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Abstract Uzquiano (Analysis 70:39–44, 2010) showed that the Hardest Logic

Puzzle Ever (HLPE) [in its amended form due to Rabern and Rabern (Analysis

68:105–112, 2008)] has a solution in only two questions. Uzquiano concludes his

paper by noting that his solution strategy naturally suggests a harder variation of the

puzzle which, as he remarks, he does not know how to solve in two questions.

Wheeler and Barahona (J Philos Logic, to appear, 2011) formulated a three question

solution to Uzquiano’s puzzle and gave an information theoretic argument to

establish that a two question solution for Uzquiano’s puzzle does not exist. How-

ever, their argument crucially relies on a certain conception of what it means to

answer self-referential yes–no questions truly and falsely. We propose an alternative

such conception which, as we show, allows one to solve Uzquiano’s puzzle in two

questions. The solution strategy adopted suggests an even harder variation of

Uzquiano’s puzzle which, as we will show, can also be solved in two questions. Just

as all previous solutions to versions of HLPE, our solution is presented informally.

The second part of the paper investigates the prospects of formally representing

solutions to HLPE by exploiting theories of truth.

Keywords Hardest logic puzzle ever � Self-reference � Truth

Introduction

Recall Boolos’ formulation of the Hardest Logic Puzzle Ever (HLPE):

The Puzzle: Three gods A, B and C are called, in some order, True, False, and

Random. True always speaks truly, False always speaks falsely, but whether
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Random speaks truly or falsely is a completely random matter. Your task is

to determine the identities of A, B, and C by asking three yes–no

questions; each question must be put to exactly one god. The gods

understand English, but will answer all questions in their own language, in

which the words for ‘yes’ and ‘no’ are ‘da’ and ‘ja’ in some order. You do
not know which word means which. Before I present the somewhat lengthy

solution, let me give answers to certain questions about the puzzle that

occasionally arise:

• (B1) It could be that some god gets asked more than one question (and hence

that some god is not asked any question at all).

• (B2) What the second question is, and to which god it is put, may depend on the

answer to the first question (and of course similarly for the third question).

• (B3) Whether Random speaks truly or not should be thought of as depending on

the flip of a coin hidden in his brain: if the coin comes down heads, he speaks

truly, if tails, falsely.

• (B4) Random will answer ‘da’ or ‘ja’ when asked any yes–no question.

Boolos (1996), p. 62

Rabern and Rabern (2008) point out the need to distinguish HLPE as literally

formulated by Boolos from a version of HLPE which is closely related to it and, as

pointed out by Rabern and Rabern, is more properly called ‘the hardest logic puzzle

ever’. The distinction between the puzzle as formulated by Boolos—which we call

HLPEsem, for semantic HLPE—and the amended puzzle—which we call HLPEsyn,

for syntactic HLPE—only concerns the way in which Random reacts to questions.

Suppose that we address a question to Random. Depending on the version of HLPE
under consideration, he reacts as follows:

• HLPEsem: Random flips a coin and then, depending on the outcome of the coin-

flip, answers the question either truly or falsely.

• HLPEsyn: Random flips a coin and then, depending on the outcome of the coin-

flip, answers the question with either ‘da’ or ‘ja’.

Rabern and Rabern show that HLPEsem allows for a solution (in three questions)

which is so simple that it almost trivializes the puzzle. Previous commentators (such

as Boolos 1996 and Roberts 2001) did not realize the possibility of such a simple

solution and Rabern and Rabern plausibly suggest that this is due to the fact that

these commentators implicitly assumed that Random worked along the lines of

HLPEsyn. Accordingly, we may regard HLPEsyn as a corrected version of HLPEsem

which is more properly called ‘the hardest logic puzzle ever’.

Besides pointing out the distinction between HLPEsem and HLPEsyn, Rabern and

Rabern come up with a solution to HLPEsem which exploits only two (!) questions.

To realize their solution, Rabern and Rabern ask the gods self-referential questions,

which, as they observe, is not prohibited by Boolos’ guidelines. However, their

solution does not carry over to HLPEsyn and so the question arises whether HLPEsyn

allows for a two-question solution as well.
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Uzquiano (2010) shows that HLPEsyn has a two-question solution.1 His solution

strategy is inspired by Rabern and Rabern’s observation that, given their nature,

True and False cannot answer all yes–no questions with ‘da’ and ‘ja’. In Uzquiano’s

framework, True and False are said to remain silent on questions that they cannot

answer with ‘da’ or ‘ja’. Assuming for simplicity that the gods understand and

answer in English, an example of a question on which True must remain silent is

given by k.

k: Is it the case that: your answer to k is ‘no’ ?

In answering k with either ‘yes’ or ‘no’, True can be accused of lying and so True

cannot answer k ‘‘in accordance with his nature’’. Accordingly, True will remain

silent when asked k. This illustrates that in HLPEsyn, True and False are thought of

as having three reactions to questions; besides answering with ‘da’ and ‘ja’ they

may also remain silent. However, HLPEsyn models Random as a random variable

over only two of these reactions: answering with ‘da’ or answering with ‘ja’. As

Uzquiano observes, a more natural way to model Random in HLPEsyn then, is as a

ternary random variable, the outcome of which determines whether Random

answers ‘da’, ‘ja’ or remains silent. HLPEsyn
2 and HLPEsyn

3 will be used to denote the

original version and Uzquiano’s version of HLPEsyn respectively. Uzquiano solves

HLPEsyn
2 in two questions, but with respect to HLPEsyn

3 , he remarks that: ‘I, for one,

do not know how to solve this puzzle in two questions.’

Wheeler and Barahona (2011) give a three-question solution to HLPEsyn
3 and give

an information theoretic argument which establishes that HLPEsyn
3 cannot be solved

in less than three questions. Although their argument is certainly correct, it crucially

relies on the assumption that there are three distinct ways in which the gods answer

yes–no questions. But now consider what happens if we ask the following question

to True.

s: Is it the case that: your answer to s is ‘yes’ ?

Indeed, just as k is (when asked to True) an interrogative version of the Liar, so s is

(when asked to True) an interrogative version of the Truthteller. And just as the

Truthteller may be valuated as either true or false, so True can answer s with either

‘yes’ or ‘no’. However, doing so is, in both cases, completely arbitrary. Questions

like s do not have a role to play in previous solutions to HLPE, and none of the

mentioned papers discusses how True answers such questions. In this paper

however, questions like s will have a crucial role to play: they give rise to a fourth
answer. Exploiting a four-valued answering repertoire, we will show how to solve

HLPEsyn
3 in two questions.

1 Actually, Uzquiano distinguishes two versions of HLPEsyn and gives two-question solutions for both

versions. The versions differ with respect to the abilities of True and False to predict the answers of

Random. The first version assumes that True and False cannot predict Random’s answers (which seems

reasonable given that Random answers randomly), while the second version assume that True and False

can predict Random’s answers (which seems reasonable as True and False are omniscient). Uzquiano’s

solution to the second version is also a solution to the first version but not vice versa. For our purposes,

the distinction does not matter: we give a solution that works for both versions.
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Our alternative account of how True and False answer yes–no questions makes

the arbitrariness of answering s with either ‘yes’ or ‘no’ explicit. According to our

account, True gives the following answers to k and s:

k can neither be answered with ‘yes’ nor with ‘no’

s can be answered both with ‘yes’ and ‘no’

There is a clear intuitive sense in which answering k and s as such is speaking truly.

