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Abstract

T-cell activation and dysfunction relies on direct and modulated receptors. Based on their functional outcome,
co-signaling molecules can be divided as co-stimulators and co-inhibitors, which positively and negatively control
the priming, growth, differentiation and functional maturation of a T-cell response. We are beginning to understand
the power of co-inhibitors in the context of lymphocyte homeostasis and the pathogenesis of leukemia, which
involves several newly described co-inhibitory pathways, including the programmed death-1 (PD-1) and PD-1
ligand (PD-L1) pathway. The aim of this review is to summarize the PD-1 and PD-L1 biological functions and their
alterative expression in hematological malignancies. The role of PD-1 and PD-L1 in T-cell immune suppression and
the potential for immunotherapy via blocking PD-1 and PD-L1 in hematological malignancies are also reviewed.
Introduction
Leukemia, particularly aggressive refractory hematological
malignancies unresponsive to upfront therapy, remains a
difficult condition to treat. The focus of therapy is to
achieve complete disease remission. Therefore, alternative
treatment options that utilize immunotherapy while min-
imizing toxicity are warranted [1-3]. It is well known that
persistent immunodeficiency is a common feature in pa-
tients with leukemia. Moreover, T cell function becomes
suppressed with disease progression. Such immune dys-
function may be due to a disorder in thymic output func-
tion (in particular in young patients), which results in a
lower level of naive T-cells in the peripheral blood available
for an immune response to the proliferation and abnormal
expression of the T cell receptor (TCR) repertoire. This
condition results in an impaired specific antigen response
and abnormal TCR signal transduction, which results in
lower T cell activation for an immune response [4-9].
Moreover, increasing data have shown that peripheral T-
cell tolerance is an essential property of the specific im-
mune response to tumor cells. T-cell anergy is defined as
the state in which T-cells fail to respond to previously en-
countered antigenic stimulation by functional APCs. Such
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T-cells lose the ability to autonomously produce IL-2 [10].
In addition, the low cytotoxicity of T-cells may be related to
the high expression level of inhibitory molecules inclu-
ding programmed death-1 (PD-1), LAG-3 and NKG2A in
CD8+T cells [11]. Moreover, it has been shown that the
PD-1 ligand (PD-L1) is highly expressed in leukemia cells.
In addition, PD-1/PD-L1 interactions contribute to func-
tional T-cell impairment, which fails to elicit minimal re-
sidual disease and may be related to leukemia relapse. This
phenomenon may be one of the reasons why immature
leukemic progenitor cells escape the immune system i.e., by
inhibiting T-cell function via the PD-1/PD-L1 pathway [12].
Structural features of PD-1 and PD-L1
The PD-1 gene is a CD28 family member that is a member
of the immunoglobulin gene superfamily. Murine PD-1
mRNA expression has been shown to be correlated with
activation-induced apoptosis in a mouse T-cell hybridoma
cell line and murine thymocytes [13]. PD-1 is expressed on
activated T cells, B cells, and myeloid cells. Human PD-1 is
a homolog of murine PD-1 (mPD-1), which was originally
isolated by Ishida et al. from apoptotic T-cell hybridomas
by subtractive hybridization [14]. The human PD-1 gene is
located on chromosome 2 at band q37, and the full length
PD-1 cDNA is 2,106 nucleotides long and encodes a pre-
dicted protein of 288 amino acid residues. The human PD-
. This is an Open Access article distributed under the terms of the Creative
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1 and mPD-1 genes share 70% homology at the nucleotide
level and 60% homology at the amino acid level. The PD-1
gene is encoded by five exons (EX1–EX5). EX1 (76 bp) en-
codes an L-region (25 aa) followed by an intron of 5,781
bp. EX2 (360 bp) encodes a short hydrophilic-region (6 aa)
and an extracellular V-like domain (120 aa) and is separated
from EX3 (156 bp) by an intron of 267 bp that encodes a
connecting-region (23 aa), transmembrane-region (24 aa)
and a portion of the C-like-domain (5 aa). The EX4 (35 bp)
and EX5 intracytoplasmic regions (237 bp) are separated by
an intron of 651 bp encoding most of the cytoplasmic-
region (12 and 79 aa) (Figure 1) [15]. Five human PD-1
isoforms have been identified [16,17]. PD-1 is a 50–55 kDa
type I transmembrane protein with a single IgV domain in
the extracellular region. The cytoplasmic region of PD-1
contains an ITIM (immuno-receptor tyrosine-based inhibi-
tory motif) and an ITSM (immuno-receptor tyrosine-based
switch motif), and the latter is essential for the inhibitory
function of TCR signaling [18]. PD-L1, which is also known
as B7-H1 (CD274), is a cell surface protein of B7 family
member. This protein is expressed on immune or non-
hematopoietic cells. The human PD-L1 gene is located at
9p24, and the full length PD-L1 cDNA is 870 bp. The open
reading frame of the PD-L1 gene encodes a putative type I
transmembrane protein of 290 amino acids consisting of
immunoglobulin V-like and C-like domains, a hydrophobic
transmembrane domain and a cytoplasmic tail of 30 amino
acids [19].
Figure 1 Schematic structure genomic organization of PD-1 and PD-L
The blue bars are exons of the PD-1 gene which encode different regions of th
V-likedomain (EX2), connecting-region (EX3), transmembrane-region (EX3), C-like
(EX5) [15]. The yellow bars are exons of the PD-L1 gene which encode different
(EX2),immunoglobulin constant domain (EX3), transmembrane region (EX4-EX7
not express post transcriptional alternative splicing [NM_014143.3]. The number
of each exon.
Biological functions of PD-1 and PD-L1
As the main ligand for PD-1, PD-L1 induces a co-
inhibitory signal in activated T-cells and promotes T-cell
apoptosis, anergy and functional exhaustion [20,21]. T
cell activation requires a TCR-mediated signal in
addition to TCR signaling, and the strength and duration
of T-cell activation are mainly determined by the net ef-
fect of positive and negative co-stimulation and cyto-
kines from antigen-presenting cells (APCs). However,
the ability to shape the outcome of positive vs. negative
co-stimulation relies, at least partially, on the temporal
and spatial expression of stimulatory and inhibitory li-
gands for co-signaling receptors [22]. Some molecular
pairs attenuate the strength of the TCR signal, a process
called co-inhibition [23,24]. The effect of the PD-1 and
PD-L1 interaction is thought to be important for co-
inhibition during the T-cell initiation of an immune re-
sponse. T-cell activation also induces the expression of
PD-1, while cytokines such as INF-γ and IL-4, which are
produced after T-cell activation, up regulate PD-1
ligands, establishing a feedback loop that attenuates
immune responses and limits the extent of immune-
mediated tissue damage unless the activation is overrid-
den by strong co-stimulatory signals. In proximity to the
TCR signaling complex, PD-1 delivers a co-inhibitory
signal upon binding with either of its two ligands PD-L1
or PD-L2. Ligand engagement results in the tyrosine
phosphorylation of the PD-1 cytoplasmic domain and
1 gene. The bars represent the exons (EX) and the lines represent introns.
e PD-1 protein, including: L-region (EX1), hydrophilic-region (EX2),
-domain (EX3), intracytoplasmic regions (EX4) and cytoplasmic-region
regions of the PD-L1 protein, including: Immunoglobulin V-set domain
); diagonal line filled black and white bar represent the exons which do
s under the exons are the number of nucleotides corresponding to size
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the recruitment of phosphatases, particularly SHP2 [25].
This recruitment results in dephosphorylation of the
TCR proximal signaling molecules including ZAP70,
PKCθ, and CD3ζ, leading to attenuation of the TCR/
CD28 signal [26]. The ligation of PD-L1 on T-cells by
either specific monoclonal antibodies or immobilized
PD-1 co-stimulates T-cell growth and cytokine secretion
[22].

