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Abstract
We introduce the notion of a strongly orthogonal set relative to an element in the
sense of Birkhoff-James in a normed linear space to find a necessary and sufficient
condition for an element x of the unit sphere SX to be an exposed point of the unit
ball BX . We then prove that a normed linear space is strictly convex iff for each
element x of the unit sphere, there exists a bounded linear operator A on X which
attains its norm only at the points of the form λx with λ ∈ SK .
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1 Introduction
Suppose (X,‖ · ‖) is a normed linear space over the field K, real or complex. X is said to
be strictly convex iff every element of the unit sphere SX = {x ∈ X : ‖x‖ = } is an extreme
point of the unit ball BX = {x ∈ X : ‖x‖ ≤ }. There are many equivalent characterizations
of the strict convexity of a normed space, some of them given in [, ] are as follows.

(i) If x, y ∈ SX , then we have ‖x + y‖ < .
(ii) Every non-zero continuous linear functional attains a maximum on at most one

point of the unit sphere.
(iii) If ‖x + y‖ = ‖x‖ + ‖y‖, x �= , then y = cx for some c ≥ .

The notion of strict convexity plays an important role in the studies of the geometry of
Banach spaces. Onemay go through [–] for more information related to strictly convex
spaces.
An element x is said to be orthogonal to y in X in the sense of Birkhoff-James [, , ],

written as, x⊥B y, iff

‖x‖ ≤ ‖x + λy‖ for all scalars λ.

If X is an inner product space, then x ⊥B y implies ‖x‖ < ‖x + λy‖ for all scalars λ �= .
Motivated by this fact, we here introduce the notion of strong orthogonality as follows.
Strongly orthogonal in the sense of Birkhoff-James: In a normed linear spaceX, an element

x is said to be strongly orthogonal to another element y in the sense of Birkhoff-James,
written as x⊥SB y, iff

‖x‖ < ‖x + λy‖ for all scalars λ �= .
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If x⊥SB y, then x⊥B y, but the converse is not true. In l∞(R) the element (, ) is orthog-
onal to (, ) in the sense of Birkhoff-James, but not strongly orthogonal.
Strongly orthogonal set relative to an element: A finite set of elements S = {x,x, . . . ,xn}

is said to be a strongly orthogonal set relative to an element xi contained in S in the sense
of Birkhoff-James iff

‖xi‖ <
∥∥∥∥∥xi +

n∑
j=, j �=i

λjxj

∥∥∥∥∥
whenever not all λj ’s are .
An infinite set of elements is said to be a strongly orthogonal set relative to an element

contained in the set in the sense of Birkhoff-James iff every finite subset containing that
element is strongly orthogonal relative to that element in the sense of Birkhoff-James.
Strongly orthogonal set: A finite set of elements {x,x, . . . ,xn} is said to be a strongly

orthogonal set in the sense of Birkhoff-James iff for each i ∈ {, , . . . ,n}

‖xi‖ <
∥∥∥∥∥xi +

n∑
j=,j �=i

λjxj

∥∥∥∥∥
whenever not all λj ’s are .
An infinite set of elements is said to be a strongly orthogonal set in the sense of Birkhoff-

James iff every finite subset of the set is a strongly orthogonal set in the sense of Birkhoff-
James.
Clearly if a set is strongly orthogonal in the sense of Birkhoff-James, then it is strongly

orthogonal relative to every element of the set in the sense of Birkhoff-James. If X has a
Hamel basis which is strongly orthogonal in the sense of Birkhoff-James, then we call the
Hamel basis a strongly orthogonal Hamel basis in the sense of Birkhoff-James, and if X has
a Hamel basis which is strongly orthogonal relative to an element of the basis in the sense
of Birkhoff-James, then we call the Hamel basis a strongly orthogonal Hamel basis relative
to that element of the basis in the sense of Birkhoff-James. If, in addition, the norm of each
element of a strongly orthogonal set is , then accordingly we call them orthonormal.
As, for example, the set {(, , . . . , ), (, , , . . . , ), . . . , (, , . . . , )} is a strongly orthonor-