False will answer the mentioned questions as follows.

k can both be answered with ‘yes’ and with ‘no’

s can be answered neither with ‘yes’ nor with ‘no’

Again, there is a clear intuitive sense in which answering k and s as such is speaking

falsely. A possible justification of working with a four-valued (in contrast to a three-

valued) answering repertoire is that the four (linguistic) answers allow us, even in

the presence of self-reference, to respect Boolos’ instructions, which state that ‘True

always speaks truly’ and ‘False always speaks falsely’. On the other hand, we can

also interpret our two non-standard answers in non-linguistic terms, along the

following lines: on questions like k, the algorithm which describes True’s behavior

yields no solutions, while on questions like s it yields two solutions. In such cases,

True does not answer with ‘yes’ or ‘no’, but its two (non-linguistic) answers reflect,

respectively, the lack and abundance of solutions. Although we will work with the

linguistic version of our non-standard answers, i.e., with ‘both’ and ‘neither’, we

will return to the two distinct justifications of a four-valued answering repertoire (cf.

section ‘‘Critical Remarks on Formalizations’’).

An answering repertoire of four answers naturally suggests an ‘‘even harder’’

variation of the hardest logic puzzle ever, HLPEsyn
4 , in which Random is modeled

as a four-valued random variable over the possible answers. As we will see,

HLPEsyn
4 can also be solved in two questions. In fact, we will only show how to

solve HLPEsyn
4 in two questions as our solution to HLPEsyn

4 is easily seen to solve

HLPEsyn
3 as well.2

All previous solutions to HLPE are presented (informally) in natural language

and our solution to HLPEsyn
4 , as presented in section ‘‘Solving the Puzzles’’, is no

exception. However, given the nature of the gods True and False, one would expect

that solutions to HLPE allow for a formal representation that is based on a (formal)

theory of truth. In section ‘‘Formalizations via Theories of Truth’’, we explore the

prospects of such a formal representation, exploiting (Kripkean) fixed point theories

of truth. We will see that, using a restricted formal language, the previous solutions

to HLPE as well as the solution put forward in section ‘‘Solving the Puzzles’’, can

be given a formal representation. The formal representations are illuminative as they

clearly lay bare the differences between the previous solutions to HLPE and the

present one. Although our formalization allows us to represent the (informal)

solutions to HLPE, nevertheless there are some reasons for not being completely

satisfied with it, as will be explained in section ‘‘Formalizations via Theories of

Truth’’. Section ‘‘Formalizations via Theories of Truth’’ concludes by discussing the

2 Note that HLPEsyn
3 and HLPEsyn

4 (deliberately) violate Boolos’ instruction (B4).
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information theoretic argument of Wheeler and Barahona (2011), which establishes

that (given a three-valued answering repertoire) HLPEsyn
3 cannot be solved in less

than three questions. Section ‘‘Concluding Remarks’’ concludes the paper.

Solving the Puzzles

Gods Who Answer with ‘Yes’ and ‘No’

In this section, we solve HLPEsyn
4 under the assumption that the gods speak English:

they use ‘yes’ and ‘no’ to answer positively and negatively respectively. In the next

section we give up this simplifying assumption and show how to solve HLPEsyn
4 itself,

in which the gods answer with ‘da’ and ‘ja’.

We use the following abbreviations. A, B and C will be used as in Boolos’

guidelines and T, F and R will be used to denote True, False and Random

respectively. With x an arbitrary question, N(x) reads as ‘your answer to x is ‘no’’,

while Y(x) reads as ‘your answer to x is ‘yes’’.3 Before we state our solution to (the

English version of) HLPEsyn
4 , we first briefly comment on the algorithm that gives

rise to the answers of True and False. First, True and False calculate how their yes/

no answers to a question Q influence the truth-value4 of Q, in light of which they

judge these yes/no answers to be correct (4) or incorrect (X). Exploiting the

correctness/incorrectness of their yes–no answers with respect to Q, they then

determine which of the four possible answers (‘yes’, ‘no’, ‘both’, ‘neither’) they

give to Q. The process is illustrated by the Table 1.

Clearly, the yes–no answers of the gods to sw do not influence its truth-value

(which is true). Accordingly, answering sw with ‘yes’ is correct while answering

with ‘no’ is incorrect. Accordingly, True will answer sw with ‘yes’ while False

answers it with ‘no’. The yes–no answers of the gods to k do influence its truth-

value. As illustrated by Table 1, answering k with either ‘yes’ or ‘no’ is incorrect.

Table 1 Reactions of True and False

Q(uestion) Y/N VðQÞ 4/X True False

sw: snow is white Y(sw) True 4 Yes No

N(sw) True X

sb: snow is black Y(sb) False X No Yes

N(sb) False 4

k: N(k) Y(k) False X Neither Both

N(k) True X

s: Y(s) Y(s) True 4 Both Neither

N(s) False 4

3 We could use two place answering predicates and remove the indexical ‘‘your’’. However, as this

results in a less streamlined presentation, we chose not to do so.
4 We treat yes–no questions on par with their associated yes–no statements. That is sloppy, but also very

convenient.
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As a consequence, True will answer k with ‘neither’, while False will answer with

‘both’. The answers to questions sb and s are explained similarly. In section

‘‘Formalizations via Theories of Truth’’ we will return to this procedure in more

detail. Let us now move forward to our solution to the puzzle.

Our two-question solution has the following structure. First, we ask a question

which allows us to identify a god which is not Random. Then, we ask a follow up

question to the god which we know not to be Random, and use the answer we get to

determine the identity of all three gods.

Finding a god that is not Random
Our first question, a1, is defined as follows:

a1 : ðNða1Þ and A ¼ RÞ or ðYða1Þ and B ¼ RÞ or C ¼ R

Table 2 investigates the consequences of answering a1 with ‘yes’ or ‘no’ relative to

the world under consideration (first column) and reports the reactions of True and

False to a1, which are a function of those consequences as we illustrated above.

Let’s explain the first two rows. When A is Random and a1 is answered with

‘yes’, a1 is false—as all its three disjuncts are—and so answering a1 with ‘yes’ is

incorrect when A is Random. Similarly, when A is Random and a1 is answered with

‘no’, a1 is true and so when A is Random, answering a1 with ‘no’ is incorrect as

well. So, when A is Random, True will answer a1 with ‘neither’, while False will

answer it with ‘both’. The other entries in the table are explained similarly. We

address a1 to A and extract the following information from his answers.

Conclusion 1 is only an intermediate stage for arriving at Conclusion 2, which, as

a function of A’s answer to a1, states which god is not Random. Table 3 is, in

combination with Table 2, self-explanatory.

Determining the identity of A, B and C by a follow up question
By asking question a1 to A, we either learn that B is not Random or that C is not

Random. We assume that we learn that B is not Random, the case where C is not

Random being similar. As B is not Random, exactly one of the following four

statements is true:

p1 :¼ B ¼ T and A ¼ F and C ¼ R: p2 :¼ B ¼ T and A ¼ R and C ¼ F

p3 :¼ B ¼ F and A ¼ T and C ¼ R: p4 :¼ B ¼ F and A ¼ R and C ¼ T

Table 2 Reactions of True and False on a1

World Y/N Vða1Þ 4/X True False

A = R Y(a1) False X Neither Both

N(a1) True X

B = R Y(a1) True 4 Both Neither

N(a1) False 4

C = R Y(a1) True 4 Yes No

N(a1) True X
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We will ask B, whom we know not to be Random, question a2:

a2 : ðNða2Þ and p1Þ or ðYða2Þ and p2Þ or p3

Table 4 has exactly the same rationale as Table 2.

Table 5, which has exactly the same rationale as Table 3, shows that B’s answer

to a2 allows us to determine whether p1, p2, p3 or p4 is the case, which means that

B’s answer allows us to determine the identity of all three gods.

