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1 Introduction

For the Drell-Yan (DY) process, the cancellation of Glauber gluons was a major difficulty

in proving factorization [1–3]. In QCD factorization at leading power, by the Collins-

Soper-Sterman (CSS) formalism [4–6] or soft collinear effective theory (SCET) [7–10], soft

gluons decouple from the dynamics of collinear particles through the eikonal approximation.

However, the eikonal approximation is not applicable to soft gluons whose momenta are

dominated by transverse components, called Glauber/Coulomb gluons. This issue is of

direct relevance for the resummation of jet veto logarithms at hadron colliders [11–16],

which requires re-factorization of the Drell-Yan cross section when the jet veto scale is

much lower than the hard scale.

In the simpler cases of the Sudakov form factor and semi-inclusive deeply inelastic

scattering (SIDIS), cancellation of Glauber gluons is achieved at the amplitude level, by

deforming integration contours [17] away from the Glauber region. In such cases, if the

Glauber region is included in the calculation, the cancellation happens between the Glauber
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region and the subtraction of overlap between the Glauber region and other regions [6, 18,

19]. Such cancellation is by no means automatic; it places strong constraints [6, 20] on the

choice of Wilson lines in the definition of the soft and collinear functions, including the

directions (past-pointing/incoming versus future-pointing/outgoing) and possible rapidity

regularization.1

For the Drell-Yan process, the cancellation is more involved, due to the presence of

both initial-state and final-state poles, in both collinear sectors. Incoming Wilson lines are

chosen, to be compatible with contour deformation away from initial-state poles (which

is responsible for the sign flip of the Sivers function between DY and SIDIS [23]), while

final-state poles that obstruct contour deformation are canceled after summing over cuts

and integrating over certain momentum components. While there are earlier proofs of

cancellation of Glauber gluons, the CSS proof in [3], based on both plus- and minus-

lightcone ordered perturbation theory (LCOPT), is the most powerful one, because its

applicability extends beyond leading-twist massless parton scattering [24], with important

phenomenological applications to, e.g. subleading-twist quarkonium production [25].

The CSS proof originally required integrating over the transverse momenta of the

partons, but it was subsequently realized that in the Feynman gauge, the proof carries

through [6, 26] for transverse momentum dependent (TMD) factorization for the Drell-

Yan process. However, for factorization of “isolated” Drell-Yan production with measured

hadronic event shape variables such as transverse energy [13, 27, 28] and beam thrust [29–

31] (see also [32]), the existing proofs are not applicable, as shown in [33] which explored

connections with multi-parton interactions.

In fact, one of the crucial last steps of the CSS proof is integrating over the virtuality of

the active partons (after summing over cuts in LCOPT). This step is directly broken by a

measurement of the beam thrust variable, as the factorization proposed in [29] involves the

virtuality-dependent PDF, also called the beam function. To address the miscancellation

of Glauber gluons, ref. [34] introduced new jet veto observables that are designed to be less

sensitive to such factorization-violating effects.

We will borrow the terminology “generalized factorization” for hadron-hadron colli-

sions proposed in a slightly different context, TMD factorization. Generalized factorization

is to be distinguished from “standard factorization” for hadron-hadron collisions, the latter

of which assumes cancellation of Glauber gluons and always defines soft and collinear func-

tions using past-pointing/incoming Wilson lines carrying the color charges of the active

partons. For example, the factorization of beam thrust in [29] using SCET should be char-

acterized as standard factorization.2 Generalized factorization, in a narrow sense, involves

modification of Wilson lines in collinear and soft functions [40–43], but in a general sense,

1The compatibility between contour deformation and rapidity regularization by off-lightcone Wilson

lines [6] has been studied in the aforementioned references, but it should be possible to extend the studies to

other rapidity regulators [21, 22] used in the SCET literature, which bear more resemblance to dimensional

regularization.
2The equivalence of leading-power soft collinear factorization derived from traditional QCD methods

and from SCET, for sufficiently inclusive observables that guarantee the cancellation of Glauber gluons,

has been demonstrated extensively, for example in [35–39].
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can be any factorization with a sensible spin structure [44].3 In the model field theory con-

sidered in this paper, the colored active partons and the produced heavy uncolored particles

are scalars carrying no spin indices, and generalized factorization is liberally defined as any

factorization of the cross section into a product/convolution of scalar hard, collinear, anti-

collinear, and possibly soft functions. We will make the definition precise in section 3.1.

To disprove a leading-power factorization statement, it is sufficient to demonstrate, at

some fixed order in αs, that the leading-power part of the cross section contradicts the

prediction from factorization. Since QCD factorization relies on arguments that are appli-

cable to all unbroken gauge theories, irrespective of e.g. gauge groups and matter contents,

it is sufficient to find a contradiction in a model field theory that allows easy calculation.

Model field theories involving polarized scattering, again in the slightly different context

of TMD factorization, have been used to show the violation of both standard factorization

and generalized factorization for hadron production at small transverse momentum [44–47].

In particular, ref. [44] exploited discrete symmetries to study the violation of factorization,

and this approach will be adopted in our study.

In this paper, we will consider Drell-Yan-like scattering in a model field theory, and

study spin asymmetries in the doubly-differential beam thrust distribution. For this special

model and observable, the vast majority of diagrams vanish, allowing a clean calculation of

factorization-violating effects. The goal of the study is two fold. First, we would like to give

an explicit demonstration that standard factorization is violated, which was shown by [33]

to be extremely likely. Second, we would like to show that it is not possible for a generalized

factorization theorem to hold, since decoupling of the two collinear sectors necessarily leads

to zero spin asymmetry, while the calculations in this paper find a non-zero spin asymmetry.

