
Discrete Comput Geom (2009) 42: 542–569
DOI 10.1007/s00454-008-9130-6

Untangling a Planar Graph

Xavier Goaoc · Jan Kratochvíl · Yoshio Okamoto ·
Chan-Su Shin · Andreas Spillner · Alexander Wolff

Received: 26 November 2007 / Revised: 7 November 2008 / Accepted: 20 November 2008 /
Published online: 9 January 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract A straight-line drawing δ of a planar graph G need not be plane but can
be made so by untangling it, that is, by moving some of the vertices of G. Let
shift(G, δ) denote the minimum number of vertices that need to be moved to un-
tangle δ. We show that shift(G, δ) is NP-hard to compute and to approximate. Our
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hardness results extend to a version of 1BENDPOINTSETEMBEDDABILITY, a well-
known graph-drawing problem.

Further we define fix(G, δ) = n − shift(G, δ) to be the maximum number of ver-
tices of a planar n-vertex graph G that can be fixed when untangling δ. We give
an algorithm that fixes at least

√
((logn) − 1)/ log logn vertices when untangling a

drawing of an n-vertex graph G. If G is outerplanar, the same algorithm fixes at least√
n/2 vertices. On the other hand, we construct, for arbitrarily large n, an n-vertex

planar graph G and a drawing δG of G with fix(G, δG) ≤ √
n − 2+1 and an n-vertex

outerplanar graph H and a drawing δH of H with fix(H, δH ) ≤ 2
√

n − 1 + 1. Thus
our algorithm is asymptotically worst-case optimal for outerplanar graphs.

Keywords Graph drawing · Straight-line drawing · Planarity · NP-hardness ·
Hardness of approximation · Moving vertices · Untangling · Point-set embeddability

1 Introduction

A drawing of a graph G maps each vertex of G to a distinct point of the plane and
each edge uv to an open Jordan curve connecting the images of u and v. A drawing
of G is plane if no two distinct edges cross, that is, intersect. By the famous theorem
of Wagner [28], Fáry [6], and Stein [25], any planar graph admits a plane straight-
line drawing, that is, a drawing that maps edges to straight-line segments. Obviously
not every straight-line drawing of a planar graph is plane. In this paper we are ex-
clusively interested in such straight-line drawings. Thus by a drawing we will always
mean a straight-line drawing. Since a (straight-line) drawing is completely defined
by the position of the vertices, moving a vertex is a natural operation to modify such
a drawing. If a drawing is to be made plane—or untangled—by successively moving
vertices, it is desirable to move as few vertices as possible. The smaller the number of
moves, the less likely it is that an observer gets confused, that is, the more likely the
observer’s mental map [17] is preserved during a sequence of changes. A recreational
version of the problem of minimizing the number of moves is given by Tantalo’s pop-
ular on-line game Planarity [26], where the aim is to untangle a straight-line drawing
as quickly as possible, again by vertex moves. Actually, in Tantalo’s game an addi-
tional difficulty for the player is the fixed size of the screen; Liske’s [15] version of
the game allows rescaling and hence is fully equivalent to untangling.

We define the vertex-shifting distance d between two drawings δ and δ′ of a
graph G = (V ,E) to be the number of vertices of G whose images under δ and δ′
differ:

d(δ, δ′) = ∣∣{v ∈ V | δ(v) �= δ′(v)
}∣∣.
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Fig. 1 Two drawings of K4:
δ is not plane, δ′ is plane;
d(δ, δ′) = 1

Given our edit operation, d represents the edit distance for straight-line drawings of
graphs (see Fig. 1 for an example). For a drawing δ of a planar graph G, we denote
by shift(G, δ) the minimum number of vertices that need to be moved in order to
untangle δ. In some sense shift(G, δ) measures the distance of δ from planarity. This
suggests the following computational problem.

MINSHIFTEDVERTICES(G, δ): given a drawing δ of a planar graph G, find a
plane drawing δ′ of G with d(δ, δ′) = shift(G, δ).

The symmetric point of view is often helpful. Therefore we denote by fix(G, δ) the
maximum number of vertices that can be fixed when untangling δ; we refer to such
vertices as fixed vertices. Clearly, fix(G, δ) = n − shift(G, δ), where n is the num-
ber of vertices of G. We call the corresponding problem, that is, finding a plane
drawing of a given planar graph G that maximizes the number of fixed vertices with
a given drawing δ, MAXFIXEDVERTICES. We denote by fix(G) the minimum of
fix(G, δ) over all drawings δ of G. Analogously, we denote by shift(G) the maxi-
mum of shift(G, δ) over all drawings δ of G.