Gods Who Answer with ‘da’ and ‘ja’

We will now solve HLPEsyn
4 , in which the gods answer positively and negatively by

using, in some order, the words ‘da’ and ‘ja’. The methods of the previous section

easily carry over to this slightly more complicated puzzle. Let M(d, y) and M(d, n)

abbreviate ‘‘da’ means ‘yes’’ and ‘‘da’ means ‘no’’ respectively. Further, with x an

arbitrary question, D(x) reads as ‘your answer to x is ‘da’’, while J(x) reads as ‘your

answer to x is ‘ja’’.

Table 3 Conclusions based on A’s answer to a1

A’s answer Conclusion 1 Conclusion 2

Yes (A = T and C = R) or A = R B 6¼ R

No (A = F and C = R) or A = R B 6¼ R

Neither (A = R and A = T) or (A = F and B = R) or A = R C 6¼ R

Both (A = R and A = F) or (A = T and B = R) or A = R C 6¼ R

Table 4 Reactions of True and False on a2

World Y/N Vða2Þ Status Y/N True False

p1 Y(a2) False X Neither Both

N(a2) True X

p2 Y(a2) True 4 Both Neither

N(a2) False 4

p3 Y(a2) True 4 Yes No

N(a2) True X

p4 Y(a2) False X No Yes

N(a2) False 4

Table 5 Conclusions based

on B’s answer to a2
B’s answer Conclusion 1 Conclusion 2

Yes (B = T and p3) or (B = F and p4) p4

No (B = T and p4) or (B = F and p3) p3

Neither (B = T and p1) or (B = F and p2) p1

Both (B = F and p2) or (B = F and p1) p2
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Finding a god that is not Random
Our first question, b1, is defined as follows:

b1 : Mðd; yÞ iff ðDðb1Þ and A ¼ RÞ or ðJðb1Þ and B ¼ RÞ or C ¼ Rð Þ

In Table 6, we investigate the consequences of answering b1 with ‘da’ or ‘ja’

relative to a world in which Random is A, B or C and to a language in which ‘da’

means either ‘yes’ or ‘no’. The Table 6, reports the reactions of True and False to

b1, which are a function of the investigated consequences. Due to our uncertainty

with respect to the meaning of ‘da’ and ‘ja’, Table 6 has 12 (rather than 6) rows. Let

us compare row 1 with row 7. The first row tells us that when A is Random and ‘da’

means ‘yes’, answering b1 with ‘da’ renders b1 true. As on the first row ‘da’ means

‘yes’, answering ‘da’ to b1 under the conditions of the first row is correct. Row 7

tells us that, when A is Random and ‘da’ means ‘no’, answering ‘da’ to b1 renders b1

false. Accordingly, answering ‘da’ to b1 under the conditions of the seventh row is

correct. From Table 6, it easily follows that asking b1 to A allows us to determine

the identity of a god which is not Random. Drawing the ‘‘conclusion table’’

associated with Table 6 is left to the reader.

Determining the identity of A, B and C by a follow up question
By asking question b1 to A, we either learn that B is not Random or that C is not

Random. Again, we assume that we learn that B is not Random, the case where C is

not Random being similar. When B is not Random, exactly one of p1, p2, p3 and p4

is true. As a follow up question to b1, we will ask b2 to the non Random god B.

b2 : Mðd; yÞ iff ðDðb2Þ and p1Þ or ðJðb2Þ and p2Þ or p3ð Þ

Table 7, describes the reactions of True and False to b2 relative to the world and

language under consideration. From Table 7, it follows that asking b2 to B, which is

not Random, allows us to determine the identity of all three gods. Drawing the

‘‘conclusion table’’ associated with Table 7 is left to the reader.

Table 6 Reactions of True and False on b1

World Language D/J Vðb1Þ 4/X True False

A = R M(d, y) D(b1) True 4 Both Neither

J(b1) False 4

B = R M(d, y) D(b1) False X Neither Both

J(b1) True X

C = R M(d, y) D(b1) True 4 da ja

J(b1) True X

A = R M(d, n) D(b1) False 4 Both Neither

J(b1) True 4

B = R M(d, n) D(b1) True X Neither Both

J(b1) False X

C = R M(d, n) D(b1) False 4 da ja

J(b1) False X
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Formalizations via Theories of Truth

As noted in the introduction, all the previous solutions to HLPE are presented

informally using natural language. In the previous section, we likewise introduced

our four-valued conception of True and False informally by showing how it can be

applied to solve HLPEsyn
3 . In this section, we discuss the prospects of formally

representing the present and previous solutions to HLPE. The behavior of the gods

True and False in HLPE suggests that a formalization of their behavior can fruitfully

be based upon a formal theory of truth. In this section, we follow this suggestion by

basing ourselves upon Strong Kleene (Kripkean) fixed point theories of truth. To be

sure, there are various theories of truth; we could also work with an account of True

and False that is based on say, a revision theory of truth (cf. Gupta and Belnap 1993)

or on fixed points that are constructed in accordance with the Supervaluation

schema. We choose to work with Strong Kleene theories because such theories are

very well-known, easy to present and, importantly, they allow us to represent the

solutions to HLPE in a sense that will be made clear below.5

In fact, we will not apply our formal modeling to HLPE itself, but rather to the
four roads riddle, presented in section ‘‘The Four Roads Riddle’’. The four roads

riddle may be considered as a simplified version of HLPE while containing HLPE’s

essential features: our formalization of the four roads riddle is easily seen to carry

over to (versions of) HLPE. The formal language in which we will study the four

roads riddle contains a ‘yes’ and a ‘no’ predicate, but no ‘‘non-standard’’ answer

predicates, such as predicates for ‘both’, ‘neither’, ‘silence’ or what have you.

Table 7 Reactions of True and False to b2

World Language D/J Vðb2Þ 4/X True False

p1 M(d, y) D(b2) True 4 Both Neither

J(b2) False 4

p2 M(d, y) D(b2) False X Neither Both

J(b2) True X

p3 M(d, y) D(b2) True 4 da ja

J(b2) True X

p4 M(d, y) D(b2) False X ja da

J(b2) False 4

p1 M(d, n) D(b2) False 4 Both Neither

J(b2) True 4

p2 M(d, n) D(b2) True X Neither Both

J(b2) False X

p3 M(d, n) D(b2) False 4 da ja

J(b2) False X

p4 M(d, n) D(b2) True X ja da

J(b2) True 4

5 Which is not to say that other theories of truth do not allow such representation.
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As none of the solutions to HLPE involves questions that are formed using non-

standard answer predicates, the expressive limitations of our language do not

prevent us from representing these solutions. To be sure, ultimately one wants an

account of the behavior of True and False in a more expressive language which does

contain non-standard answer predicates. In section ‘‘Critical Remarks on Formal-

izations’’, we will briefly comment on the prospects of such an account.

After presenting the four roads riddle in sections ‘‘The Four Roads Riddle’’, and

‘‘Formalizations’’ is concerned with formalizations of the riddle. Section ‘‘Critical

Remarks on Formalizations’’ critically looks back at what has been achieved in

section ‘‘Formalizations’’. Section ‘‘The Wheeler and Barahona Argument’’

discusses the information theoretic argument of Wheeler and Barahona (2011) that

was mentioned in the introduction.

The Four Roads Riddle

The Riddle

You arrive at a cross roads at which you can head either north, south, east or west.
You know that only one of the four roads, call it the good road, leads to your

destination. Unfortunately, you have no clue as to which road is good. However,

two gods, call them a and b, are situated at the cross roads. You know that one of

these gods is True while the other god is False, but you have no clue as to whether a
or b is True. The four roads riddle is as follows. Given the circumstances just

sketched, can you come up with a single question that, when posed to either one of

the gods, allows you to determine which road is good?