The non-cancellation of Glauber gluons found in this paper only happens above the jet veto

scale, so collinear factorization is still valid if the jet veto scale is perturbative, but our

ability to resum large logarithms in the hard scattering function will be compromised.

Ref. [34] introduced new jet algorithm-based observables, such as the “jet beam thrust”,

which are designed to be less sensitive to Glauber effects, while preserving the rapidity-

dependent nature of the beam thrust variable. Other recent research [44–52] investigated

the violation of QCD factorization in contexts other than, or wider than, the Drell-Yan pro-

cess. For perturbative resummation, the logarithmic order at which factorization-violating

effects start has been discussed for top quark pair production at low transverse momen-

tum [53, 54] and dijet event shapes [55].

This paper is organized as follows. In section 2 we give a description of the model field

theory and the observable measured in our thought experiment. In section 3 we explain why

a non-zero spin asymmetry would contradict both standard factorization and generalized

factorization. In section 4 we check that up to O(α2
s), factorizable diagrams, as well as the

vast majority non-factorizable diagrams, do not contribute, due to cancellations associated

with this special observable. In section 5 we evaluate the only O(α2
s) cut diagram left, which

involves one Glauber gluon exchanged on each side of the cut. The evaluation gives a non-

zero spin asymmetry, which is the desired result. Some discussions are given in section 6.

3For example, the large component of the Dirac spinor of a collinear quark should be projected out, and

gluons that enter the hard scattering should carry two possible transverse polarizations.
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µ1T

µ2T

φ

φ
φ

φ

Φ

p2 = (0, E,0)

p1 = (E, 0,0)

k1

k2

p1 − k1 =

(1− x1)E, |k1T |2

Figure 1. The leading-order Feynman diagram for γ + γ → Φ + X in the model theory. Here

X = φ+ φ∗.

2 The model for showing factorization breaking

2.1 Model field theory

We consider QCD with a hypothetical massless complex scalar quark φ (instead of a Dirac

fermion quark as in real QCD) under the fundamental representation of SU(3). The scalar

quark also carries an electric charge of +e. The produced heavy particle Φ (analogous to

γ∗ and Z0 in the real Drell-Yan process) is a neutral color-singlet scalar with mass M , and

couples to the light scalar quarks via the interaction Lagrangian −gΦΦφ∗φ. The photon γ

serves the role as a “hadron” which can split into an active scalar quark that participates

in hard scattering, and a spectator scalar quark going down the beam pipe. We consider

the Drell-Yan process γ + γ → Φ + X. The lowest-order diagram is γ + γ → Φ + φ + φ∗,

shown in figure 1.

2.2 Observable-spin asymmetry in doubly differential beam thrust

We will use the beam thrust variable [29, 56]

τB ≡
1

M

∑

i

|pTi |e−|yi−y|, (2.1)

where y and M are the rapidity and invariant mass of the Drell-Yan pair (actually a heavy

scalar in our model), and the index i runs over every detected hadron. Requiring τB � 1

strongly restricts hadronic activity, especially in the central rapidity region. It is useful to

consider the doubly-differential distribution [29] in (τR, τL), where τR receives contribution

from only the right hemisphere (yi > y) and τL receives contribution from only the left

hemisphere (yi < y).

Even though the arguments in this paper also apply to jet algorithm-based vetoes,

for concreteness we will consider the doubly-differential beam thrust distribution from

the scattering of two photons. Our thought experiment involves incoming photons with

several polarization configurations, from which we obtain the double spin asymmetry in the
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distribution. We will do the calculation for a heavy scalar Φ produced at rapidity y = 0,

and with the left and right hemispheres having the same beam thrust τR = τL = 1
2τB � 1.

The phase space integral for the square of the amplitude in figure 1 is, in the approximation

that k1 is plus-collinear and k2 is minus-collinear,

d3σ

dτRdτLdy

∣∣∣∣
y=0, τR=τL=τB/2

(2.2)

=
1

2E2

∫
dx1

2(2π) (1− x1)

∫
dx2

2(2π) (1− x2)

∫
d2k1T

(2π)2

∫
d2k2T

(2π)2
|M|2

× 2πδ
(
x1x2E

2 −M2
)
δ

(
1

2
ln
x1

x2

)
δ

(
τB
2
− |k1T |2
M (1− x1)E

)
δ

(
τB
2
− |k2T |2
M (1− x2)E

)

The delta functions in eq. (2.2) force

x1 = x2 =
M

E
≡ x, (2.3)

|k1T | = |k2T | =
√
τB(1− x)

2
≡ |k0T | , (2.4)

and eq. (2.2) simplifies to

d3σ

dτRdτLdy

∣∣∣∣
y=0, τR=τL=τB/2

=
M2

16πE2

∫
d2k1T

(2π)2

∫
d2k2T

(2π)2
δ
(
|k1T |2 − |k0T |2

)
δ
(
|k2T |2 − |k0T |2

)
|M|2 . (2.5)

For the scattering of two photons, we define the absolute double spin asymmetry as

σasym = (σ↑↓ + σ↓↑ − σ↑↑ − σ↓↓) /4, (2.6)

where up and down arrows denote right and left polarizations. The relative double spin

asymmetry is defined as the above expression divided by the unpolarized cross section

σunpol = (σ↑↓ + σ↓↑ + σ↑↑ + σ↓↓) /4. (2.7)

When a photon traveling in the z direction is right polarized the polarization vector is ε↑ =(
ε0↑, ε

x
↑ , ε

y
↑, ε

z
↑

)
= (0, 1, i, 0)/

√
2. So εµ↑ ε

∗ν
↑ = (−gµT νT − iεµT νT ) /2, where εxy = −εyx = 1.