Expression characteristics of PD-1 and PD-L1
PD-1 is expressed in the thymus primarily on CD4-CD8-

(double negative) T-cells late in the transition from
double negative to double positive cells. Double negative
γδ thymocytes express high levels of PD-1, and natural
killer T-cells express low levels of PD-1. Moreover, inter-
esting findings have shown that PD-L1 is expressed at
high levels by activated CD4+T cells [22]. Although PD-
1 was not preferentially expressed in pro-B cells from
human fetal bone marrow, treatment of isolated pro-B
cells with IL-7 resulted in a dramatic increase in expres-
sion [16,17,27]. PD-L1 is expressed on almost all types
of lymphohematopoietic cells at varying levels and is
constitutively expressed on T-cells, B-cells, macrophages
and dendritic cells (DCs). This ligand is further
upregulated and strongly induced by mitogenic stimula-
tion and IFN-γ, which is reminiscent of PD-1 receptor
expression [28,29]. Moreover, the PD-L1 splice variant
expression pattern was variable in different individuals
and different cellular statuses. PD-L1 expression may be
regulated at the posttranscriptional level through alter-
native splicing, and modulation of PD-L1 isoform ex-
pression may influence the outcome of specific immune
responses in peripheral tissues [30]. The expression of
PD-L1 is also detected on non-lymphoid cells e.g., endo-
thelial cells in the heart, β cells in the pancreas, glial
cells in inflamed brains and muscle cells [31-35]. More-
over, PD-L1 is abundant in human carcinomas of the
lung, ovary and colon and in melanoma [36] and
leukemic cells [28,37,38]. The latter finding appears to
be important for cancer immunotherapy.