The Language LB and its Ground Models

We start out by introducing a restricted formal language in which we will study the

four roads riddle. Our basic formal language is a quantifier free6 predicate language

with identity LB, consisting of the following non-logical vocabulary.7

Constant symbols:

• a and b, which denote, in some order, True and False.

• gT and gF, which denote, respectively, True and False.

• n, w, e, s, which denote, respectively, the north, west, east and south road.

• f½r� j r 2 SenðLBÞg : quotational constant symbols;8 for each r 2 SenðLBÞ; ½r�
denotes r.

6 We do so for sake of simplicity: the definition of the three- and four-valued answering functions below

are easily seen to carry over to quantified languages.
7 We will use =, ^, _, :, ? and$ and as logical symbolism, the interpretation of which is as expected.
8 The set of quotational constant symbols has a joint recursive definition together with Sen(LB), the set of

sentences of LB. The definition of these sets can safely be left to the reader.
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• C ¼ fc1; c2; . . .; cng : non-quotational constant symbols, which denote (arbi-

trary) elements of Sen(LB) and which can be used to define self-referential

sentences. 9

Predicate symbols:

• G(x), interpreted as ‘x is the good road’.

• Y(x, y) and N(x, y), interpreted as ‘the answer of x to y is ‘yes’’ and ‘the answer

of x to y is ‘no’’ respectively.

A ground model M = (D, I) is an interpretation of the ‘‘yes/no predicate free

fragment of LB’’ which respects the intuitive interpretation of LB that is given above.

More precisely, a ground model M = (D, I) is a classical model for LB
- =

LB - {Y, N } which respects the following clauses:

1. D = {Tr, Fa, no, ea, so, we} [ Sen(LB)

2. I(gT) = Tr, I(gF) = Fa, I(n) = no, I(e) = ea, I(w) = we, I(s) = so
3. I([r]) = r for all r 2 SenðLBÞ; IðciÞ 2 SenðLBÞ for all ci 2 C
4. Either (I(a) = Tr and I(b) = Fa) or (I(b) = Tr and I(a) = Fa)

5. Either I(G) = {no} or I(G) = {ea} or I(G) = {so} or I(G) = {we}.

For any ground model M, we will use CM : SenðL�B Þ ! f0; 1g to denote the

(classical) valuation of LB
- that is induced by M. A ground model fixes all the

relevant facts; facts about the world on the one hand and facts about sentential

reference on the other. As such, an account of the behavior of True and False owes

us an explanation of how True and False answer (arbitrary) LB sentences relative to

a ground model. Below, we are concerned with such explanations.

Formalizations

A Three-Valued Answering Function for LB

Clearly, the predicates YðgT ; �Þ and NðgT ; �Þ bear a close similarity with,

respectively, a truth predicate and a falsity predicate. Similarly, the predicates

YðgF; �Þ and NðgF; �Þ bear a close similarity with, respectively, a falsity predicate

and a truth predicate. When we treat our yes/no predicates as truth/falsity predicates

in the sense alluded to, Kripke’s fixed point techniques, as described in Kripke

(1975), may be readily applied in the present setting. In this section, those

techniques will be applied to define a three-valued answering function of True and

False with an eye on satisfying the following two desiderata:

A (The construction of) the answering function allows us to represent the previous

(three-valued) solutions to HLPE.

B The answering function gives the intuitive correct verdict with respect to LB

questions that are not considered in those solutions.

9 For instance, when posed to god a, the sentence Y(a, c1) may be paraphrased as: ‘Is it the case that: your

answer to this question is ‘yes’?’, provided that the denotation of c1 is Y(a, c1).
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Here we go. By a (Strong Kleene) fixed point valuation for LB over a ground

model M;KM : SenðLBÞ ! f0; 1
2
; 1g; we mean a three-valued valuation of LB which

respects the following five clauses. Below, r is an arbitrary constant of LB

(quotational or non-quotational) which denotes r 2 SenðLBÞ:

1. KMðrÞ ¼ CMðrÞ for all r 2 SenðL�B Þ
KM respects the ground model M.

2. KMðYðgT ; rÞÞ ¼ KMðrÞ;KMðNðgT ; rÞÞ ¼ 1�KMðrÞ Fixed point condition for
YðgT ; �Þ and NðgT ; �Þ:

3. KMðYðgF; rÞÞ ¼ 1�KMðrÞ;KMðNðgF; rÞÞ ¼ KMðrÞ Fixed point condition for
YðgF; �Þ and NðgF; �Þ:

4. KMðYðt1; t2ÞÞ ¼ KMðNðt1; t2ÞÞ ¼ 0; when Iðt1Þ 62 fTr;Fag or Iðt2Þ 62 SenðLBÞ:
Only questions receive answers and only gods answer questions.

5. (a) KMð:rÞ ¼ 1�KMðrÞ
(b) KMða ^ bÞ ¼ minfKMðaÞ;KMðbÞg
(c) KMða _ bÞ ¼ maxfKMðaÞ;KMðbÞg KM is Strong Kleene.

In general, a ground model M allows us to define various fixed point valuations

over it.10 We could define an answering function for True and False that is based on,

say, the minimal fixed point valuation over M or, say, the maximal intrinsic fixed

point valuation. As will be clear from the discussion below, these answering

functions allow us to represent previous solutions to HLPE (A) but, arguably, they

do not give the intuitive correct verdict with respect to LB questions that are not

considered by those solutions (B). In order to justice to both A and B, we define the

valuation function KH

M : SenðLBÞ ! f0; 1
2
; 1g by quantifying over all Strong Kleene

fixed point valuations over M:KH

M is defined as follows, where the quantifiers range

over all Strong Kleene fixed point valuations over M.

• KH

MðrÞ ¼ 1, 9KM : KMðrÞ ¼ 1 & 6 9KM : KMðrÞ ¼ 0

• KH

MðrÞ ¼ 1
2
,6 9KM : KMðrÞ ¼ 1 & 6 9KM : KMðrÞ ¼ 0

• KH

MðrÞ ¼ 0, 9KM : KMðrÞ ¼ 0

The valuation KH

M is used to define an answering function for True and False as

follows.

Answering function based on KH

M :

i. True (False) answers r with ‘yes’ just in case KH

MðrÞ ¼ 1 ðKH

MðrÞ ¼ 0Þ:
ii. True (False) answers r with ‘no’ just in case KH

MðrÞ ¼ 0 ðKH

MðrÞ ¼ 1Þ:
iii. True and False remain silent on r just in case KH

MðrÞ ¼ 1
2
:

Let us first point out why we choose to work with KH

M and not with, say, the

minimal or maximal intrinsic fixed point. To do so, consider the following three

questions:

10 In the present setting, the number of fixed point valuations over M depends on the denotations of the

members of C; if, say, I(c) = (gT = gT) for every c 2 C; there is a unique fixed point valuation over M.
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h: Is your answer to h ‘yes’ or ‘no’?

k: Is your answer to k ‘no’?

s: Is your answer to s ‘yes’?

To remove the indexical ‘your’, we assume that the questions are addressed to god

a. In order to represent the questions in LB then, we let h, k and s be non-quotational

constants such that I(h) = Y(a, h) _ N(a, h), I(k) = N(a, k) and I(s) = Y(a, s).

Table 8 describes how KH

M valuates these questions.