mal Hamel basis in the sense of Birkhoff-James in l(Rn), but not in l∞(Rn).
In l(R) the set {(, , ), (, , ), (, , )} is strongly orthogonal relative to (, , ) in the

sense of Birkhoff-James, but not relative to (, , ).
In this paper we give another characterization of strictly convex normed linear spaces by

using the Hahn-Banach theorem and the notion of a strongly orthogonal Hamel basis rel-
ative to an element in the sense of Birkhoff-James. More precisely, we explore the relation
between the existence of a strongly orthogonal Hamel basis relative to an element with the
unit norm in the sense of Birkhoff-James in a normed space and that of an extreme point
of the unit ball in the space. We also prove that a normed linear space is strictly convex iff
for each point x of the unit sphere, there exists a bounded linear operator A on X which
attains its norm only at the points of the form λx with λ ∈ SK .

2 Main results
We first obtain a sufficient condition for an element in the unit sphere to be an extreme
point of the unit ball in an arbitrary normed linear space.
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Theorem . Let X be a normed linear space and x ∈ SX . If there exists a Hamel basis of
X containing x which is strongly orthonormal relative to x in the sense of Birkhoff-James,
then x is an extreme point of BX .

Proof Let D = {x,xα : α ∈ �} be a strongly orthonormal Hamel basis relative to x in the
sense of Birkhoff-James.
If possible, suppose that x is not an extreme point of BX , then x = tz + ( – t)z where

 < t <  and ‖z‖ = ‖z‖ = .
So, there exists α,α, . . . ,αn in � such that

z = βx +
n∑
j=

βjxαj and z = γx +
n∑
j=

γjxαj

for some scalars βj, γj (j = , , , . . . ,n).
If β =  and γ = , then x = tz + ( – t)z implies that

x =
n∑
j=

(
tβj + ( – t)γj

)
xαj ,

which contradicts the fact that every finite subset ofD is linearly independent. So, the case
β =  and γ =  is ruled out.
If β �= , γ = , then as {x,xα ,xα , . . . ,xαn} is a strongly orthonormal set relative to x

in the sense of Birkhoff-James, so we get

 = ‖z‖ = |β|
∥∥∥∥∥x +

n∑
j=

βj

β
xαj

∥∥∥∥∥ ≥ |β|.

Now

x = tβx +
n∑
j=

(
tβj + ( – t)γj

)
xαj

and so tβ = , which is not possible as |β| ≤  and  < t < .
Similarly β = , γ �=  is also ruled out.
Thus we have β �=  and γ �= .
Our claim is that at least one of |β|, |γ| must be less than .
If possible, suppose that |β| > . Then∥∥∥∥∥βx +

n∑
j=

βjxαj

∥∥∥∥∥ = |β|
∥∥∥∥∥x +

n∑
j=

βj

β
xαj

∥∥∥∥∥ ≥ |β| > .

This contradicts ‖z‖ = . Thus |β| ≤ . Similarly |γ| ≤ . We next show that |β| =  and
|γ| =  cannot hold simultaneously.
Case . X is a real normed linear space.
Then |β| =  implies that

 = ‖z‖ = |β|
∥∥∥∥∥x +

n∑
j=

βj

β
xαj

∥∥∥∥∥ > ‖x‖,

unless βi =  ∀i = , , . . . ,n.
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Thus |β| =  ⇒ z = βx ⇒ z = ±x ⇒ x = z = z or t = , which is not possible.
Thus |β| �= . Similarly |γ| �= .
Case . X is a complex normed linear space.
Then |β| =  implies that

 = ‖z‖ = |β|
∥∥∥∥∥x +

n∑
j=

βj

β
xαj

∥∥∥∥∥ > ‖x‖,

unless βi =  ∀i = , , . . . ,n.
Thus |β| =  ⇒ z = βx ⇒ z = eiθx, similarly |γ| =  ⇒ z = eiφx. Then x = teiθx +

( – t)eiφx ⇒ x = z = z, which is not possible. Thus |β| =  and |γ| =  cannot hold
simultaneously.
So, at least one of |β|, |γ| is less than .
Now x = tz + ( – t)z implies

tβ + ( – t)γ = , tβj + ( – t)γj =  ∀j = , , . . . ,n.

