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Abstract How many beds must be allocated to a specific clinical ward to meet production
targets? When budgets get tight, what are the effects of downsizing a nursing unit? These
questions are often discussed by medical professionals, hospital consultants, and managers.
In these discussions the occupancy rate is of great importance and often used as an input
parameter. Most hospitals use the same target occupancy rate for all wards, often 85%.
Sometimes an exception is made for critical care and intensive care units. In this paper we
demonstrate that this equity assumption is unrealistic and that it might result in an exces-
sive number of refused admissions, particularly for smaller units. Queuing theory is used
to quantify this impact. We developed a decision support system, based on the Erlang loss
model, which can be used to evaluate the current size of nursing units. We validated this
model with hospital data over the years 2004–2006. Finally, we demonstrate the efficiency
of merging departments.

Keywords Clinical ward management · Resource allocation · Refused admissions ·
Bed occupancy · Bed pooling · Queuing models · Erlang loss model

1 Introduction

Most hospitals organize their available beds into nursing units that are used by one or more
clinical disciplines (e.g., general surgery, cardiac surgery, cardiology, obstetrics, gynaecol-
ogy, pediatric, neurology). Over the years other classifications rather than just clinical ser-
vice appear, such as length of stay (e.g. short stay, medium stay, and long stay units) (Walley
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et al. 2006), level of care (e.g. intensive, medium and normal care units) or urgency (elective,
urgent, and emergency care units). We state that the distribution of hospital beds over the dif-
ferent nursing units is to a great extent based on historically obtained rights. A well-founded
quantitative approach is often lacking when hospital management decides about the num-
ber of beds. Capacity planning issues are primarily driven by available budgets and target
occupancy levels instead of service level standards (e.g. percentage of refused admissions,
waiting time etc.).

In addition, there are certain data-issues to mention. The registration in Dutch hospi-
tals is based on the following production parameters: number of admissions, day treatments
(normal and heavy), nursing days, and number of out-patient visits. The available budget is
primarily based on these parameters via contracts with health insurers. Using these parame-
ters for quantitative analysis of patient flow (e.g. resource allocation issues) is delicate and
care is required in doing this. In this paper some new concepts and measurements needed to
perform a well-founded analysis of in-patient flow are introduced.

The main contribution of this paper is threefold. First, we provide a comprehensive data
analysis for 24 clinical wards in a university medical center. We analyze both the number
of admissions and the length of stay distribution to obtain insight in the key characteristics
of in-patient flow. Moreover, we present occupancy rates for all wards to indicate the bed
utilization.

Our second goal is to demonstrate that in-patient flow can be described by a standard
queuing model (Erlang loss model). This queuing model may therefore be an important tool
in supporting strategic and tactical managerial decisions considering the size of hospital
wards. For instance, the model can be used to determine the number of required operational
beds and, hence, the corresponding annual budgets.

The third goal is to illustrate the impact of in-patient flow characteristics on ward sizes.
The model provides great additional insight in the specific situation at hospital wards where
variation in demand is such an important characteristic. It reveals the non-linear relation
between the size of a unit, the probability of a refused admission and the occupancy rate.
This matter is often not recognized by hospital professionals.

Given the situation where medium and small sized hospital wards operate independently,
the model directly underlines the occurrence of operational problems such as unavailability
of beds. Moreover, using the model, we illustrate and quantify the potential improvement of
operational efficiency by merging clinical wards.

Finally, this queuing model is implemented in a decision support system. This provides
hospital management a powerful instrument to evaluate the current size of nursing units and
to quantify the impact of bed reallocations and merging of wards.

2 Terminology and definitions

The structural model of the patient flow through a clinical ward is shown in Fig. 1. The differ-
ent flow parameters are described below. In the next section these parameters are quantified.

Fig. 1 Structural model of
patient flow through a clinical
ward
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Arrivals From the left in Fig. 1 patients arrive to the system and are admitted if there is a
free bed available. An arriving patient who finds all beds occupied is refused and leaves the
system. We distinguish scheduled and unscheduled arrivals.

Refused admissions If all beds are occupied the patient is ‘blocked’ and is counted as
a refused admission. In practice, a refused admission can result in a diversion to another
hospital or an admission to a non-preferable clinical ward. Many wards have to deal with
refused admissions due to unavailability of beds. The number of refused admissions can
be interpreted as a service level indicator and is important for the quality of care. As this
number is hard to measure we do not know how many patients are turned away. In Sect. 4.2
we demonstrate a method to approximate the number of refused admissions.

Admissions Hospitals keep record of the number of admissions. The total amount of ad-
missions is equal to the sum of a number of production parameters such as admissions, day
treatments, and transfers (patients coming from another medical discipline). The patients of
one medical discipline are often spread over several wards. For example, cardiac patients
can be admitted at the normal care clinical ward, the coronary care unit or first cardiac aid.
In order to analyze specific wards and evaluate their performance we have to do some basic
data manipulation to get the correct flow parameters on the level of nursing units (de Bruin
et al. 2007), see Sect. 3.1.