Consider question h. First note that the KH

M account of True and False prescribes

that True answer h with ‘yes’ and that False answers h with ‘no’. I take it that this is

how it, intuitively, should be.11 This provides a reason for preferring the KH

M

account of True and False above an account that is based on the minimal fixed point;

as h is ungrounded, the minimal fixed point will valuate it as 1
2
; implying that both

True and False must remain silent on h according to the minimal fixed point. To see

how h obtains its KH

M value, note that YðgT ; �Þ and NðgF; �Þ are truth predicates in

disguise, whereas YðgF; �Þ and NðgT ; �Þ are disguised falsity predicates. Thus, when

posed to True, question h allows for the alethic paraphrase ‘this very sentence is true

or false’, whereas, when addressed to False, the paraphrase becomes ‘this very

sentence is false or true’. Clearly then, there is a fixed point in which these sentences

are true while there is no fixed point in which they are false; KH

MðIðhÞÞ ¼ 1;
irrespective of whether we address h to True or False.

The maximal intrinsic fixed point also valuates h as 1 and so an account of True

and False based on it would prescribe the same answers to h as the KH

M account. We

prefer the KH

M account over the account based on the maximal intrinsic fixed point

due to the answers that are prescribed to question s. According to the KH

M account of

True and False, True answers question s with ‘no’, whereas False remains silent on

s. Intuitively—as also remarked in Rabern and Rabern (2008)—False must indeed

remain silent on s, as he cannot answer it ‘‘in accordance with his nature’’, which is

to speak falsely. Although the previous solutions to HLPE do not discuss how True

should answer s, their authors do state that the gods remain silent on a question

when they cannot answer that question ‘‘in accordance with their nature’’. But True

clearly can answer s with either ‘yes’ or ‘no’ ‘‘in accordance with his nature’’—

Table 8 Values of KH

M for

I(h), I(s), I(k)
World KH

MðIðhÞÞ KH

MðIðsÞÞ KH

MðIðkÞÞ

a = gT 1 0 1
2

a = gF 1 1
2

0

11 I take it that question h reveals an interesting dissimilarity between positively answering a yes–no

question and asserting its alethic counterpart: while ‘yes’ is clearly a truthful answer to h, the

ungroundedness of ‘this very sentence is true or false’ may deems its assertion inappropriate. More

concretely, answering h with ‘yes’ makes it true, while asserting ‘this very sentence is true or false’ does

not render the asserted sentence true.
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although doing so is completely arbitrary—and so the question arises how True

should answer s. Now, one may take the arbitrariness of a yes/no answer to s as a

further reason for True to remain silent. However, this is not what the authors of

previous solutions seem to have in mind.12 So an account of True and False which

prescribes that True answers s with a yes/no answer seems more in line with the

spirit of the previous solutions to HLPE. The KH

M account13 is such an account,

whereas an account based on the maximal intrinsic fixed point is not.

Note that, due to the relations between yes/no predicates and truth/falsity

predicates, s behaves like a Truthteller (‘this very sentence is true’) when addressed

to True while it behaves like a Liar (‘this very sentence is false’) when addressed to

False. As there is a fixed point in which the Trutheller is false, we get that

KH

MðIðsÞÞ ¼ 0 when a is True. As there is no fixed point in which the Liar is true and

no fixed point in which the Liar is false, we get that KH

MðIðsÞÞ ¼ 1
2

when a is False.

The KH

M valuation of question k receives a dual explanation.

Putting KH

M to Work

Suppose that—in the setting of the four roads riddle—we (only) want to find out

whether or not the north road is good. Asking the question ‘is the north road good?’

is useless; we do not know whether we address True or False when asking a

question. However, a little reflection shows that the following question, when

addressed to, say, god a, allows us to find out whether or not the north road is good:

Is your answer to the question ‘is the north road good?’ ‘yes’? ð1Þ

The LB translation of question (1) is given by the sentence Y(a, [G(n)]). Table 9

explains, in terms of KH

M; why asking question (1) suffices to find out whether or not

the north road is good.

The table explains that ‘yes’ indicates that the north road is good and that ‘no’

indicates that the north road is not good. Question (1) is an instance of what is called

the Embedded Question Lemma (EQL) in Rabern and Rabern (2008).

Table 9 Reactions of a to

Y(a, [G(n)])
World KH

MðYða; ½GðnÞ�ÞÞ Answer of a

a = gT, G(n) 1 Yes

a ¼ gT ;:GðnÞ 0 No

a = gF, G(n) 0 Yes

a ¼ gF ;:GðnÞ 1 No

12 Rabern and Rabern (2009) comment on the answering function that they had in mind in their published

paper: according to this function, True gives a classical (yes/no) answer to questions like s.

13 Although the KH

M account prescribes that True answers s with ‘no’, we do not think that there is any

further reason to prefer such an account over an account according to which True answers s with ‘yes’.

Further, some obvious modifications to KH

M will yield just such an account.
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EQL Let E be the function that takes a question Q to the question ‘Is your answer

to the question ‘Q’ ‘yes’?’ When either True or False are asked E(Q), an answer of

‘yes’ indicates that Q whereas an answer of ‘no’ indicates that not Q.

Proof Both a double positive and a double negative make a positive. h

Suppose that you addressed question (1) to a and that you received ‘no’ as an

answer. So, now you know that either the south, east or west road is good—whereas

you don’t know whether a is True or False. Hence, we are left with the ‘‘three roads

riddle’’. Next, we will show how to solve the three roads riddle via a single question,

q, that is similar to the (crucial) questions that are exploited by previous (informal)

self-referential solutions to HLPE. In the spirit of those solutions, we define q by

referring to q in the argument place of the embedding function E of the EQL:

q : EððIs your answer ‘no’ to q and the south road is good) or the west road is good)

Questions like q, which refer to themselves in the argument place of the embedding

function E, we call self-embedded questions. Note that the solution to HLPEsyn
3 that

was given in the previous section does not rely on self-embedded questions. We’ll

return to this observation in section ‘‘‘Both’, ‘Neither’ and Self-Embedded Ques-

tions’’. In order to explain why the answer to q allows us to find out which of the

three roads is good, it is convenient to first translate it into LB. To do so, we let q be

a non-quotational constant whose denotation is as follows:

Yða; ½ðNða; qÞ ^ GðsÞÞ _ GðwÞ�Þ

Here is an intuitive explanation of why q does the job. If west is the good road, the

embedded question, i.e., (N(a, q) ^ G(s)) _ G(w), will be true. Hence, True will

answer the embedded question with ‘yes’ and False will answer it with ‘no’. Thus,

when asked whether they answer the embedded question with ‘yes’, i.e., when asked

q, True and False will both answer with ‘yes’. Similar reasoning shows that if east is

the good road, True and False will both answer with ‘no’. Finally, when south is the

good road, question q reduces to a question which has the same answerhood con-

ditions as the self-embedded question q1:

q1 : Is your answer ‘yes’ to the question of whether your answer to q1 is ‘no’?

As observed by Uzquiano (2010), neither True nor False can answer q1 in

accordance with his nature; they must remain silent on q1. Similarly, when south is

the good road, both True and False must remain silent on q. Table 10—whose

construction can safely be left to the reader—shows that our KH

M based answering

function yields the same verdict with respect to the answers of True and False to

I(q) = Y(a, [(N(a, q) ^ G(s)) _ G(w)]).

Table 10 reveals the sense in which the KH

M account of True and False allows us

to give a formal representation of the informal solution to the ‘‘three roads riddle’’.

The principles at work in the solution to the ‘‘three roads riddle’’ are similar to the

principles at work in the previous self-referential solutions to HLPE. Accordingly,

the KH

M account of True and False can be used to represent these solutions as well.
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Putting a Four-Valued Answering Function for LB to Work

We start by defining a four-valued valuation function of LB;K�M : SenðLBÞ !
f0;þ;�; 1g; in a similar manner as we defined KH

M; i.e., by quantifying over all

Strong Kleene fixed point valuations. We then define a four-valued answering

function for True and False based on K�M and show how it can be invoked to give a

formal representation of a solution to the four roads riddle. The principles at work in

our solution to the four roads riddle are similar to the principles at work in our

solution to HLPEsyn
4 that was presented in section ‘‘Solving the Puzzles’’. Hence, the

K�M account can also be used to give a formal representation of our solution to

HLPEsyn
4 .