Alterative expression of PD-1 in T cells from patients with
hematological malignancies
Increasing data have shown that PD-1 is expressed at a
higher level in T cells from tumor patients [39]. Re-
cently, it was reported that CML-specific cytotoxic T-
cells (CTLs) maintain only limited cytotoxic activity, do
not produce interferon-γ or tumor necrosis factor-α, and
do not expand after restimulation. These CTLs were
characterized by the high expression of PD-1, and their
target CML cells expressed higher levels of PD-L1 [38].
This phenomenon was not only found in a CML mouse
model but also in patients with CML [40]. Thus, higher
PD-1 expression in CTLs is related to inhibition of the
effector phase of T-cell responses and reduced antitumor
activity. It was more recently reported that PD-1 expres-
sion in CD4+ and CD8+ T-cells is significantly higher in
patients with chronic lymphocytic leukemia (CLL), while
the levels of PD-1 expression on both CD4+CD25+ and
CD4+CD25- T-cells were increased in adult T-cell
leukemia/lymphoma (ATL), but not in CD8+T cells
[41-43]. More importantly, PD-1 was markedly elevated
in tumor-infiltrating and peripheral T-cells from patients
with Hodgkin’s lymphoma (HL) [33].

The PD-L1 expression pattern in leukemia and lymphoma
cells and the tumor microenvironment
A higher expression of PD-L1 was found in the majority of
different hematological malignant cells, including primary
mediastinal large B-cell lymphoma, T-cell/histiocyte-rich B-
cell lymphoma, EBV-positive and EBV-negative PTLD,
EBV-associated diffuse large B-cell lymphoma (DLBCL),
plasmablastic lymphoma, extranodal NK/T-cell lymphoma,
Burkitt’s lymphoma, HHV8-associated Kaposi sarcoma, B-
cell leukemia, CML, AML cells, as well as in ATL cells in
some patients [37,38,40,41,44,45]. PD-L1 expression was
also demonstrated in primary Hodgkin/Reed-Sternberg (H/
RS) cells [33]. Moreover, PD-L1 is highly expressed on
tumor-infiltrating macrophages and the surface of tumor
cells and antigen-presenting cells in the tumor microenvir-
onment [30,31]. It appears to be clear that PD-L1/PD-1
co-stimulation has to be targeted in the tumor microenvi-
ronment. Tumor cells upregulate PD-L1 to dampen CTL
attack. This upregulation is possibly a consequence of
pro-inflammatory cytokine production by tumor infiltrating
immune cells. For example, the IFN-γ produced by inflam-
matory cells acts as a potent PD-L1 up-regulator [46].

PD-1 and PD-L1 relative immune suppression in
hematological malignancies
Tumor-associated immune suppression can lead to de-
fective T-cell-mediated antitumor immunity. Based on
the finding that PD-L1 is up-regulated on HL cells, and
PD-1 is markedly elevated in the tumor-infiltrating or
peripheral T cells of HL patients, blockade of the PD-1
signaling pathway inhibits SHP-2 phosphorylation and
restores the IFN-γ-producing function of HL-infiltrating
T-cells [44]. According to these results, the deficient cel-
lular immunity observed in HL patients may be
explained as "T-cell exhaustion," which is led by the acti-
vation of PD-1-PD-L1 signaling pathway. This finding
provides a potentially effective immunologic strategy for
the treatment of HL [44]. Increasing data indicate that
the PD-1-PD-L1 signaling pathway is related to immune
suppression and disease progression. Zhou Q et al. demon-
strated a unique phenotype i.e., co-expression of Tim-3 and
PD-1 on CD8+ T cells increased during AML progression.
Combined PD-1/PD-L1 and Tim-3/galectin-9 blockade
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could rescue mice from AML lethality [45], and this may
be beneficial for preventing CD8+T-cell exhaustion in pa-
tients with hematological malignancies.
Moreover, data have shown cancer cell associated PD-