Kaufmann and Wiese [11] considered the graph-drawing problem 1BEND-
POINTSETEMBEDDABILITY that will turn out to be related to MINSHIFTEDVER-
TICES. They defined a planar graph G = (V ,E) to be k-bend embeddable if, for any
set S of |V | points in the plane, there is a one-to-one correspondence between V

and S that can be extended to a plane drawing of G with at most k bends per edge.
Kaufmann and Wiese showed that (a) every 4-connected planar graph is 1-bend em-
beddable, (b) every planar graph is 2-bend embeddable, and (c) given a planar graph
G = (V ,E) and set S of |V | points on a line, it is NP-complete to decide whether
there is a correspondence between V and S that makes it possible to 1-bend embed G

on S.
The contributions we present in this paper are three-fold:

• We prove that the decision versions of MAXFIXEDVERTICES and MINSHIFTED-
VERTICES are NP-hard (Theorem 3.1) and lie in P S PA C E (Proposition 3.7). We
further prove that MINSHIFTEDVERTICES is hard to approximate in the follow-
ing sense: if there is a real ε ∈ (0,1] and a polynomial-time algorithm that guar-
antees to untangle any drawing δ of any n-vertex planar graph G with at most
(n1−ε) · (shift(G, δ) + 1) moves, then P = N P (Theorem 3.3).

• We complement the complexity result of Kaufmann and Wiese [11] on 1BEND-
POINTSETEMBEDDABILITY by showing that it is NP-hard to decide whether a
given one-to-one correspondence between the vertices of a planar graph G and a
planar point set S extends into a plane drawing of G with at most one bend per edge
(Theorem 3.4). We also show that the problem lies in P S PA C E (Theorem 3.6) and
that an optimization version of the problem is hard to approximate (Corollary 3.5).
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• We show that fix(H) ≥ √
n/2 for any n-vertex outerplanar graph H (Corollary 4.9)

and that fix(G) ≥
√

(logn)−1
log logn

for any general planar graph G with n ≥ 4 vertices
(Theorem 4.11), where the base of logarithms is 2. We also give, for arbitrarily
large n, examples of an n-vertex outerplanar graph H with fix(H) ≤ 2

√
n − 1 + 1

(Theorem 6.1) and of an n-vertex planar graph G with fix(G) ≤ √
n − 2 + 1 (The-

orem 5.3). We prove the two bounds by using drawings where all vertices lie on a
line.

2 Previous and Related Work

Arguably, one of the earliest results on untangling, for the n-path in the real line, is
the Erdős–Szekeres theorem, which we state here for further reference.

Theorem 2.1 (Erdős and Szekeres [5]) Any sequence of n ≥ sr + 1 different real
numbers has an increasing subsequence of s + 1 terms or a decreasing subsequence
of r + 1 terms.

The current best bounds on fix(G), where G is restricted to certain classes of
planar graphs, are summarized in Table 1. Recall that a lower bound of f (n) means
that we can untangle any drawing of any n-vertex graph G in the given graph class
while fixing at least f (n) vertices, whereas an upper bound of g(n) means that for
arbitrarily large n, there exists a drawing δ of an n-vertex graph G in the given graph
class such that at most g(n) vertices can stay fixed when untangling δ.

Untangling was first investigated for the n-cycle Cn, following the question by
Watanabe [29] of whether fix(Cn) ∈ Ω(n). The answer turned out to be nega-
tive: Pach and Tardos [18] showed, by a probabilistic argument, that fix(Cn) ∈
O((n logn)2/3). They also showed that fix(Cn) ≥ �√n + 1	 by applying the Erdős–
Szekeres theorem to the sequence of the indices of the vertices of δ in clockwise
order around some specific point. Cibulka [4] recently improved that lower bound to
Ω(n2/3) by applying the Erdős–Szekeres theorem not once but Θ(n1/3) times.

Pach and Tardos [18] extended the question to planar graphs and asked whether
there is a constant γ > 0 such that fix(G) ∈ Ω(nγ ) for any planar n-vertex graph G.
This question was recently answered in the affirmative by Bose et al. [2], who
showed that fix(G) ≥ 4

√
n/3. While their bound improves on our Theorem 4.11,

their algorithm uses our algorithm as a subroutine (specifically the result in Corol-
lary 4.9). A recent improvement in our analysis also improves their bound, yielding

Table 1 Best known bounds for fix(G), where G is a graph of the given graph class with n vertices

Graph class Lower bound Upper bound

Cycles Ω(n2/3) [4] O((n logn)2/3) [18]

Trees
√

n/2 [2] 3
√

n − 3 [2]

Outerplanar graphs
√

n/2 [20] and Corollary 4.9 2
√

n − 1 + 1 Theorem 6.1

Planar graphs 4√(n + 1)/2 [2]
√

n − 2 + 1 Theorem 5.3
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fix(G) ≥ 4
√

(n + 1)/2. Kang et al. [10] showed that for arbitrarily large n there is
a planar graphs G with n vertices and fix(G) ≤ 2

√
n + 1. For our upper bound of√

n − 2 + 1, see Theorem 5.3. Kang et al. [10] also shed some light on how upper
bounds on fix(G) are affected by restricting the possible locations of vertices in the
drawings of G. In particular, they showed that initial drawings with all vertices on a
line, such as our examples in Theorems 6.1 and 5.3, are the worst case in the sense that
any planar graph G has such a drawing δ with fix(G) = fix(G, δ) and that their upper
bound holds even in the case where initial drawings are restricted to drawings where
vertices correspond to a set of points on the boundary of a convex set. (Note that
this generalizes both the vertices-on-a-line case and the vertices-in-convex-position
case.)

