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Abstract. Self-propelled droplets are a special kind of self-propelled
matter that are easily fabricated by standard microfluidic tools and
locomote for a certain time without external sources of energy. The
typical driving mechanism is a Marangoni flow due to gradients in
the interfacial energy on the droplet interface. In this article we re-
view the hydrodynamic prerequisites for self-sustained locomotion and
present two examples to realize those conditions for emulsion droplets,
i.e. droplets stabilized by a surfactant layer in a surrounding immiscible
liquid. One possibility to achieve self-propelled motion relies on chem-
ical reactions affecting the surface active properties of the surfactant
molecules. The other relies on micellar solubilization of the droplet
phase into the surrounding liquid phase. Remarkable cruising ranges
can be achieved in both cases and the relative insensitivity to their
own ’exhausts’ allows to additionally study collective phenomena.

1 Introduction

The emergence of “living patterns” of self-propelled biological objects is well known
from large animals like flocks of birds or schools of fish, but also from small biological
animals like armies of ants or even simple objects like bacterial colonies. Similarly
to the large differences in size, the interactions between individual elements differ
remarkably as well. The interactions can vary from purely physical, as hard core
repulsion or hydrodynamic interactions, to more complex interactions like visual or
chemical sensing. As many of the observed swarming behaviors obey similarities this
raises the question of a fundamental understanding of the basic mechanisms of loco-
motion and pattern formation of self-propelled objects. As none of the aforementioned
biological self-propelled objects are free from biochemical sensing there is a large in-
terest in artificial systems with well controlled chemical and physical interactions,
which can be modeled precisely in a physical framework. To reduce complexity in the
model systems it is desired that the self-propelled objects do not interact strongly
with any kind of chemical product left behind in their traces, and the propulsion
should be long lived, allowing the system to reach non-equilibrium steady states of
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collective behavior. A simple model system for those types of artificial swimmers are
self-propelling droplets which can obey a well-controlled propulsion and a known flow
field leading to controllable hydrodynamic interactions.
Various mechanisms for droplet locomotion have been already studied, e.g.

by phase separation of binary mixtures driven by emerging hydrodynamic flow
and non-diffusive transport [1,2]. Thakur et al. [3] studied phase separation at a
nematic-isotropic transition of a thermotropic liquid crystal doped with 20 wt% of a
nonmesogenic material. Other studies were concerned with binary liquid mixtures
featuring a two-phase region in their phase diagram. In [4,5] the binary system
acetone-hexadecane and in [6,7] mixtures of aqueous solutions of poly-(ethylene gly-
col) (PEG) and sodium sulfate (Na2SO4) were studied. However, the droplets driven
by phase separation dynamics show only short active periods and their estimated
cruising range is typically below 20 times their diameter. Thus, those systems are less
suited to serve as model systems for the study of collective behavior. Recently, it was
also observed that liquid metal like EGaIn or Galistan can self-propel in an electrolyte
(e.g. NaOH-solution) when in contact with Aluminum flakes [8]. The resulting redox
reaction stimulates a flow inside the liquid metal droplet which in turn propels the
droplet in the surrounding electrolyte with a velocity of several droplet diameters
per second. The cruising range of this system seems remarkable, but the reaction is
accompanied by a trace of bubbles appearing next to the Aluminium flakes which is
not desired for the study of collective behavior. In the following, we will concentrate
in our review on two types of active emulsion droplets having the potential to study
collective behavior and which were previously published in [9–11] and reviewed in a
more general context in [12]. Both systems are driven by Marangoni stresses caused
by a gradient in surface tension along the droplet interface. In one case the gradient
is maintained by chemical reactions, in the other case by solubilization. The two dif-
ferent mechanisms lead to a similar self-propelling behavior that can be described as
neutral swimmers using the squirmer model [13] and are therefore expected to show
similar collective behavior. The propulsion velocities are of the order of some 10μm/s
and the cruising ranges are about 100 – 4000 droplet diameters.