Similarly, for a left-polarized photon, εµ↓ ε
∗ν
↓ = (−gµT νT + iεµT νT ) /2. The half difference

between the polarization sums is

1

2

(
εµ↓ ε
∗ν
↓ − εµ↑ ε∗ν↑

)
=

1

2
iεµT νT , (2.8)

To obtain the (absolute) double spin asymmetry in the distribution, we can replace |M |2
in eq. (2.5) by

|M|2asym =
1

4
εµ1T ν1T εµ2T ν2TMµ1T µ2TMν1T ν2T , (2.9)

while to obtain the unpolarized cross section, we use the averaged squared matrix element

|M|2unpol =
1

4
gµ1T ν1T gµ2T ν2TMµ1T µ2TMν1T ν2T , (2.10)
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3 Outline of the proof by contradiction

3.1 Definition of standard factorization

By standard factorization, we mean factorization derived by assuming the cancellation

of spectator-spectator Glauber gluon exchanges. For the doubly differential beam thrust

distribution (in the left and right hemispheres) in Drell-Yan production of a system of

invariant mass M , at hadronic c.o.m. collision energy E, the factorization formula in double

Laplace moment space is [29, 31]

∫ ∞

0
dτR e

−NR τR

∫ ∞

0
dτL e

−NL τL
d3σ (H1 +H2 → Φ +X)

dτRdτLdy

∣∣∣∣
y=0

= H

(
M2

µ2
f

, αs (µf )

)
B̃1

(
M2

NR µ2
f

, x, αs (µf )

)
B̃2

(
M2

NL µ2
f

, x, αs (µf )

)

× S̃
(

M2

N2
R µ

2
f

,
M2

N2
L µ

2
f

, αs (µf )

)
+O

(
1

NR
,

1

NL

)
, (3.1)

where x = M/E is the Bjorken variable for both collinear sectors, as we imposed y = 0.

H is the hard function. B̃1 and B̃2 are the two moment-space collinear functions, also

called beam functions in the literature, for the collinear sectors initiated by the incoming

hadrons H1 and H2, respectively. S̃ is the moment-space soft function. The beam function

is the “virtuality-dependent PDF” [29], originally defined using SCET fields with implicit

zero-bin subtraction [57]. In appendix A we define the beam function using the scalar QCD

fields used in this paper.

3.2 Definition of generalized factorization

We first re-write eq. (3.1), dropping explicit dependence on µf and αs(µf ), and combining

H and S̃ into a function R̃,

∫ ∞

0
dτRe

−NR τR

∫ ∞

0
dτLe

−NL τL
d3σ (H1 +H2 → Φ +X)

dτRdτLdy

∣∣∣∣
y=0

= H
(
M2
)
B̃1

(
M2, NR, x

)
B̃2

(
M2, NL, x

)
S̃
(
M2, NR, NL

)
+O

(
1

NR
,

1

NL

)

= B̃1

(
M2, NR, x

)
B̃2

(
M2, NL, x

)
R̃
(
M2, NR, NL

)
+O

(
1

NR
,

1

NL

)
. (3.2)

Generalized factorization is defined by eq. (3.2), with the following requirements. B̃1,

B̃2, and R̃ are allowed to be arbitrary functions that may differ from how they are defined

in standard factorization.4 The only dependence on the incoming state H1, including

the species of the hadron and the polarization, should be contained in B̃1, and the same

condition is imposed on H2 and B̃2. In other words, we require the two collinear sectors

to be decoupled. The various functions on the R.H.S. of eq. (3.2) generally still depend on

4For example, B̃1 in eq. (3.2) can depend on M2 and NR independently, while B̃1 in eq. (3.1) is written

in a form that can only depend on these two variables through the combination M2/NR.
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additional auxiliary variables that are not shown, including the factorization scale µf and

the directions of Wilson lines involved in the definition of these functions.

It is the aim of the next subsection to show that generalized factorization is incom-

patible with the result of this paper; standard factorization, a special case of generalized

factorization, is thus also violated. Before doing so, we give an example of generalized fac-

torization that differs from standard factorization. In the standard factorization formula,

eq. (3.1), the soft function is defined using incoming Wilson lines [29]. As shown in [32], up

to O(α2
s), if outgoing Wilson lines are used instead, the soft function remains the same up

to O(α2
s). By flipping the directions of Wilson lines in the soft function, we turn eq. (3.1)

into a generalized factorization formula which coincides with standard factorization at the

first few αs orders, but differs at higher αs orders.

3.3 Violation of generalized factorization

Under the generalized factorization formula eq. (3.2), the double longitudinal spin asym-

metry in the factorized beam thrust distribution is, in schematic moment-space factorized

form,

− 1

4

(
B̃↑1 − B̃↓1

)(
B̃↑2 − B̃↓2

)
R̃, (3.3)

while the corresponding expression for single longitudinal spin asymmetry is

1

2
H
(
B̃↑1 − B̃↓1

)
B̃unpol

2 R̃. (3.4)

In eqs. (3.3) and (3.4), we used “↑”, “↓”, and “unpol” to denote right polarization, left

polarization, and no polarization, respectively. It is an immediate consequence of parity

conservation of our model theory that the single spin asymmetry in eq. (3.4) must be

vanishing. Since the unpolarized scattering cross section is non-zero, the unpolarized beam

function B̃unpol
2 in eq. (3.4) cannot be vanishing (except at isolated points, assuming the

function is analytic). So B̃↑1−B̃↓1 must be almost everywhere zero, which means everywhere

zero if the function is analytic.5 This implies that the double spin asymmetry, given in

the schematic factorized form eq. (3.3), must also vanish at leading power to all orders

in αs. But we need to consider non-factorizable contributions from the Glauber region in

spectator-spectator interaction, and its overlap with other regions (to be subtracted); if

the sum of these contributions is non-zero, as we will find in the subsequent sections, we

obtain a contradiction to generalized factorization.6

4 Vanishing diagrams

4.1 Vanishing LO diagram

We know that factorizable diagrams give a vanishing contribution to the double spin asym-

metry in our model, but we will explicitly verify that the LO contribution from squaring