Here is the definition of K�M :

• K�MðrÞ ¼ 1, 9KM : KMðrÞ ¼ 1 & 6 9KM : KMðrÞ ¼ 0

• K�MðrÞ ¼ � ,6 9KM : KMðrÞ ¼ 1 & 6 9KM : KMðrÞ ¼ 0

• K�MðrÞ ¼ þ , 9KM : KMðrÞ ¼ 1 & 9KM : KMðrÞ ¼ 0

• K�MðrÞ ¼ 0,6 9KM : KMðrÞ ¼ 1 & 9KM : KMðrÞ ¼ 0

Table 11 illustrates how K�M valuates questions h, s and k, i.e., here is the K�M
version of Table 7.

According to the four-valued conception of True and False put forward in this

paper, True answers s with ‘both’, whereas False answers s with ‘neither’.

Similarly, according to this conception, True answers k with ‘neither’, whereas

False answers k with ‘both’. This suggests the following answering function:

Answering function based on K�M :

i. True (False) answers r with ‘yes’ just in case K�MðrÞ ¼ 1ðK�MðrÞ ¼ 0Þ.
ii. True (False) answers r with ‘no’ just in case K�MðrÞ ¼ 0ðK�MðrÞ ¼ 1Þ.
iii. True and False answer r with ‘neither’ just in case K�MðrÞ ¼ �:

Table 10 Reactions of a to

I(q)
World KH

MðIðqÞÞ Answer of a

a = gT, G(w) 1 Yes

a = gT, G(e) 0 No

a = gT, G(s) 1
2

Silence

a = gF, G(w) 0 Yes

a = gF, G(e) 1 No

a = gF, G(s) 1
2

Silence

Table 11 Values of K�M for

I(h), I(s), I(k)
World K�MðIðhÞÞ K�MðIðsÞÞ K�MðIðkÞÞ

a = gT 1 ? -

a = gF 1 - ?
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iv. True and False answer r with ‘both’ just in case K�MðrÞ ¼ þ:

Suppose that that we want to solve the four roads riddle. It is not hard to

calculate that, using the methods of section ‘‘Solving the Puzzles’’, question c does

the job, where c denotes:

a ¼ gT $ ðNða; cÞ ^ GðnÞÞ _ ðYða; cÞ ^ GðsÞÞ _ GðwÞ

By applying the methods of section ‘‘Solving the Puzzles’’—which can safely be

left to the reader—we see that an answer of ‘yes’ indicates that west is the good

road, ‘no’ indicates that east is good, ‘neither’ indicates that north is good and ‘both’

indicates that south is good. The K�M based answering function True and False yields

exactly the same verdicts. To see why, we will consider (only) the case where the

north road is good. So, suppose that the north road is good and that you address c to

True. Under these circumstances, the answerhood conditions of c are equivalent to

the answerhood conditions of the following question:

c1 : gT ¼ gT $ NðgT ; c1Þ

As the left-hand side of c1 is true, c1 is true just in case its right-hand side, i.e., N(gT,

c1) is true. But NðgT ; �Þ functions as a falsity predicate and so, N(gT, c1) is true just in

case c1 is false; we get that c1 is true just in case it is false. Hence, c1 is paradoxical.
In other words, when a is True and the north road is good, we get that K�MðIðc1Þ ¼
� and so True replies c1 with ‘neither’. Now suppose that the north road is good and

that you address c to False. Under these circumstances, the answerhood conditions

of c are equivalent to the answerhood conditions of the following question:

c2 : gF ¼ gT $ NðgF ; c1Þ

As the left-hand side of c2 is false, c2 is true just in case its right-hand side, i.e.,

N(gF, c2) is false. But NðgF; �Þ functions as a truth predicate and so, N(gF, c2) is false

just in case c2 is false; we get that c2 is true just in case it is false. Hence, c2 is

paradoxical. In other words, when a is False and the north road is good, we get that

K�MðIðc1Þ ¼ � and so False replies c2 with ‘neither’. So, when the north road is

good, both True and False reply to c with ‘neither’. The other three cases are

reasoned out similarly and so the answers of True (and False) to c as obtained

according to the method of section ‘‘Solving the Puzzles’’ are the same as the

answers that are obtained via the K�M based answering function. Similarly, one can

show that the solution to HLPEsyn
4 that was presented in section ‘‘Solving the

Puzzles’’, allows for a formal representation using our K�M based answering

function.

Note that our solution to the four roads riddle, i.e., question c, is not a self-
embedded question. Likewise, none of the questions discussed in section ‘‘Solving

the Puzzles’’ are self-embedded. In contrast, our solution to the three roads riddle,

i.e., question q, is a self-embedded question and so are the (crucial) questions

invoked in previous self-referential solutions to HLPE. In the next section, we will

explain, amongst others, in which sense self-embedded questions give rise to a

problem for the intuitive interpretation of the answers ‘both’ and ‘neither’ that was

sketched in the introduction.
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Critical Remarks on Formalizations

‘Both’, ‘Neither’ and Self-Embedded Questions

In section ‘‘Putting KH

M to Work’’, we discussed the self-embedded question q1,

whose LB translation is as follows:

q1 : Yða; ½Nða; q1Þ�Þ

Due to the self-embedding that is present in q1, it is not clear how the methods of

section ‘‘Solving the Puzzles‘‘ should be applied to calculate the answers of True

and False to it; a yes/no answer to q1 does not (immediately) render the statement

true or false. However, it is clear how K�M valuates q1. Exploiting the similarity

between yes/no predicates and truth/falsity predicates, we see that, when addressed

to True, q1 may be paraphrased in alethic terms as ‘it is true that this very sentence

is false’. When addressed to False, the paraphrase becomes ‘it is false that this very

sentence is true’. Clearly then, we have that K�MðIðq1ÞÞ ¼ �; irrespective of whether

we address q1 to True or False. But this means that both True and False will answer

q1 by replying ‘q1 can neither be answered with ‘yes’ or ‘no’’. Observe that this K�M
prescription is at odds with our original interpretation of the answers ‘neither’ and

‘both’, according to which True, in answering ‘neither’ to question k speaks truly,

whereas False, in answering k with ‘both’ speaks falsely. Indeed, as q1 can neither

(on pain of a self-contradiction) be answered with ‘yes’ or ‘no’, False, in replying

with ‘neither’ cannot be said to answer q falsely.

So, although the method of section ‘‘Solving the Puzzles’’ does not prescribe how

the answers to q1 should be calculated, the answers to q1 that are prescribed by K�M
do not fit in with intended interpretation of ‘both’ and ‘neither’. Thus, two options

suggest themselves, which are associated with two distinct conceptions of True and

False:

1. Stick to the intended interpretation of ‘both’ and ‘neither’ and extend the

method of section ‘‘Solving the Puzzles‘‘ such that it becomes applicable to

self-embedded questions and such that, in particular, the answer given by False

to q1 is ‘both’. This option is naturally associated with an informative
conception of True and False in which, in answering our questions, they intend

to convey information. For instance, in answering a Liar question k with

‘neither’ True intends to convey the information that he can’t answer k with

‘yes’ or ‘no’.