2 Driving mechanism for self-propelled droplets

2.1 Marangoni effect

The surface tension γ has the dimension of an energy per area, respectively force
per length. When the surface tension varies along an interface, its gradient has the
dimension of a stress. In case of liquid/liquid interfaces this stress from surface tension
gradients has to be balanced by viscous stresses in the liquids resulting in a viscous
shear flow, which induces a current at the interface in the direction of increasing
surface tension [14]. This Marangoni transport can be initiated by a concentration
gradient, but also by temperature gradients, which is then called thermo-capillary
effect. In a glass of strong wine the Marangoni effect can be easily observed by eye, cf.
Fig. 1. The different evaporation rates of ethanol and water result in a concentration
gradient of ethanol and thus to a surface tension gradient. The resulting stresses can
lift the liquid upwards against gravity by some millimeters.
The Marangoni effect is particularly suitable for transport processes at small scales

and small droplets. The order of magnitude of the velocity of a droplet with radius
R can be estimated from the tangential stress balance at the interface with dynamic
viscosity η = ηo = ηi being equal outside and inside the droplet [15,16]:

u ∼ R∇γ
η
· (1)
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Fig. 1. (left) Tears of wine (photo from Benjamin Maples (2010), made in a course
‘Flow Visualization’ by Jean Hertzberg, University of Colorado, http://www.colorado.
edu/MCEN/flowvis/course/). (right) Sketch how tears of wine are generated by the
Marangoni effect, i.e. by a flow along the surface of two fluid phases (wine/air) caused by sur-
face tension gradients along the interface between the two phases. (image credit: COMSOL;
https://www.comsol.de/blogs/tears-of-wine-and-the-marangoni-effect/ This figure
is subject to copyright protection and is not covered by a Creative Commons license.)

For a droplet with R ≈ 50μm, a difference in surface tension of a surfactant
decorated oil/water interface of about Δγ ≈ 10−3N/m across the droplet size (i.e.
over a length of 100μm) and viscosities η on the order of one milli-pascal seconds,
a typical velocity u is of the order of 0.5 m/s. Hence, the Marangoni effect already
provides sufficient drive at very small variations in surface tension, respectively for
small differences in surfactant surface coverage.

2.2 Flow field near a droplet

The velocity field of a spherical droplet with radiusR driven by a homogeneous volume
force and moving with velocity V relative to the surrounding quiescent liquid phase is
given by a solution of the Stokes equation with suitable boundary conditions. Besides
the Laplace condition for normal stress component a continuity of the tangential
stress is demanded at the surface. With the direction of motion as the polar axis, the
solution of the Stokes equation can be written for the radial and the polar component
in the rest frame of the droplet for the outer (o) velocity field as [17]

vor = V cos θ ·
[
−1 + 3 + 2μ

2(1 + μ)

R

r
− 1

2(1 + μ)

(
R

r

)3]
(2)

voθ = −V sin θ ·
[
−1 + 3 + 2μ

4(1 + μ)

R

r
+

1

4(1 + μ)

(
R

r

)3]
(3)

and for the velocity field inside (i) the droplet as
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Fig. 2. a) Schematic of the flow field emerging inside and outside of a moving droplet shown
in the co-moving frame of the droplet. The large arrow to the right indicates the motion
of the droplet with respect to the surrounding liquid. A and B denote stagnation points.
b) Surfactant molecules adsorb at the droplet surface reducing the interfacial tension, γ. The
surface coverage is in equilibrium with the surfactant concentration in the solution. c) Two
possibilities to generate Marangoni stresses along the surface of a droplet: (Left) Inhomoge-
neous surfactant coverage, and (Right) a spatially constant surfactant coverage with spatially
varying surface activity. Black/white surfactant denote lower/higher surface activity which
might be caused by chemical reactions. In both cases, the resulting Marangoni stress points
in the direction of increasing surface tension (arrows around the drop), the resulting droplet
motion points into the opposite direction. (Reproduced from [11] – Published by The Royal
Society of Chemistry. This figure is subject to copyright protection and is not covered by a
Creative Commons license.)

Here, μ = ηi/ηo is the viscosity ratio of the liquid inside, ηi, and outside of the droplet,
ηo. The velocity of the flow field decays algebraically with increasing distance from
the droplet interface. The corresponding flow field with a convection roll inside the
droplet and with two stagnant points at the poles of the droplet and a maximum
velocity at the equator of the droplet is sketched in Fig. 2(a).
The droplets considered so far have an isotropic surface without internal stresses.