L1 increases during the apoptosis of antigen-specific hu-
man T-cell clones in vitro [36]. In CML patients, T cells
may be under the control of different immune escape
mechanisms. CML with Sokal high risk have an increase
in the number of myeloid-derived suppressor cells
(MDSCs), which are an important immunosuppressive
cell population in the tumor microenvironment. These
MDSCs upregulate the expression of PD-L1/PD-1, argi-
nase 1 and soluble CD25. While PD-L1 blockade does
not increase T-cell proliferation, it does upregulate IL-2
secretion [47]. Therefore, combining anti-PD-1 therapy,
which may re-educate MDSCs, to favor the recruitment
of adoptively transferred, tumor-specific T-cells to lead
to an improved antitumor response may be considered
[48].

The role of PD-1 and PD-L1 targeted immunotherapy in
hematological malignancies
Recently, target immunotherapy using PD-1 and PD-L1
monoclonal antibodies (MoAbs) was demonstrated to
significantly induce durable tumor regression and pro-
long disease stabilization in patients with selected ad-
vanced cancers, including non–small cell lung cancer, a
tumor considered to be non-responsive to immunother-
apy [39,49]. These results have led to many studies
evaluating the effects of the target inhibition of PD-1
and PD-L1 in different cancers including hematological
malignancies.
The findings of PD-1 and PD-L1 expression character-

istics in leukemia and lymphomas with defective T-cell
immune responses have implications for the design of T-
cell-based cancer immunotherapy, and blockade of the
PD-1/PD-L1 pathway may be a clinically effective strat-
egy [36,41,50]. For example, an anti-PD-L1 blocking
antibody boosted the proliferation and IFN-γ secretion
of allogeneic T-cells responding to anaplastic large cell
lymphoma (ALCL) and DLBCL cells. In autologous cul-
tures of primary ALCL and DLBCL cells, PD-L1 block-
ade enhanced the secretion of the inflammatory
cytokines IFN-γ, granulocyte macrophage colony-
stimulating factor, IL-1, IL-6, IL-8, IL-13, TNF-α, and
macrophage inflammatory protein-1α. In establishing
cell lines from an aggressive PD-L1+mature B-cell
lymphoma, it was also noted that PD-L1 expression
could be lost under certain in vitro culture conditions
[51]. Moreover, the phase I clinical study showed the
CT-011 which is a humanized IgG1 monoclonal anti-
body against PD1 to be safe and well tolerated in pa-
tients with AML, CLL, non-Hodgkin’s lymphoma
(NHL), HL or multiple myeloma (MM) at an advanced
stage of their disease and following chemotherapy and/
or stem cell transplantation. Clinical benefit was ob-
served in 33% of the patients with one complete remis-
sion. The elevated peripheral blood CD4+, CD8+, and
CD69+T cells were detected in CT-011 treated patients.
However, no change in the levels of IFN-γ or t TNF-α
was noted in sera derived from hematologic malignancy
patients following treatment with CT-011. And a phase
II clinical study evaluating the safety and efficacy of CT-
011 administered at the dose level of 1.5 mg/kg in dif-
fuse large B-cell lymphoma following autologous bone
marrow transplantation has been initiated [52].

Conclusions
The upregulation of PD-1 and PD-L1 is a common
phenomenon in leukemia and lymphomas that leads to
double T-cell immunodeficiency, low proliferation and
activation effects, and higher immune suppression in pa-
tients. These findings further characterized the immune
escape mechanisms and allowed understanding the
lower effects of the T-cell immunotherapeutic efficacies
in hematological malignancies. Moreover, the detection
of PD-1 and PD-L1 may be considered a novel prognos-
tic marker in these patients. Targeted inhibition of PD-1
and PD-L1 by different methods, such as MoAbs, small
molecules or siRNAs, may significantly affect immuno-
therapeutic efficacies. Moreover, T-cell immunodefi-
ciency in leukemia patients may be associated with
different causes of immune suppression, such as altera-
tive expression of TCR signaling pathway members and
the immune negative feedback regulator A20 [5,53]. The
PD-1 and PD-L1 interaction may reduce the apoptosis
of tumor cells by suppressing T-cell function; thus, they
may share a common signal transduction, and the devel-
opment of a comprehensive strategy for special im-
munotherapy targeting this different pathway is needed.
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