Papazvan *et al. Epigenetics & Chromatin* 2013, **6**(Suppl 1):O13 http://www.epigeneticsandchromatin.com/content/6/S1/O13

ORAL PRESENTATION

Open Access

Methylation of histone H3 at lysine 23 in meiotic heterochromatin

Romeo Papazvan^{1*}, Ekaterina Voronina^{2†}, Jessica R Chapman^{3†}, Tonya M Gilbert¹, Elizabeth Meier¹, Jeffrey Shabanowitz³, Donald F Hunt^{3,4}, Yifan Liu⁵, Sean D Taverna¹

From Epigenetics and Chromatin: Interactions and processes Boston, MA, USA. 11-13 March 2013

Heterochromatin and its associated histone modifications are important for repressing transcription and maintaining chromosomal integrity during meiosis and mitosis. The complex repertoire of histone modifications that decorate heterochromatin has yet to be fully characterized, in part because most eukaryotic cells have a single nucleus where distinct chromatin types are intermingled on contiguous stretches of chromosomes. To obtain highly-purified heterochromatin, we turned to the model organism Tetrahymena thermophila, which has a biochemically separable heterochromatic micronucleus. We characterized combinatorial histone modifications on heterochromatic H3 from Tetrahymena and identified species of H3 dually-modified by both H3K23me3 and H3K27me3 as a previously unreported binary 'mark' specific for heterochromatin. Furthermore, H3K23me3 levels dramatically increased during meiosis in Tetrahymena micronuclei, C. elegans, and mice, suggesting this histone 'mark' plays a conserved role in germline development. Lastly, disrupting the H3K23 methyltransferase in Tetrahymena caused a lag in meiotic progression. Together, our data suggests H3K23me3 is a conserved heterochromatic histone PTM strongly associated with meiosis, and misregulation of this modification may be linked to problems with reproductive fitness and development.

Author details

¹Department of Pharmacology and Molecular Sciences, and the Center for Epigenetics, The Johns Hopkins University School of Medicine, USA. ²Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Center for Cell Dynamics, The Johns Hopkins University School of Medicine, USA. ³Department of Chemistry, University of Virginia,

+ Contributed equally

¹Department of Pharmacology and Molecular Sciences, and the Center for Epigenetics, The Johns Hopkins University School of Medicine, USA Full list of author information is available at the end of the article

Published: 18 March 2013

doi:10.1186/1756-8935-6-S1-O13

Cite this article as: Papazvan *et al.*: **Methylation of histone H3 at lysine 23 in meiotic heterochromatin.** *Epigenetics & Chromatin* 2013 **6**(Suppl 1): 013.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2013 Papazvan et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.