However, in case of a surface tension γ varying along the droplet surface, e.g. due to
an inhomogeneous surfactant coverage, a surface stress ∼ ∇γ results. This surface
(Marangoni) stress has to be balanced by viscous stresses which are caused by a
Marangoni flow tangential to the droplet surface. Thus the continuity of the tangential
stress between the outer and inner bulk fluids in presence of Marangoni stresses at
the surface has to be replaced by [18–20]

τorθ − τ irθ =
1

R

dγ

dθ
. (6)

The reader is referred to [20–22] for a more complete force balance for a Newtonian
interface accounting for the effects of dilatation, shear and surface viscosities.
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Using Eq. (6) as additional boundary condition to the general polynomial solutions
an expression for the interfacial velocity reads [19,23]

uθ|r=R = V
2

ηo

ηi + ηo
sin θ +
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n=2

n(n− 1)
2(ηi + ηo)

[∫ π
0

C−1/2n (cos θ′)
dγ

dθ′
dθ′
]
C
−1/2
n (cos θ)

sin θ
.

(7)

Here, C
−1/2
n is the Gegenbauer polynomial of order n and degree −1/2.

The adsorption of surfactant to, and the desorption of surfactant from the inter-
face, either from the inner or from the outer phase, is estimated by an equilibrium
between interface and surfactant containing phase by a linear Gibbs isotherm,

Γ =
−c
kBT

dγ

dc
≡ Kc (8)

with c denoting the bulk and Γ the interfacial concentration of individual surfactant
molecules. The transport of surfactant is described by a convective diffusion equation
[19,20]

u ·∇c = 2
Pe
∇2c. (9)

The relative strength of advective versus diffusive transport is taken into account by
the Péclet number Pe = 2RV/D with D being the diffusion coefficient.
This feedback mechanism can only be approximated or solved numerically. For a

droplet moving through a surfactant containing liquid phase it means qualitatively
that the distortion of the interface by the flow field will result in an accumulation of
surfactant molecules at the trailing pole of a droplet. Such an inhomogeneous distri-
bution of surfactant in turn will cause a Marangoni stress toward the leading pole of
a droplet. Diffusion in the interface and ad-/desorption of surfactant will additionally
counteract a potential gradient in interfacial tension. Thus, without external forcing,
the droplet is driven toward an equilibrium state of no motion and constant surfactant
coverage, cf. Fig. 2(b,c).
To propel droplets by Marangoni stresses and to achieve a steady motion the above

described effect has to be inverted by alternative strategies to maintain a surface ten-
sion gradient. In the following section we will discuss how a surface tension gradient
that enables propulsion, can be obtained by either a chemical reaction which trans-
forms the surfactant into another kind of surfactant with different surface activity
(Sect. 3) or by a concentration gradient in the surrounding liquid (Sect. 4).

3 Schemes to utilize chemical reactions

Several examples of chemical reaction schemes can be found in literature [9–11,24–31].
The common feature of all these systems is that the used surfactants are affected by
a chemical reaction and the surface tension of an interface covered with the pristine
surfactant differs from the surface tension of an interface covered with surfactant after
the chemical reaction.

3.1 Experimental realization & properties of self-propelling droplets utilizing
chemical reactions

As an example we will explain the experiments presented in [9–11] in some more de-
tail: Aqueous droplets having a diameter of about 100 micron are prepared in squalane
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Fig. 3. Behavior of a single self propelled droplet being confined to a quasi-2D space between
two hydrophobic glass plates. (a) Flow path of a droplet, scale bar is 300μm. (Reproduced
from [9] (http://dx.doi.org/0.1088/1367-2630/13/7/073021),© IOP Publishing & Deutsche
Physikalische Gesellschaft. CC BY-NC-SA.) (b) & (c) Velocity fields around a droplet as
determined by PIV reveal a flow field similar to that of a neutral squirmer in 3D. Yellow
lines denote stream lines of the flow. (Reproduced from [11] – Published by The Royal
Society of Chemistry. This figure is subject to copyright protection and is not covered by
a Creative Commons license.) The magnitude of the velocity is color coded in microns per
second, scale bars denote 100microns. (b) Velocity field in the laboratory frame and (c) in
co-moving droplet frame after subtracting the droplet velocity.