5Indeed, for the special case of standard factorization, we can check from the definition of the beam

function that B̃1 and B̃2 do not depend on the polarizations of the hadrons.
6We will actually show that the distribution is non-zero at some (τB , τL), but this is sufficient to imply

that the distribution cannot be an identically vanishing function in moment space.

– 7 –
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the diagram in figure 1 vanishes, to introduce notations and demonstrate cancellations that

are also applicable to some non-factorizable diagrams. For brevity, we write

D (p) ≡ i

p2 + iε
, (4.1)

ε (p1, p2) ≡ εµ1T µ2T pµ1T1 pµ2T2 . (4.2)

The diagram evaluates to, given that p1 and p2 have no transverse components,

iMµ1T µ2T
LO = (−i)gΦ2ie kµ1T1 (−2ie) kµ2T2 D (k1)D (k2)

= −4ie2gΦ k
µ1T
1 kµ2T2 D (k1)D (k2) . (4.3)

In this expression we omitted the color factor δab, with a and b being the color indices

for the scalar/anti-scalar pair in the final state. Using eq. (2.9), the resulting double spin

asymmetry in the squared matrix element is,

1

4
εµ1T ν1T εµ2T ν2TMµ1T µ2T

LO

(
Mν1T ν2T

LO

)∗ ∝ ε
(
kT1 , k

T
1

)
ε
(
kT2 , k

T
2

)
= 0. (4.4)

In contrast, the unpolarized spin-summed squared matrix element is, using eqs. (2.3) for

zero rapidity,

|MLO|2unpol = 2CA ·
1

4
gµ1T ν1T gµ2T ν2TMµ1T µ2T

LO

(
Mν1T ν2T

LO

)∗
= 2CA · 4e4g2

Φ

(1− x)4

|k1T |2 |k2T |2
,

(4.5)

In this expression we include the color factor CA from the final-state color sum, and an

overall factor of 2 to account for the possibility of reversing the complex scalar arrow (i.e.

swapping scalar and anti-scalar). The explicit momentum components in figure 1 have

been used to evaluate D(k1) and D(k2). Using eq. (4.5) as the squared matrix element in

the phase space integral eq. (2.5), we obtain the LO unpolarized beam thrust distribution

d3σLO

dτRdτLdy

∣∣∣∣
y=0,τR=τL=τB/2

=
M2

16πE2
2CA · 4e4gΦ2(1− x)4ILO, (4.6)

where we defined

ILO =

∫
d2k1T

(2π)2

∫
d2k2T

(2π)2
δ
(
|k1T |2 − |k0T |2

)
δ
(
|k2T |2 − |k0T |2

) 1

|k1T |2 |k2T |2

=
1

(4π)2 |k0T |4
. (4.7)

4.2 Vanishing one-loop cut diagram

Consider the diagram figure 2 in which the two spectator lines are connected by one gluon

that is either a Glauber gluon or a normal soft gluon, in interference with the complex

conjugate of the LO diagram. We will show that the resulting contribution to the spin

asymmetry has vanishing real and imaginary parts. For more general models and observ-

ables, the contribution is purely imaginary when the gluon has Glauber-like momentum,

– 8 –
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µ1T

µ2T
φ

φ

p2 = (0, E, 0)

p1 = (E, 0, 0)
p1 − k1

p2 − k2

l

Figure 2. The one-Glauber exchange diagram in the model field theory.

and cancels with the complex conjugate cut diagram [1, 33].7 But in our special model

theory, even the imaginary contribution vanishes. Figure 2 evaluates to, again noticing

pT1 = pT2 = 0 and omitting the color factor CF δab,

iMµ1T µ2T
1 = −igΦ

∫
d4l

(2π)4
4e2g2

s (kµ1T1 −lµ1T ) (kµ2T2 +lµ2T ) (2p1−2k1+l) · (2p2−2k2−l)

×D (l)D (p1 − k1 + l)D (p2 − k2 − l)D (k1 − l)D (k2 + l) (4.8)

≈ −8ie2gΦ g
2
s

(
p+

1 − k+
1

) (
p−2 − k−2

) ∫
d4l (kµ1T1 − lµ1T ) (kµ2T2 + lµ2T )

×D (l)D (p1 − k1 + l)D (p2 − k2 − l)D (k1 − l)D (k2 + l) , (4.9)

where we used approximation l+, l− � Q, applicable to both the Glauber and the normal

soft region, after the “≈” sign. Therefore, the interference between the diagram in figure 2

and the complex conjugate of the LO diagram in figure 1 is

εµ1T ν1T εµ2T ν2TMµ1T µ2T
1

(
Mν1T ν2T

LO

)∗
(4.10)