Length of stay The time spent in the ward is entitled length of stay, often abbreviated
as LOS, after which the patient is discharged or transferred to another ward. The LOS is
easily derived from the hospital information system as both time of admission and time of
discharge are logged on individual patient level. Length of stay is affected by congestion
and delay in the care chain (Koizumi et al. 2005), which means that careful interpretation is
required, see Sect. 3.2.

Beds The capacity of a ward is measured in terms of operational beds. The number of op-
erational beds, a management decision, is used to determine the available personnel budget.
This is done via a staffing ratio per operational bed (e.g. 1 full time equivalent (fte) per nor-
mal care bed). The number of operational beds is generally fixed and evaluated on a yearly
basis.

From day to day, the actual number of open or staffed beds slightly fluctuates (due to
illness, holiday and patient demand) (Green et al. 2007). Note that the number of physical
bed positions is not necessarily equal to the number of operational beds; for most wards the
number of physical beds is larger.

3 Data analysis

Computerized records of all admissions to 24 clinical wards in a university medical center,
both normal care (NC) and intensive care units (ICU), have been analyzed over the years
2004–2006. These data were used to quantify the number of admissions (Sect. 3.1), length
of stay (Sect. 3.2), and occupancy rate (Sect. 3.3). Due to the specific ward characteristics we
did not include the emergency department (ED), first cardiac aid (FCA), and short stay unit
(SSU) in this study. Table 1 gives an overview of the wards included and the corresponding
number of operational beds.
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Table 1 Wards included in this study and number of operational beds

Ward Operational Operational Operational

description beds (2004) beds (2005) beds (2006)

Coronary Care Unit (CCU) 6 6 6

Intensive Care Unit surgical 14 14 14

Intensive Care Unit medical 12 13 14

Pediatric Intensive Care Unit (PICU) 9 9 9

Neonatal Intensive Care Unit (NICU) 20 19 15

Medium Care 7 7 9

Special Care cardiac surgery 6 6 6

NC Cardiac surgery and cardiology 28 28 28

NC Gynaecology 37 37 37

NC Hematology 21 21 21

NC Surgical oncology 27 27 27

NC Internal medicine unit 1 20 20 20

NC Internal medicine unit 2 20 20 20

NC Pediatric unit 1 26 26 26

NC Pediatric unit 2 23 23 25

NC Otolaryngology (ear/nose/throat) 29 26 25

NC Internal lung 23 23 23

NC Neurosurgery and orthopedic surgery 27 27 30

NC Neurology 31 26 24

NC Obstetrics 42 37 31

NC Internal oncology 26 27 27

NC Ophthalmology 21 15 14

NC Trauma surgery 32 30 33

NC Vascular surgery 21 18 23

3.1 Admissions

In this subsection the admissions are analyzed. First, in Sect. 3.1.1 the scheduled (elective)
admissions are quantified and in Sect. 3.2.2 the unscheduled (urgent, emergent) admissions
are described. For each ward the admission pattern is compared with the Poisson distribu-
tion. Many arrival processes, especially unscheduled, have been shown to be well approxi-
mated by a Poisson process (Young 1965).

Table 2 summarizes the number of annual admissions. In 2006 approximately 45% of all
admissions were unscheduled. This fraction of unscheduled admissions ranges from 7% for
hematology to 84% for obstetrics.

3.1.1 Scheduled admissions

The total number of scheduled (or elective) admissions over the years 2004–2006 was re-
spectively 17969, 17101, and 18001. For each ward we constructed histograms with the
daily number of scheduled admissions on the horizontal axis and the frequency (number of
days in a year that this number of daily admissions occurred) on the vertical axis. Figure 2
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Table 2 Hospital admissions (2004–2006)

Ward description 2004 2005 2006

Sched. Unsched. Sched. Unsched. Sched. Unsched.

Coronary Care Unit 292 832 221 772 207 741

Intensive Care Unit surgical 419 325 341 373 330 392

Intensive Care Unit medical 354 325 341 338 386 328

Pediatric Intensive Care Unit 139 268 100 296 103 245

Neonatal Intensive Care Unit 143 278 88 429 88 384

Medium Care 257 316 387 430 491 475

Special Care cardiac surgery 572 112 503 105 496 119

NC Cardiac surgery and cardiology 1384 618 1321 664 1280 620

NC Gynaecology 1275 1203 1051 1242 1248 1248

NC Hematology 1707 89 2003 121 2178 160

NC Surgical oncology 803 353 620 343 776 434

NC Internal medicine unit 1 298 691 204 725 211 721

NC Internal medicine unit 2 596 712 668 725 665 607

NC Pediatric unit 1 944 566 923 703 996 641

NC Pediatric unit 2 953 742 844 789 788 659

NC Otolaryngology (ENT) 834 340 1115 455 1064 305

NC Internal lung 875 420 825 401 781 411

NC Neuro- and orthopedic surgery 885 391 993 389 1061 457

NC Neurology 365 838 233 942 252 903

NC Obstetrics 1288 2708 749 3575 658 3406

NC Internal oncology 1132 305 1230 355 1007 388

NC Ophthalmology 1206 227 1255 216 1636 217

NC Trauma surgery 607 630 494 636 565 821

NC Vascular surgery 641 289 592 328 734 314

Total 17969 13578 17101 15352 18001 14996

gives an example for the normal care hematology, where the observed admission pattern is
compared with the Poisson distribution.