2. Use the K�M account of True and False and give up the interpretation of ‘both’

and ‘neither’. For instance, say that if K�MðrÞ ¼ �; True and False reply to r
with an explosion, while if K�MðrÞ ¼ þ; they remain silent. On this account, the

non-linguistic actions of exploding and remaining silent have their origin in the

‘‘paradoxality’’ and the ‘‘arbitrariness’’ of the possible yes/ no answers. Being

non-linguistic actions, exploding and remaining silent are not to be evaluated in

terms of ‘speaking truly’ and ‘speaking falsely’. This option is naturally

associated with an algorithmic conception of True and False in which, in

answering our questions, they do not intend to convey any information, but
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rather, they follow an algorithm. Explosions and silences, on this conception,

are best thought of as two distinct ways in which the algorithm can fail, due to

the non-existence of solutions (paradoxality) and the abundance of solutions

(arbitrariness) respectively. On the algorithmic conception of True and False,

explosions and silences are not genuine answers, but rather, states that the gods

end up in due to their processing of certain questions.

In a sense, it is more natural to speak of the failure of an algorithm due to the

lack of solutions (paradoxality) than due to the lack of the abundance of solutions

(arbitrariness). As such, the algorithmic conception of True and False is, arguably,

more naturally associated with the 3-valued account of True and False that is

underlying the previous solutions to HLPE.14

I take it that option 1 is preferable; I take it that an account of True and False

according to which these gods can be understood as always speaking, respectively,

truly and falsely, is preferable over an account on which they sometimes do not

speak at all. Such an account simply seems to do more justice to Boolos’ remarks

that ‘True always speaks truly’ and ‘False always speaks falsely’. To be sure,

Boolos may not have envisioned the possibility to ask self-referential questions.

Then again, I take it that an account of True and False which manages to respect

Boolos’ instructions, even in the presence of self-reference, is preferable to an

account which does not.

Although it is beyond the scope of this paper to carry out option 1 in a rigorous

way, here is a hint of how one may proceed. The crucial aspect of the method of

section ‘‘Solving the Puzzles’’ was that True and False calculate how their yes/no

answers to a question r influence the truth-value of r, in light of which they judge

these yes/no answers to be correct/incorrect. Based on those judgements, they then

decide which answer they actually give to r. So according to the method of section

‘‘Solving the Puzzles’’, the patterns of reasoning of True and False leading up to the

correct/incorrect judgement are exactly the same; they only differ in how these

judgements are converted into answers. In particular, with respect to questions like k
and s, True and False find exactly the same judgements. In a sense, this means that

False first calculates whether answering with yes/no is objectively correct/incorrect

and then decides to lie about these judgements. This idea, of False first calculating

whether a yes/no answer is objectively correct and then lying about his findings, can

be put to work in extending the method of section ‘‘Solving the Puzzles’’ to bear on

self-embedded questions. Table 12 which will be used to explain how True (and

False) calculate their answer to q1 in this manner.

Let us explain. The first row supposes that q1 is answered with ‘yes’ (by a). As a

consequence, the embedded question ‘N(a, q1)’ is false, as indicated in the second

column. But this means that the objectively correct answer to the embedded

question is ‘no’. Accordingly, Y(a, [N(a, q1)])—which may here be thought of as

14 As pointed out by an anonymous referee, it can be argued that a 3-valued algorithmic conception of

True and False does not require that we introduce a predicate in our language that represents failures of

the algorithm as such failures do not belong to the language of the gods. In other words, it can be argued

that the problem of expressive completeness (see section‘‘Expressive Incompleteness’’) does not arise on

a 3-valued algorithmic conception of True and False.
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‘the answer that should be given to ‘N(a, q1)’ is ‘yes’’—is false, as indicated in the

third column. Hence, as I(q1) = Y(a, [N(a, q1)]), answering ‘yes’ to q1 is incorrect.

The second row receives a similar explanation. Accordingly, True answers q1 with

‘neither’ while False answers with ‘both’. So according to the envisioned method

for processing self-embedded questions, False finds out whether answering with yes/

no is objectively correct—and not, say ‘‘correct for False’’—and lies about his

findings. Using exactly the same principles, the answer to ‘‘deeper’’ embedded

questions, such as q2, can be calculated.

q2 : Yða; ½Nða; ½Yða; q2Þ�Þ�Þ
Although these remarks on self-embedded questions do not define a rigorous

algorithm for calculating the answers of True and False, I take it that they illustrate

that, despite our possibility to ask self-embedded questions, there are hopes for

developing a formal account of True and False according to which they can be

understood in accordance with Boolos’ instructions. However, self-embedded

questions aside, a satisfying formal account of True and False faces more issues that

have to be resolved. Below we discusses two such issues.

Expressive Incompleteness

As noted before, none of the solutions to HLPE exploits non-standard questions,

i.e., questions that are formed with ‘‘non-standard answer predicates’’. In particular,

LB only contains answer predicates associated with ‘yes’ and ‘no’ and, in that sense,

LB may be called expressive incomplete. Although none of the solutions exploits

non-standard questions, it seems reasonable to ask how True and False answer such

questions. For instance, how do True and False answer questions like:

l1 : Is your answer to l1 ‘no’ or ‘neither’?

l2 : Do you answer ‘yes’ to the question of whether you answer ‘neither’ to l2?

Theories of truth typically do not contain predicates associated with the non-

classical semantic values they employ in their meta-language. As such, we cannot

expect much guidance from theories of truth in developing a formal account of how

True and False answer non-standard questions. However, the methods of section

‘‘Solving the Puzzles’’ do give us some guidance here. Using ‘NE(x, y)’ to

abbreviate x answers y with ‘neither’, we can translate questions l1 and l2 by

letting I(l1) = N(a, l1) _ NE(l1) and I(l2) = Y(a, [NE(a, l2)]). Tables 13 and 14

explain how True and False answer l1 and l2.

Table 12 Reactions of True and False on q1

Y/N VðNða;q1ÞÞ VðYða; ½Nða;q1Þ�ÞÞ 4/X True False

Y(a, q1) False False X Neither Both

N(a, q1) True True X
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Table 13 is self-explanatory. Note that, as True answers l1 with ‘neither’, l1 is

true. Still, True does not answer l1 with ‘yes’ as in doing so he can be accused of lying.

This situation with respect to l1—despite being true not being answered with ‘yes’ by

True—has a clear rationale in terms of truthfully answering yes–no questions.

However, it also points to a further15 dissimilarity between yes–no questions and their

alethic counterparts. For, consider l1
0, which is the alethic counterpart of l1:

l01 : Sentence l01 is false or (neither true nor false)

In treating l1 and l1

0
alike, we are bound to conclude that l1

0 is ‘neither true nor

false’. But this exactly what l1

0
says, and so l1

0 is true and so not ‘neither true nor

false’. In sum, accepting that l1

0
is ‘neither true nor false’ seems to be tantamount to

accepting a contradiction, while accepting that True answers l1 with ‘neither’ has a

clear rationale in the (assumed) nature of True.

Table 14 explains how question l2, which is a self-embedded question, is

answered. Table 14 is to be understood along the lines of section ‘‘Tokens or

Types?’’. On the first line of Table 14, the consequences of answering with ‘yes’ are

considered. Answering l1 with ‘yes’ renders NE(a, l2) false, which ensures that the

correct answer to NE(a, l2) is ‘no’. Accordingly, Y(a, [NE(a, l2)] is false and so

answering l2 with ‘yes’ is incorrect.

Tokens or Types?

Consider the following two questions and suppose that we both address them to

True.

k : Is your answer to k ‘no’?

k1 : Is your answer to k ‘no’?