∝
∫
d4l ε

(
kT1 , l

T
)
ε
(
kT2 , l

T
)
D (l)D (p1 − k1 + l)D (p2 − k2 − l)D (k1 − l)D (k2 + l) ,

where only lT -dependent terms are shown after the proportional sign “∝”. Recall that we

would like to measure the doubly-differential beam thrust distribution at some τL = τR,

with the heavy particle Φ produced at zero rapidity. We still need to integrate the squared

matrix element eq. (4.10) over the phase space of k1 and k2 with appropriate measurement

functions. Consider a particular point in the l-integration volume in eq. (4.10), for example,

a point with lx 6= 0, ly = 0 without loss of generality. Then we can flip the sign of the y com-

ponent of k1 without changing any terms in the integrand in eq. (4.10) except for flipping the

sign of ε
(
kT1 , l

T
)
. Since jet veto observables are azimuthally symmetric and do not generate

7A rare exception is single transverse spin asymmetry, for which factorization can be violated by the

exchange of only one Glauber gluon, because the resulting imaginary contribution is multiplied by another

imaginary factor from the Dirac trace with γ5, to give a real contribution [45].
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µ1T

µ2T

p2 = (0, E,0)

p1 = (E, 0,0)
p1 − k1

l

µ1T

µ2T

p2 = (0, E,0)

p1 = (E, 0,0)
p1 − k1

l

(a) (b)

µ1T

µ2T

φ

p2 = (0, E,0)

p1 = (E, 0,0)
p1 − k1

l

µ1T

µ2T

φ

p2 = (0, E,0)

p1 = (E, 0,0)
p1 − k1

l

(c) (d)

Figure 3. Example cut diagrams, each with only one gluon attached to the spectator line on the

lower half of the graph, while more than one gluons may attach to the upper spectator line.

a preferred y-direction for k1, eq. (4.10) gives a vanishing contribution to the doubly differ-

ential beam thrust distribution. At some general value of l, the needed change of variable is

kT1 → RlT ◦ kT1 = (kx1 , k
y
1)− 2

lxky1 − lykx1
|lT |2 (−ly, lx) , (4.11)

denoting a reflection of k1 in the line through the origin in the ±lT direction. The squared

matrix element in eq. (4.10) has odd parity under this transformation, while the beam

thrust variables (τR, τL) are invariant. Therefore the contribution vanishes after phase

space integration.

4.3 Vanishing two-loop cut diagrams

Consider any cut diagram whose lower spectator line has only one gluon attachment, with

the gluon being either soft or Glauber-like, such as the diagrams shown in figure 3. As is

the case for the one-gluon diagram in figure 2, the lower collinear sector only depends on

the following three momenta, p1, k1, and l. It is also easily checked that, again, at leading

power, the only numerator factors that depends on lT (or the other unlabeled transverse

loop momenta) are the photon-scalar vertices.
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µ1T

µ2T

p2 = (0, E,0)

p1 = (E, 0,0)

p2 − k2

p1 − k1

l − l1 l1

p2 − k2 − l

p1 − k1 + l

Figure 4. Two Glauber gluons exchanged on the same side of the cut, in the model field theory.

Therefore, exactly the same transformation as in section 4.1, eq. (4.11), reverses the

sign of the cut amplitude, and proves that the contribution is zero after phase space inte-

gration for k1 and k2.

To prove that the cut diagram in figure 4, i.e. a 2-loop diagram with a box in inter-

ference with the complex conjugate of the LO diagram, vanishes, we need a little more

work. Recall that a “pinch” in the Glauber region arises when both the active parton and

spectator lines depend on the Glauber-like exchanged momentum. Since the active quark

line in figure 4 depends on l, but not l1, only the overall exchanged momentum l can be

pinched in the Glauber region ∼
(
λ2, λ2, λ

)
, to produce a potentially non-factorizable con-

tribution. Meanwhile, it can be checked by IR power counting that the individual momenta

l1 and l − l1 can be both Glauber-like, or both soft ∼ (λ, λ, λ), for the diagram to give a

leading-power contribution.8

As is the case for diagram figure 2, the only leading-power dependence of numerator

factors on lT is from the photon-scalar vertices. Here these vertices only depend on lT but

not l1T . So the leading-power cut-amplitude is, omitting the color factor C2
F and other

constant factors,

εµ1T ν1T εµ2T ν2TMµ1T µ2T
2

(
Mν1T ν2T

LO

)∗

∝
∫
d4l ε

(
kT1 , l

T
)
ε
(
kT2 , l

T
)
D (k1 − l)D (k2 + l)D (p1 − k1 + l)D (p2 − k2 − l)

×
∫
d4l1D (l1)D (l − l1)D (p1 − k1 + l1)D (p2 − k2 − l1) , (4.12)

where we have collected all the l1-dependent terms in the third line.

8If l is Glauber-like, l1 and l−l1 can also be both plus-collinear or both minus-collinear for the diagram to

contribute at leading power. But it is not necessary to consider this situation, because the sum of diagrams

involving a secondary hard vertex is suppressed by Ward identities, as shown by Labastida and Sterman [58].
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We briefly comment on the “Glauber-II” region discussed in [29], which has mo-

mentum scaling
(
λ4, λ4, λ2

)
instead of the usual Glauber scaling

(
λ2, λ2, λ

)
. The factor

ε
(
kT1 , l

T
)
ε
(
kT2 , l

T
)

in eq. (4.12) and eq. (4.10), absent in unpolarized scattering, gives a

suppression when lT is smaller than the usual Glauber transverse momentum. Therefore,

even if the “Glauber-II” region is relevant for leading-power unpolarized scattering, it is

not relevant here. Also there will be no singularity from lT → 0, which is important be-

cause the next step is analyzing the cut diagram at fixed lT , assuming that the subsequent

integration over lT causes no complication.