containing the surfactant mono-olein (MO). The concentration of MO is well above
the critical micelle concentration (CMC). A mixture of 50 mM sulphuric acid, 28 mM
sodium bromate, 400 mM malonic acid, and 2.7 mM ferroin is added to the droplet
phase which continuously releases bromine. When the released bromine reaches the
surface of the droplet it will react with the C=C double bonds in the hydrophobic
tails of the MO molecules. As a result of this bromination reaction the surface active
properties of MO are changed. The interfacial tension of a water/squalane interface
covered with pristine MO is 1.3mN/m and the interfacial tension for brominated MO
(brMO) is about 3mN/m.
The thus prepared aqueous droplets in squalane spontaneously self-propel. The

propulsion velocity is on the order of a few microns per second and appears to be
insensitive to the exact size of the droplets. The velocity of the droplet motion is
decaying in time and the droplet motion finally stops after several minutes. The tra-
jectory of an individual droplet is shown in Fig. 3(a) with a total running time of
400 s and a velocity of about 15μm/s. The trajectory is reminiscent of a random
walk with a persistence length exceeding the size of the droplet, i.e. much larger than
expected for Brownian motion. It is important to note that the propelling droplet
can cross its own path. This is at variance to other self-propelling mechanisms that
alter the continuous liquid phase in a way that self-crossing of the path is prevented
[32]. Because of this property, the type of Marangoni driven self-propelling droplets
presented above are well suited to explore collective motion.
Using particle image velocimetry (PIV), the flow profile around self-propelling

droplets can be obtained. For PIV measurements micron sized fluorescent tracers
are added to the liquid phase that follow the flow without delay. Two fluorescent
microscopy images are captured with a defined time interval and the respectively
observed fluorescent patterns are correlated to obtain the flow field. A resulting flow
field is displayed in Fig. 3(b) as directly obtained in the laboratory frame. Subtracting
the droplet velocity from that flow field one obtains the flow profile in the reference
frame of the droplet, cf. Fig. 3(c). The experimentally determined flow fields in a
confined 2D geometry are similar to those expected for neutral squirmer in 3D [13].
The droplet velocity and the cruising range are shown in Fig. 4(a) as a function

of surfactant concentration. The CMC for this oil/surfactant system is ∼ 1mM, so
for all displayed data points the vast majority of the MO is present in micellar form.
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Fig. 4. (a) Velocity (black dots) and cruising ranges (blue open squares) of self-propelling
droplets as a function of mono-olein concentration. The cruising range is given in units of
one droplet diameter; every data point is an average of 50 separate droplets with diameter
= 80μm. (b) Locomotion speed (black) and optical transmission (red) as function of time
recorded for droplets filled with oscillating BZ-solution. (Reproduced from [11] – Published
by The Royal Society of Chemistry. This figure is subject to copyright protection and is not
covered by a Creative Commons license.)

The swimmer velocity increases with MO concentration and plateaus at large MO
concentrations. A similar behavior is observed for the cruising range, which only in-
creases slightly for large MO concentrations. The plateau for the droplet velocity
might be a result of the disintegration time of micelles at the droplet surface, which
does not depend on the MO concentration and becomes the rate limiting step at large
MO concentrations. The insensitivity of the droplet velocity to the MO concentra-
tion is a highly desired property when exploring their collective behavior. During the
ongoing bromination reaction, the concentration of brMO in the oil phase increases
inhomogeneously, due to the exhausts of the propelling droplets present in the sys-
tem. As most of the brMO will be concentrated in micelles, the main result of the
increasing brMO concentration is to effectively reduce the MO concentration in the
surrounding squalane. Thus, there is hardly any dependence of the droplet velocity
on the brMO concentration when conducting experiments at sufficiently large MO
concentrations and unwanted interactions between propelling droplets or their trails
can be minimized.
In contrast to the saturation of the swimmer velocity at high MO concentrations,