The average number of scheduled arrivals per day (parameter λ) equals 4.664. Clearly,
the Poisson distribution does not give a good fit. A possible explanation is that elective
patients are generally admitted during weekdays (Mon–Fri) and hardly in the weekend (Sat–
Sun). This explains the peak bar at “0”, corresponding with the weekend days. Therefore we
split the scheduled admissions in weekdays and weekends. See Fig. 3 for the results. Since
the average number of arrivals per day during the weekend is very small for most clinical
wards, we focus here on the number of arrivals during weekdays.

For a Poisson random variable, the mean and variance are equal. As a first quantitative
indication for the variability in the number of arrivals, we determined the ratio of the vari-
ance in the number of arrivals and the average number of arrivals per weekday (this ratio is
1 for a Poisson random variable).

For hematology, this variance/mean ratio equals 6.435/5.764 = 0.896. Using the data of
2005, the variance/mean ratio ranges from 0.658 to 1.759 for the 24 wards, indicating at
least that the number of scheduled arrivals is highly variable. This fact is rather remarkable
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Fig. 2 Distribution of scheduled admissions for hematology (2004)

Fig. 3 Distribution of scheduled admissions split in weekdays and weekend for hematology (2004)
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Fig. 4 Distribution of unscheduled admissions for the ICU medical (2005)

and also reported in other studies (Walley et al. 2006). Most professionals would expect the
elective patient flow to be more steady.

In Appendix A some results can be found on formal statistical tests to assess the goodness
of fit. The general conclusion is that for roughly half of the 24 wards the scheduled admis-
sions, if separated in weekdays and weekends, are described well by a Poisson distribution.
We like to stress that for practical purposes it is not required that the number of admissions
exactly follows the laws of the Poisson distribution. The key point for practical modeling
purposes is that the variability in the number of admissions is generally well captured by the
Poisson distribution, making this a reasonable assumption for the remaining wards as well.
This is also exemplified by the stationary peakedness approximation for G/G/s/s queues,
where the variability in the arrival process is approximated using the variance to mean ratio
(Whitt 1984).

An interesting article (Gallivan 2008), recently published, challenges the view that mod-
eling should necessarily be subject to formulaic calibration, validation and sensitivity analy-
sis to establish ‘accuracy’. In this paper the author recalls the quote, “All models are wrong,
but some are useful”, of George Box, an eminent statistician. We believe that the model pre-
sented in Sect. 4 provides valuable insight when determining the number of beds required
at a specific hospital ward. In their role as hospital consultants, the authors have broad ex-
perience in advising management on capacity decisions. The model, although not formally
validated, has been proven useful for both hospital professionals and management and con-
tributes to better decision making.

3.1.2 Unscheduled admissions

The total number of unscheduled (urgent and emergent) admissions over the years 2004–
2006 was respectively 13578, 15352, and 14996. In studies of unscheduled admissions the
assumption of a Poisson arrival process has been shown to be realistic (Young 1965).

We constructed the same histograms as for the scheduled arrivals, thus the number of
daily admissions is plotted on the x-axis and the frequency (number of days) on the y-axis.
Figure 4 gives an example for the medical intensive care unit (2005).
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The statistical tests also show that the Poisson distribution provides a good fit, see Ap-
pendix A. Intuitively, it is obvious that unscheduled arrivals are independent, because one
emergency admission does not have any effect on the next one. Therefore, the assumptions
for a Poisson process seem realistic.

3.2 Length of stay

In this section the length of stay (LOS) is examined. First, in Sect. 3.2.1, some key statistics
such as the average length of stay (ALOS) and the coefficient of variation are specified
for each ward. In Sect. 3.2.2 the LOS distribution is characterized by Lorenz curves and
the related Gini-coefficient is introduced. This representation is deliberately chosen as we
find it supportive in visualizing the variation in LOS which is an important characteristic of
in-patient flow.

3.2.1 Basic LOS statistics

In Table 3 the basic LOS statistics are summarized. In 2006 the ALOS over 24 wards was
approximately 4 days, ranging from 1.5 days (obstetrics) to 7.8 days (neonatal intensive care
unit). This average is calculated over all admitted patients, thus including day treatments.
The coefficient of variation, defined as the ratio of the standard deviation to the mean, is
greater than 1 for all wards, except for the special care cardiac surgery. This shows that the
LOS at clinical wards is highly variable. This result is also found by Green and Nguyen
(2001). The Gini-coefficient will be introduced below.

3.2.2 Lorenz curves

The Lorenz curve is a graphical representation of the cumulative distribution function of
a probability distribution. This concept was introduced to represent the concentration of
wealth (Lorenz 1905). We use it to illustrate that those patients with prolonged hospital stay
take a disproportional part of the available resources. The percentage of patients is plotted
on the x-axis, the percentage of resource consumption (in terms of hospitalized days) on
the y-axis. Figure 5 gives the Lorenz curves with the lowest and highest Gini-coefficient
for the year 2006, respectively the special care cardiac surgery and normal care hematol-
ogy.