With l being Glauber-like and l1 being either Glauber-like or soft, the only propagators

that have leading-power dependence on l− are the two lines immediately connected to the

lower incoming hadron p1, and the only propagators that have leading-power dependence

on l+ are the two lines immediately connected to the upper incoming hadron p2. So at any

fixed lT , we can perform the l+ and l− integrals by contour integration [1, 6], picking up

the poles by cutting the lines p2−k2− l and p1−k1 + l in figure 4, producing an imaginary

contribution multiplied by a one-loop box diagram initiated by the on-shell lines p2−k2− l
and p1−k1 + l. To obtain a real contribution that is not canceled by the complex conjugate

cut diagram, we need another imaginary contribution from the one-loop box diagram, which

can be obtained from the Glauber region of l1.9 Now with both l and l1 being Glauber-like,

we can make the following approximations for the l1-dependent terms,

D(l1) ≈ i

− |l1T |2 + i0
, (4.13)

D(l − 11) ≈ i

− |lT − l1T |2 + i0
, (4.14)

D(p1 − k1 + l1) ≈ i

(1− x)Q
(
|k1T |2

(1−x)Q + l−1

)
− |k1T − l1T |2 + i0

, (4.15)

D(p2 − k2 − l1) ≈ i

(1− x)Q
(
|k2T |2

(1−x)Q − l
+
1

)
− |k2T − l1T |2 + i0

(4.16)

Therefore, integrating D(p1 − k1 + l1) and D(p2 − k2 − l1) over l−1 and l+1 , respectively, we

obtain the constant factor (−1)π2/ [(1− x)Q]2. We are left with just the two-dimensional∫
d2l1T integral over D(l1) and D(l − l1). At this point, we can re-use the strategy for

showing the vanishing of the interference between figure 2 and the LO graph, and replace

both kT1 and lT1 by their mirror images in the line through the origin in the direction of

±lT . The integrand reverses sign, and since this transformation does not affect the doubly

differential beam thrust distribution, the final contribution from the cut diagram figure 4

is zero. The diagram with a“cross box”, in interference with the complex conjugate of the

LO diagram, gives a vanishing contribution for exactly the same reason.

9As shown in [19] for the scalar φ3 theory, the Glauber region alone gives the correct imaginary part of

the one-loop box diagram, while other regions, after being “unitarized” by removing the overlap with the

Glauber region, do not contribute.
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µ1T

µ2T

p2 = (0, E,0)

p1 = (E, 0,0)

p2 − k2

p1 − k1

lA

p2 − k2 − lA

p1 − k1 + lA

lB

p2 − k2 − lB

p1 − k1 + lB

lB

Figure 5. The cut diagram with one Glauber gluon exchanged on either side of the cut, i.e. the

square of figure 2.

5 Non-zero two-Glauber diagram

We have excluded all cut diagrams whose lower (or upper) spectator line is attached by

only one soft gluon (normal soft gluon or Glauber gluon) in section 4.3. We have also ex-

cluded the diagram involving two Glauber gluons on the same side of the cut, including the

diagram with a box, figure 4, and an unshown diagram with a cross box. This leaves us, at

the order α2
s relative to LO, the only possible contribution from the cut diagram in figure 5,

showing the interference of figure 2 with its own complex conjugate. Out of the two soft

gluons exchanged on the two sides of the cut, one has to be a Glauber gluon to produce

factorization-violating effects, and then the other one also has to be a Glauber gluon to pro-

duce a real contribution that is not canceled by the complex conjugate cut diagram [1, 33].

5.1 Reducing to 2D integrals by contour integration

We show that the cut diagram figure 5, from squaring the amplitude in figure 2, gives a

non-zero contribution to the double longitudinal spin asymmetry.

As above, we fix the heavy particle Φ to have zero rapidity, so that in figure 5, x1 =

x2 = x, k+
1 = k−2 = xQ, and the amplitude eq. (4.9) can be re-written as

iMµ1T µ2T
1 = −4ie2gΦ g

2
s(1− x)2Q2

∫
dl+dl−d2lT

(2π)4
(kµ1T1 − lµ1T ) (kµ2T2 + lµ2T )

×D (l)D (p1 − k1 + l)D (p2 − k2 − l)D (k1 − l)D (k2 + l) , (5.1)

In this expression, with l lying in the Glauber region, the relevant leading-power approxi-

mations are

D(l) ≈ i

−l2T + i0
, (5.2)
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D(p1 − k1 + l) ≈ i

(1− x)Q
(
|k1T |2

(1−x)Q + l−
)
− |k1T − lT |2 + i0

, (5.3)

D(k1 − l) ≈
i

xQ
(
− |k1T |

2

(1−x)Q − l−
)
− |k1T − lT |2 + i0

, (5.4)

D(p2 − k2 − l) ≈
i

(1− x)Q
(
|k2T |2

(1−x)Q − l+
)
− |k2T − lT |2 + i0

, (5.5)

D(k2 − l) ≈
i

xQ
(
− |k2T |

2

(1−x)Q − l+
)
− |k2T − lT |2 + i0

, (5.6)

We first integrate over l+ and l− using contour integration, picking up the poles from the

vanishing of D(p1 − k1 + l) and D(p2 − k2 − l). We are left with the lT integral,

iMµ1T µ2T
1 = 4e2gΦ g

2
s(1− x)2

∫
d2lT
(2π)2

(kµ1T1 − lµ1T ) (kµ2T2 + lµ2T )

× 1

|lT |2
1

|k1T − lT |2
1

|k2T + lT |2
, (5.7)

So the asymmetry from the cut diagram figure 5, using the spin sum formula eq. (2.9), is

|M1|2asym = 2C2
FCA

∫
d2lA
(2π)2

∫
d2lB
(2π)2

1

4
εµ1T ν1T εµ2T ν2TMµ1T µ2T

1 (Mµ1T µ2T
1 )