the velocity depends sensitively on the availability of bromine that is maintaining the
bromination of the MO. This dependence can be seen in Fig. 4(b), where the supply
of bromine is varying with time. For this experiment, the previously used chemical
mixture contained in the droplets yielding a constant bromine release is changed to
one similar to the oscillating Belouzhov-Zhabotinsky-solution (BZ) [33,34] with an
oscillating bromine release [9]. A particular feature of this reaction is that the oscil-
latory release of iron ions from the ferroin changes the color of the solution which
allows to optically monitor the oscillations of the BZ reaction. The observed optical
transmissions of the droplets are plotted together with their velocity in Fig. 4(b) and
reveal that the droplets accelerate upon bromine release and decelerate when the
bromine release is stopped.
A typical example of collective behavior of the self-propelling droplets in a quasi

2D geometry is shown in Fig. 5. The droplets have a flow field as shown in Fig. 3
similar to a neutral squirmer mode in 3D [13]. The arrows indicate the direction
of motion of each droplet. After some time, long-lived clusters of different sizes are
formed with distinct polar alignment of the velocities of neighboring droplets [9], cf.
Fig. 5(b). This behavior is expected to change when the qualitative flow field changes
e.g. from a neutral squirmer to a pusher or a puller. Besides the direction also the
distance of interaction should change as the hydrodynamic interaction of a puller or
pusher in 3D scales at 1/r2 instead of 1/r3 for a neutral swimmer. Thus collective
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Fig. 5. (a) Optical micrograph showing collective droplet behavior; droplet diameter
d = 80μm, surfactant conc. 200mM/l. Arrows at the droplets indicate their current di-
rection of motion. (b) Angular correlation function Cϑ := 〈δ(r − |ri − rj |) cosϑij〉t,ij (ϑij
is the angle between the droplet velocities) as function of distance of the droplet centers,
r/d. The lower/upper curve describes the behavior for an area droplet density of 0.46 and
0.78, respectively. The vertical arrows denote r/d = 1.08, 2.16 and 3.24. The inset
shows the same data in a semi-logarithmic plot. (Reproduced from [9] (http://dx.doi.org/
0.1088/1367-2630/13/7/073021),© IOP Publishing & Deutsche Physikalische Gesellschaft.
CC BY-NC-SA.)

motion for pullers or pushers is expected to appear already at lower density than for
neutral squirmers.

3.2 Mechanism of locomotion utilizing chemical reactions

For the droplet swimmers described in subsection 3.1, the self-propulsion originates
from interfacial tension gradients. These gradients are caused by surfactant layers
that are chemically modified, leading to a reduced surfactant activity. The resulting
Marangoni stresses act against the interfacial tension gradients and impede the self-
propelled motion. To achieve self-propulsion, a mechanism is required to generate and
maintain a sufficient counteracting interfacial tension gradient ∇γ in the direction of
the droplet front. Such a mechanism has been modeled in several studies [23,35] via
an advective transport of reactants from inside a droplet to its surface. The reactants
modify the surfactant at the interface and with it the corresponding interfacial tension
(see Fig. 2). To model this mechanism, the advection-diffusion-reaction contribution
for each chemical component has to be included into the governing equations.
In the following we briefly summarize the study by Schmitt and Stark [23], who

modeled a system where the surface activity is modified by advection of a chemical
reactant from the inside. Without loss of generality, the authors refer to the specific
experimental system discussed above and first published in Ref. [9]. The approach is
similar to the one outlined in Eqs. (6)–(9) but Schmitt and Stark use an interfacial
advection-diffusion equation accounting for the dynamics and chemical interaction of
two different surfactant species, brominated and unbrominated, with concentrations
c1 and c2, c1+c2 = 1, and the concentration difference φ = c1−c2 as order parameter.
The authors define the surfactant dynamics at the interface in terms of the concentra-
tion difference φ, the time evolution of which is driven by the diffusive current jD and
the advective current jA, and a simple linear reaction term approximating adsorp-
tion, desorption, and chemical conversion of brominated and unbrominated species:

φ̇ = −∇ · (jD + jA)− τ−1R (φ− φeq) . (10)

They model the situation where the diffusive current counteracts a bromination gradi-
ent, jD ∝ −∇φ, whereas the advective current is expected to reinforce it, jA ∝∇φ.
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A kinetic instability propelling the droplet arises if the advective current prevails.
The advective current, jA = φu, is coupled to the velocity profile at the interface
u, having the form of Eq. (7). If advection dominates diffusion the system develops
an instability. The authors observe four different states for active droplets: resting,
swimming, oscillating, and a “stopping” state in which the droplet comes to rest after
a short swimming period.

4 Schemes to utilize phase transformations

We now turn to a second type of surfactant stabilized droplets that show spontaneous
locomotion. In this system, the surfactant layer stabilizing the droplets is modified
by an inhomogeneous depletion that results from a solubilization of the droplet phase
into a micellar nanoemulsion.

4.1 Experimental realization & properties of self-propelling droplets utilizing
phase transformations

At oil/water interfaces spontaneous convection driven by surface tension gradients
frequently occurs in case of mass transfer [36]. This effect can be seen when partially
water soluble droplets of e.g. pentanol [37] or aniline [38,39] are generated on the
liquid/air interface of an aqueous phase. The droplet undergoes a spontaneous self-
propelled motion when its content dissolves in the surrounding aqueous phase and
potentially splits into smaller droplets. A similar behavior can be found also if either
the continuous or the droplet phase contains surfactants and the surface of the droplet
is covered by surfactant [40,41]. If the liquids contain surfactant, the dissolution can
be regarded as micellar solubilization and at the end of the process most of the droplet
phase will be stored in micelles.
The process of micellar solubilization has been studied for aqueous phases and

different combinations of organic droplets and surfactants [42] and convective flow
patterns were found in some cases during solubilization [43,44]. The systematic ob-
servation of spontaneous droplet locomotion during solubilization is quite recent and
so far only aqueous droplets in a mixture oil and nonionic surfactants [45] and organic
droplets in an aqueous solution containing ionic surfactants [11,47] have been studied
in detail.
To shed some light to this propulsion mechanism we consider water droplets in

a mixture of squalane and the surfactant MO, as was studied by [45]. The authors
used a MO concentration (25mM) in squalane well above the CMC meaning that
a significant amount of inverse MO micelles are present in the continuous squalane
phase, cf. Fig. 6. In this solution aqueous droplets with a radius of some ten microns
self-propel with initial velocities of some ten μm/s that decrease with time until the
droplet motion stops. Parallel to its motion, the droplet loses volume. However, no
spontaneous droplet motion was found if either the MO concentration was below
the CMC or if the squalane/MO solution was saturated with water. These findings
indicate that, in fact, the key for the spontaneous droplet locomotion lies in aqueous
droplets undergoing a micellar solubilization process in the squalane/MO solution.
The results were interpreted in [45], extending a theory that was intended to model
the autophoretic motion of colloidal particles [35,46].
In the following we consider a second system that is based on the solubilization

of nematic liquid crystal droplets (4-pentyl-4-cyanobiphenyl (5CB)) in aqueous sur-
factant solutions (ionic surfactant tetradecyltrimethylammonium bromide (TTAB))
[11,47]. The surfactant concentrations ranged from values around the CMC (0.13wt%
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Fig. 6. Behavior of water droplets in a surrounding squalane phase with 25mM mono-
olein. (Left) Droplet trajectories recorded during 500 s. (Middle) Droplet velocity as
function of time (for 8 trajectories). (Right) Droplet diameter of active droplets as
function of time. (Figure adapted with permission from Ref. [45], http://dx.doi.org/
10.1103/PhysRevLett.113.248302 © (2014) by the American Physical Society).