The Gini-coefficient (denoted as G) is a measure of the dispersion of the Lorenz curve
(Gini 1912). It is defined as a ratio with values between 0 and 1; the numerator is the area
between the Lorenz curve of the distribution and the uniform distribution line; the denom-
inator is the area under the uniform distribution line. Thus, a low Gini-coefficient indicates
that the variability in LOS is low, while a high Gini-coefficient indicates a more variable dis-
tribution. The following formula was used to calculate the Gini-coefficient for each clinical
ward,

G = 1

n

(
n + 1 − 2

∑n

i=1(n + 1 − i)yi∑n

i=1 yi

)
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with

n number of admitted patients to a ward
yi the observed LOS values in ascending order, where yi ≤ yi+1, i = 1, . . . , n − 1

In Table 3 all Gini-coefficients (G) are specified. For 2006, the minimum is 0.343 for
the special care cardiac surgery and the maximum is 0.805 for the NC hematology. Fig-
ure 5 clearly shows the different shape of the two curves. Lorenz curves are very useful
in identifying those patients with prolonged hospital stay and their disproportional resource
consumption. It also illustrates the difference in LOS-characteristics between clinical wards.
We note that in general a model based on fixed lengths of stay is not capable of describing
the complexity and dynamics of in-patient flow and gives misleading results, also known as
the flaw of averages (de Bruin et al. 2007).

Table 3 LOS statistics (2004–2006)

Ward description 2004 2005 2006

ALOS CV Gini ALOS CV Gini ALOS CV Gini

[days] [σ/μ] [G] [days] [σ/μ] [G] [days] [σ/μ] [G]

Coronary Care Unit 1.573 1.692 0.638 1.748 1.311 0.564 1.694 1.313 0.569

Intensive Care Unit surgical 5.676 2.690 0.750 6.021 2.012 0.719 5.397 1.730 0.684

Intensive Care Unit medical 4.957 1.851 0.687 5.417 2.025 0.705 5.147 2.018 0.684

Pediatric Intensive Care Unit 3.533 1.997 0.644 4.168 1.571 0.636 4.180 1.512 0.606

Neonatal Intensive Care Unit 9.025 1.721 0.668 8.335 1.985 0.697 7.778 1.644 0.680

Medium Care 2.211 1.478 0.543 2.619 1.738 0.606 2.374 1.643 0.584

Special Care cardiac surgery 1.524 0.733 0.319 1.668 0.644 0.309 1.715 0.821 0.343

NC Cardiac surgery and 4.005 1.519 0.567 4.054 1.502 0.570 4.347 1.430 0.570

cardiology

NC Gynaecology 3.444 1.290 0.552 3.615 1.420 0.570 3.172 1.391 0.558

NC Hematology 3.732 2.667 0.819 3.023 2.591 0.812 2.763 2.651 0.805

NC Surgical oncology 6.571 1.110 0.500 7.374 1.111 0.497 6.448 1.167 0.510

NC Internal medicine unit 1 6.493 1.273 0.579 7.266 1.292 0.553 6.354 1.089 0.528

NC Internal medicine unit 2 4.853 1.469 0.653 4.810 1.713 0.683 4.852 1.627 0.685

NC Pediatric unit 1 3.850 1.449 0.588 3.758 1.470 0.591 3.440 1.486 0.579

NC Pediatric unit 2 3.432 1.434 0.599 4.119 2.243 0.633 4.131 1.750 0.630

NC Otolaryngology (ENT) 5.333 1.552 0.612 4.052 1.544 0.577 4.362 1.649 0.596

NC Internal lung 4.765 1.139 0.520 4.517 1.245 0.541 4.633 1.198 0.541

NC Neuro- and orthopedic 6.340 1.527 0.579 5.441 1.472 0.545 5.256 1.302 0.537

surgery

NC Neurology 5.921 1.503 0.609 5.597 1.300 0.587 5.533 1.401 0.590

NC Obstetrics 1.589 1.784 0.688 1.438 2.005 0.707 1.501 2.039 0.698

NC Internal oncology 4.904 1.373 0.572 4.061 1.346 0.574 4.527 1.314 0.562

NC Ophthalmology 2.783 1.150 0.499 2.180 1.225 0.487 1.583 1.186 0.534

NC Trauma surgery 7.695 1.299 0.541 7.641 1.251 0.537 6.833 1.175 0.526

NC Vascular surgery 6.195 1.345 0.554 6.844 1.321 0.550 6.487 1.638 0.583

Average 4.199 1.544 0.595 4.060 1.556 0.594 3.918 1.507 0.591
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Fig. 5 Lorenz curves for the special care cardiac surgery and NC hematology (2006)

3.3 Occupancy rate

Finally we determined the occupancy rate per ward over the years 2004–2006. Using Little’s
formula (Little 1961) the occupancy rate is defined as,

Occupancy = Average number of occupied beds

Number of operational beds

= Admissions (per time unit) × ALOS (time unit)

Number of operational beds

See Table 4 for the results per clinical ward. For 2006 the occupancy rate differs from 44%
(Pediatric Intensive Care Unit) to 85% (Normal Care internal medicine, unit 2).