Table 13 Reactions of True and False on l1

Y/N VðNða;l1Þ _ NEðl1ÞÞ 4/X True False

Y(a, l1) False X Neither Both

N(a, l1) True X

Table 14 Reactions of True and False on l2

Y/N VðNEða;l2ÞÞ VðYða; ½NEða;l2Þ�ÞÞ 4/X True False

Y(a, l2) False False X No Yes

N(a, l2) False False 4

15 For further dissimilarities, see footnote 11 and section ‘‘ Tokens or Types?’’.
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Question k is familiar: True answers it with ‘neither’. Question k1 asks whether True

answers question k with ‘no’. As True answers k with ‘neither’ (hence, not with

‘no’), the truthful answer to k1 is ‘no’. Hence, True should answer k1 with ‘no’. Or

so it seems. Yet if we base our account of True and False on, say K�M; we get

different predictions. Fixed point theories of truth satisfy what is called the

intersubstitutability of truth.16 As a consequence, YðgT ; rÞ and r have the same

semantic value according to K�M ; whenever r denotes r. In particular then, we have

that K�MðYðgT ; kÞÞ ¼ K�MðYðgT ; k1ÞÞ ¼ � and so according to the K�M account, True

will answer both k and k1 with ‘neither’.

It is often argued that theories of truth should satisfy the intersubstitutability of

truth, cf. Field (2008) or Beall (2009). In a nutshell, the argument is that if truth does

not satisfy the intersubstitutability property, it can not play its stereotypical role of

serving as a device of generalization. Let’s accept this argument pertaining to

theories that describe the behavior of a truth (and falsity) predicate. Does it carry

over to a theory that describes the behavior of a ‘answers with yes’ (and ‘answers

with no’) predicate? Not necessarily. For one thing, it is not clear that the

stereotypical role of a ‘answers with yes’ predicate is to serve as a device of

generalization and so the typical argument for the intersubstitutablity breaks down:

although the analogy between true/falsity predicates and yes/no predicates is close,

it is not perfect, as we also noted in the previous subsection. I take the intuitive

reasoning with respect to k and k1 that was given above convincing and I do not see

why the intersubstitutablity of truth should lead us to dismiss that reasoning.

Accordingly, I take it that a fully satisfying formal account of the behavior of True

and False should be token-sensitive.

As the reader may have noticed, questions k and k1 constitute an interrogative

version of what Gaifman (1992) calls the ‘‘two lines puzzle’’. In fact, Gaifman’s

pointer semantics is an example of a token-sensitive theory of truth which gives up

the intersubstitutability property and which yields (in alethic terms) similar

conclusions with respect to the status of k and k1 as the intuitive reasoning above.

As such, it seems promising to develop a token-sensitive account of True and False

on the basis of Gaifman’s work. Clearly, doing so is far beyond the scope of this

paper.

The Wheeler and Barahona Argument

Wheeler and Barahona (2011) argued that HLPEsyn
3 cannot be solved in less than

three questions. Their argument relies on the following lemma from Information

Theory.

(QL) If a question has n possible answers, these answers cannot distinguish

m [ n different possibilities.

Using QL, we see that when True and False have a three-valued answering

repertoire (as in section ‘‘Critical Remarks on Formalizations’’), we cannot solve the

16 Meaning that TðrÞ and r are intersubstitutable (without change of semantic value) in every non

opaque context.
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four roads riddle by asking a single question. In a similar vein—though in a

more complicated setting—Wheeler and Barahona appealed to QL to argue that

HLPEsyn
3 cannot be solved in less than 3 questions, where they assumed that True

and False have a three-valued answering repertoire.

When True and False have a four-valued answering repertoire however, QL tells

us that we may be able to solve the four roads riddle by asking a single question. Of

course, whether or not we are actually able to do so depends on our ability to find

questions such that their four possible answers are correlated to the four relevant

states of affairs in a suitable way. Section ‘‘The Wheeler and Barahona Argument’’

showed how to solve the four roads riddle by a single question. So, by moving from

a three- to a four-valued answering repertoire, we can escape the QL based

conclusion that ‘‘the four roads riddle cannot be solved in a single question’’.

Similarly, by moving from a three- to a four-valued answering repertoire, we

escaped the conclusion of Wheeler and Barahona (2011) that HLPEsyn
3 cannot be

solved in less than three questions.

Clearly then, the number of questions that is needed to solve ‘‘Smullyan like

riddles’’ crucially depends on the number of answers that True and False have

available. For instance, QL establishes that the five roads riddle—which is defined

just as you expect it to be—cannot be solved (in one question) when True and False

have a four-valued answering repertoire. However, QL leaves open the possibility

that the five roads riddle can be solved in a setting in which True and False are

assumed to have a five-valued answering repertoire. Here is such a setting. Assume

that True and False are not omniscient and that, besides answering with ‘yes’, ‘no’,

‘both’ and ‘neither’, they remain silent when they are asked a question to which

they do not know the answer. So, they now have a five-valued answering repertoire.

Here is how to solve the five roads riddle. Let p1; . . .; p5 be five sentences such that

pi states that the ith road is good and let p? be an unknowable (by True and False)

sentence. The answer to question p, whose structure—a biconditional flanked by an

atomic statement and a statement in disjunctive normal form—mirrors the structure

of question c of section ‘‘Putting a Four-Valued Answering Function for LB to

Work’’, allows you to find out which of the five roads is good:

p : a ¼ gT $ ðNða; pÞ ^ p1Þ _ ðYða; pÞ ^ p2Þ _ ðp? ^ p3Þ _ p4

When p3 is false, True and False know that (p? ^ p3) is false and so, depending on

whether p1, p2, p4 or p5 is true, question p receives a similar treatment as question c:

the answers ‘neither’, ‘both’, ‘yes’ and ‘no’ are received just in case, respectively,

p1, p2, p4 and p5 is true. However, when p3 is true, the answerhood conditions of p
reduce to those of a ¼ gT $ ðp? ^ p3Þ: As True and False do not know the truth

value of p?, they do not know the truth value of (p? ^ p3) and so they do not know

the truth value of a ¼ gT $ ðp? ^ p3Þ. As a consequence, they must remain silent on

p. Puzzle solved.

Let me conclude this section by stating a puzzle, HLPEsyn
4* , which I do not know

how to solve (in two questions) and which is not unsolvable on the basis of QL.

HLPEsyn
4* is defined just like HLPEsyn

4 , apart from the following difference. The gods

react to your questions with ‘huh’, ‘duh’, ‘da’ and ‘ja’. As before, ‘da’ and ‘ja’
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mean, in some order, ‘yes’ and ‘no’. But now ‘huh’ and ‘duh’ mean, in some order,

‘neither’ and ‘both’. Can we solve HLPEsyn
4* in two questions?

Concluding Remarks

We put forward an alternative conception of how True and False answer yes–no

questions, resulting in a four-valued answering repertoire. We then showed how this

conception could be invoked to solve HLPEsyn
4 (and HLPEsyn

3 ) in two questions. Our

four-valued (in contrast to a three-valued) answering repertoire allowed us to

escape the argument of Wheeler and Barahona (2011), which established that

HLPEsyn
3 cannot be solved in less than three questions.

The second part of the paper was concerned with formalizations of (the present

and previous) solutions to versions of HLPE, that were all presented informally. We

showed how—by appealing to Strong Kleene fixed point theories of truth and by

working in a restricted setting—to give a formal representation of the solutions to

HLPE. Although in an important sense our formalization ‘‘gets the job done’’, we

discussed some desiderata of a formalization of the behavior of True and False that

were not met by the one that was presented. To develop a formal account of True

and False that meets these desiderata—i.e., a token-sensitive account for an

expressive complete language in which True and False can be understood as,

respectively, ‘‘always speaking truly’’ and ‘‘always speaking falsely’’—is postponed

to future work.
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