Fig. 7. Self-propelling 5CB droplets in an aqueous surfactant (TTAB) solution. (Left)
Droplet velocity as function of TTAB concentration. (Right) Velocity field around a droplet
in the laboratory frame as determined by PIV. The direction of droplet motion parallel to
the bottom wall is indicated by the large arrow. Stream lines of the flow are shown in yellow
color. The spiral pattern of the flow lines are presumably an artefact from the limited lat-
eral PIV resolution, i.e. from the size of the interrogation window (Reproduced from [11] –
Published by The Royal Society of Chemistry. This figure is subject to copyright protection
and is not covered by a Creative Commons license.)

of TTAB in water) to values well above the CMC (up to 25wt%). Similar to the afore-
mentioned observations from [45], the radius of a 5CB droplet decreased linearly with
time in the aqueous surfactant solution when the TTAB concentration was above
the CMC, also suggesting a solubilization of the droplet phase [47]. Spontaneous self-
propulsion of the 5CB droplets was found when the TTAB concentration was larger
than 5wt%, cf. Fig. 7(a). For larger surfactant concentrations both the volume loss
and the droplet velocity increase (from 5μm/s to about 25μm/s).
By tracking the movement of small textural features in a 5CB droplet, a convective

flow field can be observed inside the droplet resembling the flow field expected from
Eqs. ((4)& (5)). The velocity field around a self-propelling 5CB droplet is shown in
Fig. 7(b) which is comparable to the flow field found for the self-propelling droplets
driven by the bromination reaction discussed above (cf. Fig. 3), being also reminiscent
of the flow field expected for neutral squirmers.
In sufficiently dense droplet ensembles, the hydrodynamic interaction between

droplets results in collective phenomena, cf. left panel of Fig. 8. In the system as
described above, without density matching, the 5CB droplets typically form rafts,
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Fig. 8. 5CB droplets forming clusters in a 3d microfluidic cell. (Left) Optical micrograph,
droplets are 50μm in diameter. (Right) Convection roll formed around a stable droplet
cluster sketched by blue arrows. Reservoir height H ≈ 1mm, distance of droplet cluster to
bottom h ≈ 0.15mm. Symmetry axis (of self-propelled motion) of droplets is indicated by
black arrows.

lift off from the bottom and float close to the bottom of the microfluidic cell. Such
a floating raft is surrounded by a convection roll, as sketched in the right panel of
Fig. 8. Conducting these experiments in a microfluidic cell with height well above
the diameter of a single droplet, the system undergoes a clustering transition even if
there are only a few droplets in the cell. In contrast the droplet clustering is absent
even at large droplet densities if the densities of the droplets and surrounding aqueous
phase are matched and the droplets do not sediment. In this 3D situation, there is no
possibility for the droplets to form such a convection pattern, and the droplets just
escape into the third dimension. Thus one can conclude that the observed clustering
is governed by the formation of a large scale convection roll and also that these large
scale flow patterns are determining the collective droplet behavior in addition to the
motion of single particles [48].

4.2 Mechanism of locomotion utilizing phase transformations

In the cases of the aqueous droplets in squalane/monoolein solution, cf. Fig. 6 &
Ref. [45], and the 5CB droplets in an aqueous TTAB solution, cf. Figs. 7, 8 & Ref. [11],
the Marangoni stresses driving the self-propelled droplet motion cannot result from
a chemical reaction modifying the surfactant molecules at the droplet interface. Het-
erogeneities in the surfactant layers of the droplets are rather expected to result from
the solubilization process. In the following paragraphs, we will discuss how solubi-
lization can deplete the surfactant molecules in a region close to the droplet surface.
Spontaneous motion of a droplet can cause a symmetry breaking of the depleted
region resulting in a Marangoni stress that maintains the droplet motion. For the
sake of simplicity this discussion will be restricted to the 5CB droplets in an aqueous
surfactant solution.
Oils solubilize in aqueous surfactant solutions via two mechanisms [42,49]: the

micellar pathway, where micelles collect oil molecules directly at the oil-water inter-
face, and the molecular one, where the oil molecules are picked up a certain distance
away from the interface, Fig. 9. It is important to note that for both processes the
surfactant covered droplet surface is depleted of surfactant molecules as filled mi-
celles contain more surfactants than unfilled micelles. However, in the case of the
5CB/TTAB system the latter pathway is the preferred one, as the charged TTAB
micelles are repelled from the interface and 5CB is water soluble to a certain extent
and thus able to diffuse into the aqueous phase.
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Fig. 9. Schematic of micellar and molecular solubilization pathways. The liquid crystal (LC)
is contained in the droplets surrounded by a micellar surfactant solution. (Left) Micelles
can be filled with LC when they touch the droplet surface (micellar pathway). (Right) LC
molecules diffusing in the surrounding phase can be collected in micelles (micellar pathway).
(Reproduced from [11] – Published by The Royal Society of Chemistry. This figure is subject
to copyright protection and is not covered by a Creative Commons license.)