Note that this definition of occupancy, which is very common from the perspective of op-
erations research and management science, is not used in most Dutch hospitals. The current
national definition is based on ‘hospitalized days’, which is an administrative financial para-
meter (de Bruin et al. 2007). Under the latter definition occupancy rates greater than 100%
are possible which makes the discussion confusing. In our opinion, the definition presented
above gives the best insight in the actual utilization of the available capacity. Therefore, this
definition is used in this study.
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Table 4 Occupancy rate per
clinical ward (2004–2006) Occupancy rates

Ward description 2004 2005 2006

Coronary Care Unit 80.7% 79.3% 73.3%

Intensive Care Unit surgical 82.6% 84.1% 76.3%

Intensive Care Unit medical 76.8% 77.5% 71.9%

Pediatric Intensive Care Unit 43.8% 50.2% 44.3%

Neonatal Intensive Care Unit 52.0% 62.1% 67.1%

Medium Care 76.6% 86.8% 69.8%

Special Care cardiac surgery 47.6% 46.3% 48.2%

NC Cardiac surgery and cardiology 78.5% 78.7% 80.8%

NC Gynaecology 63.2% 61.4% 58.6%

NC Hematology 87.4% 83.8% 84.3%

NC Surgical oncology 77.1% 72.1% 79.2%

NC Internal medicine unit 1 88.0% 92.5% 81.1%

NC Internal medicine unit 2 87.0% 91.8% 84.5%

NC Pediatric unit 1 61.3% 64.4% 59.3%

NC Pediatric unit 2 69.3% 80.1% 65.5%

NC Otolaryngology (ENT) 59.1% 67.0% 65.4%

NC Internal lung 73.5% 66.0% 65.8%

NC Neuro- and orthopedic surgery 82.1% 76.3% 72.9%

NC Neurology 63.0% 69.3% 73.0%

NC Obstetrics 41.4% 46.0% 53.9%

NC Internal oncology 74.3% 65.3% 64.1%

NC Ophthalmology 52.0% 58.6% 57.4%

NC Trauma surgery 81.5% 78.9% 78.6%

NC Vascular surgery 75.2% 95.8% 81.0%

3.4 Discussion data analysis

In this section we performed an analysis of patient flow characteristics of 24 clinical wards in
a university medical center. From the data analysis we found that the number of unscheduled
arrivals can be well described by a Poisson distribution. For roughly half of the wards, the
Poisson distribution also provides a good fit for scheduled arrivals in case these are split
between weekdays and weekends. Given the variability in the number of scheduled arrivals
for the remaining half of the wards, the Poisson distribution is a very reasonable simplifying
assumption for these wards as well, capturing the apparent fluctuation in the number of
scheduled arrivals.

In the sequel, we assume that arrivals occur according to a homogeneous Poisson process
and determine the arrival rate using the average number of arrivals per day. In the present
paper, we intentionally choose not to model the time-dependent arrival pattern, mainly for
practical purposes such as simplicity. A time-dependent model is too refined for our main
objective, which is supporting strategic and tactical managerial decisions on sizing hospital
wards. A time-dependent model may be primarily used to exploit structural differences in
bed occupancy across the week, which is important on the operational level, such as nurse
rostering. We note that ignoring this time-dependent arrival pattern leads to a slight underes-
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timation of the average number of required beds. Nevertheless, this impact on the required
number of operational beds, and thus personnel budget, is rather limited in most cases.

In other papers these time-varying aspects within service systems are described and its
impact (for example on setting staffing requirements) is further quantified (Davis et al. 1995;
Green et al. 2007). The impact of a time-varying arrival rate on refused admissions, specifi-
cally for in-patient flow, is also described in literature (Bekker and de Bruin 2009).

A second main reason for ignoring the difference between weekdays and weekends is due
to the simplicity of use for analysis and implementation. A relatively easy model is effective
in developing insight between the size of clinical ward and the feasibility of occupancy rates
in relation to the probability of a refused admission, which is another main goal of this study.

4 Mathematical model

In this section the mathematical (queuing) model is described. Recall that we introduced the
incidence of refused admissions in our structural model (Fig. 1). Thus, we assume that an
arriving patient who finds all beds occupied is blocked and leaves the system. In practice, a
refused admission can result in a diversion to another surrounding hospital or an admission
to a non-preferable clinical ward within the same hospital.

There are also studies in which delay models, such as the M/M/s queuing model, are
applied for capacity planning problems in hospitals (Green 2002; Green and Nguyen 2001).
Arriving patients enter a queue when all beds are occupied. The probability of delay is
an important performance measure is this type of analysis. Other studies apply an infinite
server approach (Gallivan et al. 2002). In this approach the main outcome parameter is the
probability of overload when the number of required beds exceeds the number of operational
beds. Due to our experience in a university hospital, where diverting patients is a serious
issue, we chose to incorporate blocking. For that reason, we applied the M/G/c/c (or Erlang
loss) queuing model. To our knowledge, this is the first time that the Erlang loss model is
applied in this context.

