estimation accuracy of the proposed algo-
rithm is enhanced by increasing the number of antennas.

Fig. 4MSE of BSC for K = {100, 200, and 300} and CR = {0.2, 0.1,
and 0.06}, respectively
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Fig. 5MSE of BSC forM = {100, 200, and 300} versus SNR

Thus, according to the law of large numbers, more coor-
dinated BS antennas could provide more accurate support
estimation.
Figure 6 shows the (MSE) performance versus SNR for

BCS with different values for the number of pilots: 1000,
500, 100, 50, and 25, where the number of subcarrier K is
4096. The number of the CIR path is 500 while the exper-
iments run under strong pilot contamination. For cases
of the number of the pilots is greater than the number of
channel taps (i.e., 1000 and 500), the BCS provides ineffi-
cient estimation accuracy, while for the other cases of the
number of the pilot of (100, 50, and 25), which is less than
500, the estimation accuracy is enhanced significantly. In
addition, there is no significant improvement for the cases
of the number of the pilots 100, 50, and 25. In these cases,
we can address pilot contamination by employing small
values for the number of the pilot, i.e., 25.

Fig. 6MSE performance comparison of BSC based estimator for
different values of the number of the pilot 100, 50, and 10 versus SNR

Figure 7 compares the (MSE) performance versus SNR
among BCS, threshold-BSC, MT-BCS, LS, OMP and the
Bilinear Approximate Message Passing (Bi-AMP) [26].
The number of subcarrier K is 1024 and the number
of the CIR path is 100. Results show the proposed MT-
BCS enjoys significant performance improvement over
all the other estimators as a result of exploiting the sta-
tistical prior information on a large scale. However, this
advantage is at the expense of a relatively high com-
plexity of BCS and MT-BCS over other estimators as
depicted in Table 1, which compares the computational
complexity Bi-AMP [26], BCS [23], OMP [27], LS [28],
and the MT-BCS [16]. Also, the results showed that
the thresholding approach enhances the estimation accu-
racy of the conventional BCS, as the CIR contains so
many taps with no significant energy. By setting the
threshold and neglecting these taps, a huge part of the
noise and interference from pilot contamination will
be eliminated.

7 Conclusions
To address the pilot contamination problem in mas-
sive MIMO systems, we proposed a BCS-based chan-
nel estimation algorithm for the multi-cell multi-user
massive MIMO. The simulation results have revealed
that the BCS-based channel estimation algorithm has
tremendous improvement over conventional-based chan-
nel estimation algorithms and can address the pilot con-
tamination problem. Furthermore, the proposed tech-
nique can be enhanced by thresholding the CIR to a
certain value and also by exploiting the common spar-
sity feature inherent in the system channel. In addi-
tion, the number of antennas and the compression
ratio should be selected wisely to achieve optimum
estimation accuracy.

Fig. 7MSE performance comparison between BCS, thresholded BCS,
LS, MT-BCS, OMP, and BiAMP-based estimators versus SNR
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Table 1 Complexity analysis

Estimators Computation complexity

R-LS O(L2)

BCS O(KL2)

MTBCS O(KL3)

OMP O(L log (K))

BiAMP O(LK + K)

Appendix 1: Proof of Theorem 1
Following Section 5, we can write the FIM as

J(yc∗,i,j) ≥ −E
(

∂2log(Pyc∗ ,i,j |�j ,ξ0 (P(yc∗ ,i,j|�j ,ξ0)))
∂2g′

)−1
(36)

Based on Bayes’ rule in (32), the FIM can be decom-
posed into two terms

−E
(

∂2log(Pyc∗ ,i,j |�j ,ξ0 (P(yc∗ ,i,j|�j ,ξ0)))
∂2g′

)
= −

E
(

∂2log(Pyc∗ ,i,j |g′nc∗ ,c∗ ,i,j ,ξ0
(P(yc∗ ,i,j|g′n

c∗ ,c∗ ,i,j ,ξ0))

∂2g′

)
−

E
(

∂2log(Pg′nc∗ ,c∗ ,i,j |�j
(P(g′n

c∗ ,c∗ ,i,j|�j)))

∂2g′

)
, (37)

using (28), the first term can be computed as follow

−
∂2log(Pyc∗ ,i,j|g′n

c∗ ,c∗ ,i,j ,ξ0(P(yc∗,i,j|g′n
c∗,c∗,i,j, ξ0))

∂2g′ =
∂

∂g′

[
−log(2π)

1
2 ξ−1

0 − ξ0
2

||yc∗,i,j − g′n
c∗,c∗,i,jA

n
c∗,j||22

]
,

(38)

∂2log(Pyc∗ ,i,j|g′n
c∗ ,c∗ ,i,j ,ξ0(P(yc∗,i,j|g′n

c∗ ,c∗,i,j, ξ0))

∂2g′ = An
c∗,j(A

n
c∗,j)

H

ξ0
.

(39)

By applying the same procedure in (38 and 39) to the
second term of (37) gives

E

⎛
⎝∂2log(Pg′n

c∗ ,c∗ ,i,j|�j(P(g′n
c∗,c∗,i,j|�j)))

∂2g′

⎞
⎠ = (�j)

−1.

(40)
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