∗

= 2C2
FCA · 4e4g2

Φ g
4
s(1− x)4

∫
d2lA
(2π)2

∫
d2lB
(2π)2

Iasym (k1T , k2T , lA, lB) , (5.8)

where, using the notation in eq. (4.2),

Iasym (k1T , k2T , lA, lB) = ε (k1 − lA, k1 − lB) ε (k2 + lA, k2 + lB)

× 1

|lA|2
1

|k1T − lA|2
1

|k2T + lA|2
1

|lB|2
1

|k1T − lB|2
1

|k2T + lB|2
. (5.9)

In eq. (5.8), the previously ignored color factor C2
FCA is shown, and an overall factor of 2

is present to account for the possibility of reversing the complex scalar arrow (i.e. swapping

scalar and anti-scalar) in figure 2. Using eq. (5.8) as |M|2 in eq. (2.5), we obtain

d3σasym

dτRdτLdy

∣∣∣∣
y=0,τR=τL=τB/2

=
M2

16πE2
2C2

FCA · 4e4gΦ2 g4
s(1− x)4Iasym, (5.10)

where we defined Iasym as the loop and phase space integral over the integrand, eq. (5.9),

Iasym =

∫
d2lA
(2π)2

∫
d2lB
(2π)2

∫
d2k1T

(2π)2

∫
d2k2T

(2π)2

× δ
(
|k1T |2 − |k0T |2

)
δ
(
|k2T |2 − |k0T |2

)
Iasym (k1T , k2T , lA, lB) . (5.11)
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5.2 Cancellation of IR divergences and numerical evaluation

Consider the lA and lB integrals in eq. (5.11). Possible IR divergences may arise from the

vanishing of any of the denominators in eq. (5.9), if the singularities are not integrable. The

singularities at lA,B = k1T and lA,B = −k2T are integrable, because the numerator factors

on the 2nd line of eq. (5.9) vanish at these points. However, there seems to be logarithmic

singularities when lA or lB approaches zero. We show that this is not the case, because

there is a linear suppression when lA or lB, becomes small, turning the singularities into

integrable ones. The subsequent argument will be similar to section 4.1, where we used

the reflection of k1 to show that the one-Glauber diagram vanishes. This suppression also

implies that there is no leading power contribution from any regions with much smaller

transverse momenta, such as the ultra-soft region and the “Glauber-II” region discussed

in [29], or from the overlap between these regions and the regular Glauber region.

We use Rp ◦ q, defined in eq. (4.11), to denote the reflection of the two-vector q with

respect to to the line through the origin in the direction of the two-vector p. We then

re-write eq. (5.11) as

Iasym =
1

2

∫
d2k1T

(2π)2

∫
d2k2T

(2π)2
δ
(
|k1T |2 − |k0T |2

)
δ
(
|k2T |2 − |k0T |2

)
(5.12)

×
∫

d2lA
(2π)2

∫
d2lB
(2π)2

[
Iasym (k1T , k2T , lA, lB) + Iasym (RlA ◦ k1T , k2T , lA, lB)

]
.

In this form, the last line can be readily checked to vanish when lB=0, and linearly sup-

pressed when lB is small. The Jacobian factor from the reflection is 1, so we simply need

to put a factor of 1/2 at the start of eq. (5.12). We go one step further by reflecting k2T

with respect to the line through lB, recasting eq. (5.11) into

Iasym =
1

4

∫
d2k1T

(2π)2

∫
d2k2T

(2π)2
δ
(
|k1T |2 − |k0T |2

)
δ
(
|k2T |2 − |k0T |2

)

×
∫

d2lA
(2π)2

∫
d2lB
(2π)2

[
Iasym (k1T , k2T , lA, lB) + Iasym (RlA ◦ k1T , k2T , lA, lB)

× Iasym (k1T , RlB ◦ k2T , lA, lB) + Iasym (RlA ◦ k1T , RlB ◦ k2T , lA, lB)
]
, (5.13)

where the sum inside the square bracket receive a linear suppression when either lA or lB
become small, and a quadratic suppression when both lA and lB are made small simultane-

ously. This makes both the points lA, lB = 0 integrable singularities despite the quadratic

denominators in eq. (5.9). So the expression eq. (5.13) is IR finite. UV finiteness is also

clear by power counting. With both IR and UV divergences absent, eq. (5.13) can be eval-

uated by straightforward Monte Carlo integration without regularization or subtraction.

Using the Vegas algorithm implemented by the CUBA library [59], with 4.2 million points

sampled, we obtain

Iasym = (1.58± 0.02)
1

(4π)4 |k0T |4
(5.14)
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Dividing the absolute asymmetry given by eqs. (5.10) and (5.14) by the LO unpolarized

differential cross section given by eqs. (4.6) and (4.7), we obtain the relative spin asymmetry

(
d3σasym

dτRdτLdy
/

d3σLO

dτRdτLdy

) ∣∣∣∣
y=0,τR=τL=τB/2

= C2
F g

4
s · Iasym/ILO

= (1.58± 0.02)C2
Fα

2
s. (5.15)

We have shown that the asymmetry is non-zero, proving that Glauber gluons break factor-

ization for the double spin asymmetry in the doubly differential beam thrust distribution.