4.1 The M/G/c/c queuing model

In the M/G/c/c model patients arrive according to a Poisson process with parameter λ. The
LOS of an arriving patient is independent and identically distributed with expectation μ. We
note that the average service time is often defined as 1/μ∗ where μ∗ is the service rate in
case of exponentially distributed service times. The number of operational beds is equal to c.
There is no waiting area, which means that an arriving patient who finds all beds occupied
is blocked. The fraction of patients which is blocked can be calculated with the following
formula,

Pc = (λμ)c/c!∑c

k=0(λμ)k/k! (i)

Note that this particular model is insensitive for the LOS-distribution and is valid for general
service times. The occupancy rate is defined as,

Occupancy rate = (1 − Pc)λ · μ
c

(ii)

This is equivalent to the expression at the beginning of Sect. 3.3. The term λ·μ is often
referred to as the offered load to the system.
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4.2 Approximating the number of arrivals

In order to apply the Erlang loss model and for purposes of validation we need to quantify
the number of arrivals (λ). As the hospital information system only registers the number of
admissions and the number of refused admissions is generally unknown we have to approx-
imate λ. This can be accomplished by using expressions (i) and (ii). First, the numerator in
(ii) is equal to the average number of occupied beds,

Average number of occupied beds = λ · μ(1 − Pc)

Then, after substitution of Pc using (i), we get the following expression,

Average number of occupied beds = λ · μ
(

1 − (λμ)c/c!∑c

k=0(λμ)k/k!
)

(iii)

The average number of occupied beds can be obtained from the hospital information sys-
tem. Furthermore, the number of beds (c) and the ALOS (μ) are known variables. After
substitution in (iii) λ is the only parameter left unknown. Finally, the number of arrivals is
determined numerically for all clinical wards.

5 Validation

In the previous section we approximated λ using the Erlang loss equation. The assumptions
for this model regarding the arrival process (Poisson) and the LOS distribution (general) are
discussed in Sect. 3. One of the main objectives of this study is to approximate the number of
required beds at a clinical ward. Therefore, we first have to determine the distribution of the
number of occupied beds. In Fig. 6 the observed number of occupied beds (at 08.00 am) is
compared with the Erlang loss model, as an example, for three wards. The loss model curve
has been curtailed at the number of operational beds which was respectively 26 (Neurology),
6 (CCU) and 14 (Ophthalmology).

Figure 6 reveals that on some days the number of occupied beds exceeds the number
of operational beds. This means that when patient demand is high, ward management can
decide to temporarily open an extra few beds. Of course this puts the available staff under
great working pressure and is only possible for wards where the number of physical bed
positions exceeds the number of operational beds, also see Sect. 2.

Furthermore, the model seems reasonable for the NC Neurology and the CCU but is fairly
poor for the NC Ophthalmology. These figures were created for all 24 wards to identify how
good the Erlang loss model fits the observed number of occupied beds. To quantify the
goodness of fit we introduced a validation measure. First we define,

• Pi = probability that i beds are occupied in the Erlang loss model
• Preali = probability that i beds are occupied in reality
• Di = Preali − Pi for i = 0,1, . . . , c − 1
• Dc = ∑∞

k=c Prealk − Pc

The final formula above is used to compare the possible different situations with a fully
occupied ward. Remind that in practice the number of occupied beds may occasionally
exceed the number of operational beds, whereas this is not possible in the Erlang loss model.

To compare to what extent the empirical distribution and the bed occupancy distribution
given by the Erlang loss model are similar, we define our performance measure for the
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Fig. 6 (a) The observed number
of beds occupied versus the
Erlang loss model, NC
Neurology (2005). (b) The
observed number of beds
occupied versus the Erlang loss
model, Coronary Care Unit
(CCU) (2005). (c) The observed
number of beds occupied versus
the Erlang loss model, NC
Ophthalmology (2005)

(a)

(b)

(c)

goodness of fit as the sum of the absolute differences between the two probabilities:

Goodness of fit = 1 − 1

2

c∑
i=0

|Di |

In terms of distribution functions, our measure can thus be interpreted as the amount of
probability mass that the empirical and Erlang loss based distribution have in common.
Therefore, the measure is a number between 0 and 1, where 0 indicates a very poor fit (no
probability mass in common) and 1 means the probabilities are equal for all number of
occupied beds (exact match between distribution functions). We note that this measure for
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Table 5 Goodness of fit of the Erlang loss model describing the number of occupied beds

Ward description Goodness Ward description Goodness

of fit of fit

Coronary Care Unit (CCU) 0.941 NC Internal medicine unit 2 0.935

Intensive Care Unit surgical 0.854 NC Pediatric unit 1 0.841

Intensive Care Unit medical 0.756 NC Pediatric unit 2 0.926

Pediatric Intensive Care Unit (PICU) 0.860 NC Otolaryngology (ear, nose, throat) 0.889

Neonatal Intensive Care Unit (NICU) 0.891 NC Internal lung 0.921

Medium Care 0.838 NC Neurosurgery and orthopedic surgery 0.872

Special Care cardiac surgery 0.856 NC Neurology 0.902

NC Cardiac surgery and cardiology 0.833 NC Obstetrics 0.945

NC Gynaecology 0.874 NC Internal oncology 0.888

NC Hematology 0.658 NC Ophthalmology 0.768

NC Surgical oncology 0.759 NC Trauma surgery 0.835

NC Internal medicine unit 1 0.925 NC Vascular surgery 0.815

Fig. 7 Goodness of fit of the Erlang loss model for all 24 wards

goodness of fit is inspired on the average absolute prediction error (Kleijnen et al. 2000).
The outcome of this measurement for all 24 wards is presented in Table 5.