Fig. 10. Qualitative illustration of surfactant concentration and depletion for the molecu-
lar pathway. (Left) Surfactant concentration profiles in the diffusive steady state. Λ is the
extension of the region around a droplet where micelles can get filled. (Right) Surfactant
depletion in the vicinity of a droplet surface as function of the driving parameter β. Whether
a droplet moves spontaneously (unstable situation) depends on the slope of the curve. For
β > βc, there is no depletion and the surface of a droplet is fully covered with surfactants.
(Reproduced from [11] – Published by The Royal Society of Chemistry. This figure is subject
to copyright protection and is not covered by a Creative Commons license.)

As micelles grow in size while imbibing oil molecules, the density ρs of free surfac-
tant molecules in the continuous phase, which equals the critical micelle concentration
(CMC) at equilibrium, is depleted, as well as, in consequence, the surfactant coverage
of the interface by a value of ΔρI . The disintegration of empty micelles drives ρs back
towards the CMC equilibrium, subject to the empty micelle density β. Considering
that empty micelles are advected at the leading pole of a moving droplet, taking up
oil while travelling past the droplet, the surface depletion ΔρI is less pronounced
near the leading pole due to the higher empty micelle availability β. This results in
Marangoni stresses pointed towards the base of the droplet, propelling it forward.
This process can be approximated qualitatively considering the diffusive behavior

of empty and filled micelles, free surfactant and oil molecules [11], establishing two
characteristic length scales: λ ∝ β−1/3, denoting the range of surfactant depletion due
to micellar filling, and Λ ∝ β−1, characterizing the free diffusion of the oil molecules
until they are collected by empty micelles. Qualitatively, it follows that

ΔρI = c1β
2/3 + c2(1− c3β). (11)

Locomotion is sustained by surface depletion if ∂ΔρI/∂β < 0, corresponding to the
range of βc < b < β

∗ in Fig. 10.
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5 Conclusion

Due to the motion dependent surfactant depletion of an emulsion droplet, a spon-
taneous motion of an emulsion droplet is damped under normal circumstances by a
back flow induced by Marangoni stresses. However, spontaneous self-propelled droplet
motion by Marangoni stresses can be sustained by either chemical reactions changing
the activity of the surfactant molecules or by micellar solubilization of the droplet
phase. For the first example, the bromination reaction of the surfactant molecule
mono-olein was reviewed. The bromine is constantly supplied by a chemical mixture
similar to a non oscillating Belouzhov-Zhabotinsky-solution and the spontaneous mo-
tion stops when either the release of bromine or the concentration of pristine surfac-
tant molecules is fading. The second type of self-propelled motion, driven by micellar
solubilization, relies on a sufficient concentration of surfactant molecules that needs
to be above the CMC and a finite solubility of the droplet phase in the surrounding
medium. The latter is needed to allow the surfactant micelles to pick up individual
molecules from the droplet phase in the near vicinity of a droplet, as direct filling
of micelles at the droplet surface cannot sustain the motion. The motion stops when
either the surrounding medium is completely saturated with the droplet phase or the
droplet phase is completely solubilized in the surrounding medium. Both realizations
exhibit flow fields in the scope of the confining 2D geometry that are comparable
to the flow fields of neutral squirmers in 3D. The droplets in both cases are fairly
insensitive to their own changes in the surrounding medium allowing to explore col-
lective phenomena. For the chemical reaction it was shown that droplets can form
living rafts with an angular correlation that increases with increasing droplet density.
In the case of solubilization it was observed that droplets can form rafts even at low
density when confined in a 3D environment and hovering at a small distance above
the bottom.
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