But |β| <  or |γ| <  implies

 =
∣∣tβ + ( – t)γ

∣∣ ≤ t|β| + ( – t)|γ| < ,

which is not possible.
Thus x is an extreme point of BX . This completes the proof. �

The converse of the above theorem is, however, not always true. If x is an extreme point
of BX , then there may or may not exist a strongly orthonormal Hamel basis relative to x
in the sense of Birkhoff-James.

Example . (i) Consider (R,‖ ·‖) where the unit sphere S is given by S = {(x, y) ∈ R : x =
± and – ≤ y ≤ } ∪ {(x, y) ∈ R : x – y + y =  and y ≥ } ∪ {(x, y) ∈ R : x + y + y =
 and y ≤ –}. Then (, ) is an extreme point of the unit ball, but there exists no strongly
orthonormal Hamel basis relative to (, ) in the sense of Birkhoff-James.
(ii) Consider (R,‖ · ‖) where the unit sphere S is given by S = {(x, y) ∈ R : x =

± and – ≤ y ≤ } ∪ {(x, y) ∈ R : x + y –  =  and y ≥ } ∪ {(x, y) ∈ R : x – y –  =
 and y≤ –}. Then (, ) is an extreme point of the unit ball and {(, ), (–, )} is a strongly
orthonormal basis relative to (, ) in the sense of Birkhoff-James.
(iii) In l∞(R) the extreme points of the unit ball are of the form (±,±,±), and for the

extreme point (, , ), we can find a strongly orthonormal basis relative to (, , ) in the
sense of Birkhoff-James which is {(, , ), (, ,–), (, , –)}.

In the first two examples, the extreme point (, ) is such that every neighborhood of
(, ) contains both extreme as well as non-extreme points, whereas in the third case the
extreme point (, , ) is an isolated extreme point.
An element x in the boundary of a convex set S is called an exposed point of S iff there

exists a hyperplane of support H to S through x such that H ∩ S = {x}. The notion of
exposed points can be found in [, –]. We next prove that if the extreme point x is an
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exposed point of BX , then there exists a Hamel basis of X containing x which is strongly
orthonormal relative to x in the sense of Birkhoff-James.

Theorem . Let X be a normed linear space and x ∈ SX be an exposed point of BX . Then
there exists a Hamel basis of X containing x which is strongly orthonormal relative to x
in the sense of Birkhoff-James.

Proof As x is an exposed point of BX , so there exists a hyperplane of support H to BX

through x such that H ∩ BX = {x}. Then we can find a linear functional f on X such
that H = {x ∈ X : f (x) = }. Let H = {x ∈ X : f (x) = }. Then H is a subspace of X. Let
D = {xα : α ∈ �} be a Hamel basis of H with ‖xα‖ = . Clearly {x} ∪ D is a Hamel basis
of X. We claim that {x} ∪ D is a strongly orthonormal set relative to x in the sense of
Birkhoff-James.
Consider a finite subset {xα ,xα , . . . ,xαn–} of D and let (λ,λ, . . . ,λn–) �= (, , . . . , ).

Now if z = x +
∑n–

j= λjxαj , then

f (z) = f

(
x +

n–∑
j=

λjxαj

)
= f (x) = 

⇒ z ∈H ,

⇒ z /∈ BX , as H ∩ BX = {x}.

So ‖x + ∑n–
j= λjxαj‖ >  = ‖x‖. Thus {x} ∪ D is a Hamel basis containing x which is

strongly orthonormal relative to x in the sense of Birkhoff-James.
This completes the proof. �

We next prove the following theorem.