The average goodness of fit is 0.86 meaning that the empirical and model-based bed-
occupancy distributions have on average 86% of the probability mass in common. For most
wards, the model describes the number of occupied beds very well, especially those with a
high percentage of unscheduled admissions (Obstetrics, CCU and internal medicine). How-
ever, for a couple of wards the fit is rather poor (NC hematology and Ophthalmology). See
Fig. 7 for a general overview.
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Another important and more general observation is that the variability in both the num-
ber of arrivals per day and LOS results in large workload fluctuations, i.e. a considerable
variability in bed occupancy. Therefore, the occurrence of both over and underutilization is
inevitable and flexibility in workforce planning at clinical wards is crucial.

6 Decision support system

One of the objectives of this study was to develop a decision support system (DSS) upon
which hospital management can make well founded decisions about hospital ward size. The
model has to be user-friendly and technologically accessible. Encouraged by the validation
of the Erlang loss model in the previous section we implemented this queuing model in
MS Excel using Visual Basic for Applications (VBA). Historical data of admissions, ALOS
and number of operational beds are automatically imported from the hospital information
system to calculate the occupancy and to approximate the number of arrivals. The tool can

Table 6 Number of required beds for different levels of blocking in current situation (2006)

Ward description Operational Number of Number of beds required for:

beds daily 2% 5% 10%

(2006) arrivals (λ) Blocking Blocking Blocking

Coronary Care Unit 6 3.52 12 10 9

Intensive Care Unit surgical 14 2.26 19 17 15

Intensive Care Unit medical 14 2.14 18 16 14

Pediatric Intensive Care Unit 9 0.97 9 8 7

Neonatal Intensive Care Unit 15 1.36 17 15 14

Medium Care 9 3.06 13 12 10

Special Care cardiac surgery 6 1.79 8 7 6

NC Cardiac surgery and cardiology 28 5.62 33 30 27

NC Gynecology 37 6.84 30 27 24

NC Hematology 21 7.57 29 26 24

NC Surgical oncology 27 3.55 32 29 26

NC Internal medicine unit 1 20 2.9 27 24 21

NC Internal medicine unit 2 20 4.17 29 26 23

NC Pediatric unit 1 26 4.5 23 21 18

NC Pediatric unit 2 25 4.02 24 22 20

NC Otolaryngology (ENT) 25 3.8 24 22 19

NC Internal lung 23 3.32 23 21 18

NC Neuro- and orthopedic surgery 30 4.26 31 28 25

NC Neurology 24 3.29 26 24 21

NC Obstetrics 31 11.14 25 22 20

NC Internal oncology 27 3.86 25 23 20

NC Ophthalmology 14 5.18 14 13 11

NC Trauma surgery 33 3.97 36 33 30

NC Vascular surgery 23 3.19 29 26 23

Total 507 95.98 556 502 445
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be used for both evaluating the current size of nursing units and determining the impact of
merging departments. This last feature is important as the potential increase in productivity
is substantial if economies of scale are applied properly.

6.1 Evaluating the current size of clinical wards

First, the current size of the hospital wards is evaluated. For each ward the number of arrivals
is determined as described in Sect. 4.2. Then the number of required beds is computed for
three levels of blocking (2, 5, and 10%). See Table 6 for the results.

Which percentage of blocking (or refused admissions) is reasonable and thus acceptable
is subject to discussion. Hospital policy makers often refer to a 5% target but the conse-
quence of such a choice in terms of capacity requirements is very often not recognized.
Table 6 reveals that for a 5% target the total number of required beds over 24 wards is ap-
proximately 500 which is not far off the number of operational beds in 2006, which is 507.
In Fig. 8 the number of operational beds is compared with the number of required beds for
each ward (5% blocking).

The ratio (required beds/operational beds) varies from 0.71 to 1.67. In other words, some
wards have too many beds while others have a serious shortage. This unequal allocation of
beds is also reflected in the range of occupancy rates (Table 4) and is subject to discussion
by hospital professionals and management.

6.2 The impact of merging departments on efficiency

In most queuing systems economies of scale occur, which means that larger service systems
can operate at higher occupancy rates than smaller ones while attaining the same percentage

Fig. 8 Number of required beds versus the number of operational beds
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Fig. 9 Relation between number of beds, fraction of refused admissions (Pc), and occupancy rates (ρ)

of blocking or delay (Whitt 1992). Figure 9 (de Bruin et al. 2007) illustrates the dramatic
impact for the situation in most Dutch hospitals where ward sizes are relatively small and
dispersed and where the 85% target occupancy rate has developed into a golden standard.
In Fig. 9 two graphs are shown for varying ward sizes (2 ≤ c ≤ 60):

1. The percentage of refused admissions given that the occupancy rate (ρ) equals 85%
2. The occupancy rate for a maximum of 5% refused admissions

Especially smaller units, such as the CCU (6 operational beds), have trouble keeping a
bed available for an arriving patient. If the probability of a refused admission has to be kept
low (for example 5%) the occupancy rate drops below 50% (see Fig. 9, graph 2). Off course
this is not a very economical way to use a scarce and expensive resource such as hospital
beds. Li et al. studied the relation between profits and occupancy rates in more detail using
a multi-objective bed allocation model (Li et al. 2008). If economies of scale are applied
properly, by merging departments (bed pooling) or mixing patient flows, both an acceptable
service level (in terms of refused admissions) and an economical viable occupancy rate can
be realized.