6 Discussion

We have performed a calculation of factorization-violating effects in the beam thrust dis-

tribution from Drell-Yan-like scattering in a simple model field theory. Any factorization

in the limit of small beam thrust (corresponding to a stringent jet veto), standard or gen-

eralized, would predict a vanishing double longitudinal spin asymmetry, due to the scalar

nature of the active quarks in this parity-conserving model. The non-zero result found in

our calculation is in contradiction to any generalized factorization that separates beam-

thrust dependence into universal functions. The non-factoring contribution, eq. (5.15), is

in fact infrared safe, which shows that collinear factorization is respected to this order, but

with factorization scale µF = O(
√
τBs). Logarithms of beam thrust are thus contained in

the hard-scattering function of collinear factorization, and standard resummation methods

do not reply.

By looking at double spin asymmetry in a theory with scalar quarks, the calculation is

simplified enormously. For example, the diagrams in figure 3 and 4 all vanish, and the only

non-zero diagram figure 5 is IR-finite in the Glauber region without regularization. Neither

of these simplifications hold for unpolarized scattering in real QCD. Since the factorization

theorem in [29] for the beam thrust distribtuion is proposed in a manner that applies to

both unpolarized and polarized scattering in any unbroken gauge theory, our result is a

counter-example which shows the aforementioned factorization theorem cannot hold true

in every situation. But strictly speaking, we do not exclude the small possiblity that the

factorization theorem survives in unpolarized scattering; a dedicated, more complicated

calculation for unpolarized scattering would be needed to conclusively settle the question.

The breakdown of generalized factorization would eventually lead to corrections to the

existing predictions of jet veto resummation calculations [11–16]. The question remains,

“At which logarithmic order do such corrections start?” The lowest-order factorization-

violating diagram in this study involves two spectator lines and two virtual Glauber gluons,

producing a non-zero result. This would be of order α4
s if we were studying massless parton

scattering instead of photon-photon scattering. This result contains no large logarithms

for two reasons. First, the intrinsic virtuality of collinear particles, anti-collinear particles,

and Glauber gluons are all of the order Q2τB [29]. Second, the order of the diagram is

too low to acquire Regge-type rapidity logarithms, which will show up at higher orders in

ladder-type diagrams. But we still need to multiply the result by the hard function (which
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always factorizes, though collinear and soft functions can be entangled by Glauber gluons),

with double logarithms ∼ αns ln2n τB due to running from the scale Q2 to Q2τB. We end

up with αn+4
s ln2n τB. In unpolarized scattering, there can also be a non-zero contribution

when two soft/Glauber gluons are exchanged on the same side of the cut, which potentially

gives one power of a Regge-type logarithm, resulting in αn+4
s ln2n+1 τB. This suggests a

breakdown of naive jet veto resummation at no later than N4LL.

A corollary of the study is that a proper description of the Drell-Yan process with

stringent jet vetoes must include entanglement between the two collinear sectors. It should

be noted that our study only demonstrates the inevitability of entangling the two collinear

sectors, while soft and ultra-soft gluons may still be allowed to factorize in some manner.

Discrete symmetries play an important role in our approach. If factorization holds,

the two collinear sectors are decoupled and have separate parity invariance, resulting in

Z2 ×Z2 symmetry, which is richer than the Z2 global parity symmetry of QCD. Violation

of factorization is revealed by the violation of extra discrete symmetries resulting from

factorization. To construct a more realistic example that could be tested at colliders with

unpolarized beams, one could exploit charge conjugation invariance: for example, the pro-

ton and the anti-proton have the same gluon beam function. If a future calculation shows

that the Higgs production cross section (in the gluon fusion channel only) under a strin-

gent jet veto in pp collisions is different, at leading power in O(pveto
T /Mhiggs), from the same

quantity in pp̄ collisions, it would be another manifestation of the violation of factorization.
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A Definition of the beam function using QCD fields

For completeness, we give a definition of the beam function using QCD fields. This ap-

pendix is essentially a review and does not contain original work, because the definition

agrees with the SCET definition [29] at least at low orders [35–37, 61]. The unsubtracted

momentum-space beam function for a scalar parton φ with Bjorken variable x1 and virtual-

ity (ignoring transverse momentum components) ω1 = x1P
+MτR, for an incoming hadron

|H1〉 with a large plus momentum component P+,

Bunsubtracted
1 (ω1, x1, µ) =

xP+

2

∫
dw−

2π

dw+

2π
e−i(x1P

+w−+MτR w
+)/2〈H1|φ†

(
w+, w−,0T

)

× P exp

[∫ w−

0

dy−

2
igA+

(
0, y−,0T

)
]
φ(0)|H1〉, (A.1)

where µ is the UV renormalization scale at which the matrix element is defined. This is

directly analogous to eq. (50) in [29] (with “+” and “−” exchanged), except that the latter

reference used the SCET collinear field with zero-bin subtraction.
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The eikonal beam function is defined by replacing the incoming hadron and the inter-

polating field by a Wilson line in the “+” direction,

Beikonal
1 (ω1, x1, µ) =

xP+

2

∫
dw−

2π

dw+

2π
e−i(x1P

+w−+MτR w
+)/2 (A.2)

× 〈0|W †1
(
w+, w−,0T

)
P exp

[∫ w−

0

dy−

2
igA+

(
0, y−,0T

)
]
W1(0) |0〉,

where we defined

W1

(
w+, w−,wT

)
= P exp

[∫ 0

−∞

dy+

2
igA−

(
w+ + y+, w−,wT

)]
. (A.3)

Finally, we divide the Laplace transform of Bunsubtracted
1 with respect to ω, B̃unsubtracted

1 ,

by the Laplace transform of Beikonal
1 , B̃eikonal

1 , to obtain the gauge-invariant moment-space

beam function B̃1 (ω̃, x1, µ). The inverse Laplace transform of this result is the momentum-

space beam function B1 (ω, x1, µ).
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