Theorem . Let X be a normed linear space and x ∈ SX . If there exists a Hamel basis of
X containing x which is strongly orthonormal relative to x in the sense of Birkhoff-James,
then there exists a bounded invertible linear operator A on X such that ‖A‖ = ‖Ax‖ > ‖Ay‖
for all y in SX with y �= λx, λ ∈ SK .

Proof Let {x,xα : α ∈ �} be a Hamel basis of X which is strongly orthonormal relative to
x in the sense of Birkhoff-James.
Define a linear operator A on X by A(x) = x and A(xα) = 

xα ∀α ∈ �.
Clearly A is invertible. Take any z ∈ X such that ‖z‖ = . Then z = λx +

∑n–
j= λjxαj for

some scalars λj ’s and λ.
If λ = , then Az = 

z and so

‖Ax‖ =  >


= ‖Az‖.

If λ �= , then as {x,xα : α ∈ �} is a strongly orthonormal Hamel basis relative to x in
the sense of Birkhoff-James, so we get

 = ‖z‖ =
∥∥∥∥∥λx +

n–∑
j=

λjxαj

∥∥∥∥∥ ≥ |λ|.
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Hence we get

‖Az‖ =

∥∥∥∥∥λx +



n–∑
j=

λjxαj

∥∥∥∥∥
=

∥∥∥∥∥ 
(

λx +
n–∑
j=

λjxαj

)
+


λx

∥∥∥∥∥
≤ 


‖z‖ + 


|λ|

≤  = ‖Ax‖.

This proves that ‖A‖ ≤ . Also ‖Az‖ =  iff |λ| =  and λj =  ∀j = , , . . . ,n – .
Thus ‖Az‖ =  iff z = λx with λ ∈ SK . This completes the proof. �

We now prove the following theorem.

Theorem . Let X be a normed linear space and x ∈ SX . If there exists a bounded linear
operator A : X → X which attains its norm only at the points of the form λx with λ ∈ SK ,
then x is an exposed point of BX .

Proof Assume, without loss of generality, that ‖A‖ =  and by the Hahn-Banach theorem,
there exists f ∈ SX* such that f (A(x)) = . Clearly ‖foA‖ =  as f ∈ SX* and ‖A‖ = ‖Ax‖ = .
If y ∈ SX is such that |foA(y)| = , then ‖Ay‖ = .
Now ‖A‖ =  and A attains its norm only at the points of the form λx with λ ∈ SK , so

y ∈ {λx : λ ∈ SK }.
Thus foA attains its norm only at the points of the form λx with λ ∈ SK . Considering

the hyperplane H = {x ∈ X : foA(x) = }, it is easy to verify that H ∩ BX = {x} and so x is
an exposed point of BX . �

Thus we obtained complete characterizations of exposed points, which is stated clearly
in the following theorem.

Theorem . For a normed linear space X and a point x ∈ SX , the following are equiva-
lent:
. x is an exposed point of BX .
. There exists a Hamel basis of X containing x which is strongly orthonormal relative

to x in the sense of Birkhoff-James.
. There exists a bounded linear operator A on X which attains its norm only at the

points of the form λx with λ ∈ SK .

We next give a characterization of a strictly convex space as follows.

Theorem . For a normed linear space X, the following are equivalent:
. X is strictly convex.
. For each x ∈ SX , there exists a Hamel basis of X containing x which is strongly

orthonormal relative to x in the sense of Birkhoff-James.
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. For each x ∈ SX , there exists a bounded linear operator A on X which attains its
norm only at the points of the form λx with λ ∈ SK .

Proof The proof follows from previous theorem and the fact that a normed linear space
X is strictly convex iff every element of SX is an exposed point of BX . �

Remark . Even though the notions of strong Birkhoff-James orthogonality and
Birkhoff-James orthogonality coincide in a Hilbert space, they do not characterize Hilbert
spaces as (Rn,‖ · ‖p) ( < p < ∞, p �= ) is not a Hilbert space, but the notions of strong
Birkhoff-James orthogonality and Birkhoff-James orthogonality coincide there.
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