6.3 Case study

In this subsection an example is described in which the DSS can be used to explore the
potential benefit of merging departments. We do this by virtually merging the coronary
care unit (CCU), medium care (MC) and the special care cardiac surgery (SC) because
the level and type of care is similar. By selecting different units the user can experiment
easily and fast with different scenarios in the DSS. Table 7 summarizes the statistics for
2006. The results of the scenario where these three units are merged is also presented in this
table.

In the current situation these three units have 21 beds together and the fraction of refused
admissions ranges from 5.61% (SC) to 26.2% for the CCU. The total number of required
beds, for 5% refused admissions at each ward, is 29.
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Table 7 The effect of merging departments on operational efficiency: case study

Parameters (2006) CCU MC SC

Operational beds 6 9 6

ALOS [days] 1.694 2.374 1.715

Occupancy rate 73.3% 69.8% 48.2%

Fraction of refused admissions* 26.2% 13.5% 5.61%

Number of beds required for 5% blocking* 10 12 7

After merging CCU, MC, and SC

ALOS (weighted) 1.96

Number of beds required for 5% blocking* 22

Occupancy rate 71.7%

*Calculated with the Erlang loss model

After the merge the total number of required beds for this same service level (5% block-
ing) is 22, just one more bed than the number of beds at this moment. Thus, the improvement
in operational efficiency is significant, and can be attained by just creating a larger scale.

7 Conclusion

In this study we applied the Erlang loss (or M/G/c/c) model for describing in-patient
flow through a hospital ward. Historical data of 24 wards over the years 2004–2006 were
used to analyze the arrival process and length of stay distribution. The assumptions of the
model for in-patient flow hold for most clinical wards. Our measure for the goodness of
fit of the model, in terms of number of occupied beds, was 0.86 on average (0 = poor,
1 = perfect), indicating that the Erlang loss model is an accurate description of the num-
ber of occupied beds. The relation between the size of a hospital unit, the target occu-
pancy rate, and probability of a refused admission is probably the most important lesson
learned.

Then this standard queuing model was implemented in MS Excel to make a decision sup-
port system, which is both user-friendly and technologically accessible. With this tool one
can easily evaluate the current size of nursing units. Also, the effect of merging departments
on operational efficiency can be quantified. In a hospital where wards are relatively small
and distributed over the different medical disciplines it is practically impossible to operate
at both an acceptable service level, in terms of low blocking probability, and a high occu-
pancy rate. When budgets get tight and the number of hospital admissions is increasing we
have to seriously investigate the benefits of merging departments or mixing patient flows. Of
course, due to the far-reaching specialization, especially in university hospitals, this merging
has a limit. Nevertheless, we believe there is still a great potential in efficiency gain for most
hospitals.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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Appendix A: Statistical test for Poisson arrivals

Here we present some details regarding formal tests to assess the goodness of fit of the
Poisson distribution for the number of scheduled and unscheduled arrivals.

Scheduled admissions To formally assess the goodness of fit, we performed the Pearson’s
chi-square test for hematology 2004 and the 24 wards based on the data of 2005. Details on
the chi-square test can be found in many textbooks on statistics (Rice 1995). For hematology
2004 the p-value is 0.318 giving little reason to doubt the Poisson assumption. For 2005, the
null hypothesis that the number of arrivals stem from a Poisson distribution is not rejected
for 11 out of the 24 wards at a confidence level ((1 − α) · 100%) of 95%. For α = 2.5%, the
null hypothesis is not rejected for 15 wards.

We note that it is also possible to use a test based on the Poisson index of dispersion
(Fisher 1950; Rice 1995), which is closely related to the variance/mean ratio described in
Sect. 3. Specifically, under the null hypothesis, the dispersion index ((n−1) ·variance/mean)
has a chi-squared distribution with n − 1 degrees of freedom, where n is the number of
observations. For 2005, n = 260 representing the number of weekdays. Using the Central
Limit Theorem and the Normal distribution function, the approximate confidence interval
for the variance/mean ratio is (0.828, 1.172) for the two-sided test with α = 5%. In this case,
the null hypothesis is not rejected for 12 of the 24 wards. Note that for the one-sided test
with α = 5% the null hypothesis is rejected when the index of dispersion is in (0, 0.855),
which is the case for 9 wards.

Unscheduled admissions The Pearson’s chi-square goodness of fit test for the medical
intensive care unit 2005 gives a p-value of 0.587, giving little reason to doubt the Poisson
assumption. For most of the 24 wards the Poisson distribution provides a good fit for the
number of unscheduled arrivals. For α = 5% the null hypothesis of a Poisson distribution is
rejected for 2 wards, whereas this happens for 1 ward for α = 2.5%.
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