Verbitsky [27] investigated planar graphs of higher connectivity. He proved linear
upper bounds on fix(G) for three- and four-connected planar graphs. Cibulka [4]
gave, for any planar graph G, an upper bound on fix(G) that is a function of the
number of vertices, the maximum degree, and the diameter of G. This latter bound
implies, in particular, that fix(G) ∈ O((n logn)2/3) for any three-connected planar
graph G and that any graph H such that fix(H) ≥ cn for some c > 0 must have a
vertex of degree Ω(nc2/ log2 n).

For the class of trees, Bose et al. [2] showed that fix(T ) ≥ √
n/2 for any tree T

with n vertices. They further showed that fix(T ) ≤ 3
√

n − 3 for a collection of stars
with n vertices in total, which, up to adding one vertex to turn these stars into a single
tree, implies that the previous bound is asymptotically tight. We have obtained the
same lower bound of

√
n/2 for the larger class of outerplanar graphs (Corollary 4.9).

This bound was obtained independently by Ravsky and Verbitsky [20] via a finer
analysis of sets of collinear vertices in plane drawings.

The hardness of computing fix(G, δ) given G and δ was obtained independently
by Verbitsky [27] by a reduction from independent set in line-segment intersection
graphs. While our proof is more complicated than his, it is stronger as it also yields
hardness of approximation and extends to the problem 1BENDPOINTSETEMBED-
DABILITY with given vertex–point correspondence.

Finally, a somewhat related problem is that of morphing, or isotopy, between two
plane drawings δ1 and δ2 of the same graph G, that is, to define for each vertex v of G

a movement from δ1(v) to δ2(v) such that at any time during the move the drawing
defined by the current vertex positions is plane. We refer the interested reader to the
survey by Lubiw et al. [16].

3 Complexity

In this section, we investigate the complexity of MINSHIFTEDVERTICES and of
1BENDPOINTSETEMBEDDABILITY with given vertex–point correspondence.

Theorem 3.1 Given a planar graph G, a drawing δ of G, and an integer K > 0, it is
NP-hard to decide whether shift(G, δ) ≤ K .

Proof Our proof is by reduction from PLANAR3SAT, which is NP-hard [14]. An
instance of PLANAR3SAT is a 3-SAT formula ϕ whose variable–clause graph is pla-
nar. Note that this graph can be laid out (in polynomial time) such that variables
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Fig. 2 Embedding of a planar
3-SAT formula

Fig. 3 Edges in the variable gadget: immobile (solid black) and mobile (thick solid gray). The predestined
positions of mobile edges either correspond to true (dashed gray) or to false (dotted gray)

correspond to rectangles centered on the x-axis and clauses correspond to noncross-
ing three-legged “combs” completely above or completely below the x-axis [12], see
Fig. 2. We refer to this layout of the variable-clause graph as λϕ . We now construct
a graph Gϕ with a straight-line drawing δϕ such that the following holds: δϕ can be
untangled by moving at most K vertices if and only if ϕ is satisfiable. We fix K

later.
Our graph Gϕ consists of two types of substructures (or gadgets), modeling the

variables and clauses of ϕ. The overall layout of Gϕ follows λϕ (see Fig. 2): the
variable gadgets are drawn in the same order along the x-axis as the variable nodes
in λϕ , and the clause gadgets form noncrossing three-legged combs that lie on the
same side of the x-axis as the corresponding clause nodes in λϕ .

In our gadgets, see Figs. 3 and 4, there are two types of vertices and edges; those
that may move and those that are meant not to move. We refer to the two types as
mobile and immobile. Each mobile vertex (but no immobile vertex) is incident to two
edges that cross two other edges. The drawing δϕ that we specify in the following
has 2K crossings; if ϕ has a satisfying truth assignment, δϕ can be untangled by
moving K mobile vertices. Otherwise, at least one immobile vertex must move, and
thus in total at least K +1 vertices need to move. In the figures, immobile vertices are
marked by black disks, mobile vertices by circles, and their predestined positions by
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Fig. 4 (a) A clause gadget consists of three big 2-switches (drawn vertically) and two 3-switches (drawn
horizontally; one is shaded). Each 3-switch contains another small 2-switch. Note that not all immobile
vertices are marked. (b) and (c) Two ways in which originally immobile vertices can move to avoid a
crossing if ϕ is not satisfiable

little squares. Mobile edges—edges incident to a mobile vertex—are drawn as thick
solid gray line segments, and their predestined positions as gray line segments that
are dashed, dotted, or dashed-dotted (and thus not solid). Immobile edges are drawn
as solid black line segments.

Now consider the gadget for some variable x in ϕ, see the shaded area in Fig. 3.
The gadget consists of a horizontal chain of a certain number of roughly square
blocks. Each block consists of 28 vertices (four of which are mobile) and 28 edges.
In Fig. 3 the four mobile vertices of the leftmost block are labeled in clockwise or-
der a, d , b, and c. Note that the gray edges incident to a and b intersect those incident
to c and d . Thus either both a and b or both c and d must be moved to untangle the
block. Each mobile vertex w ∈ {a, b, c, d} can move into exactly one position w′ (up
to small perturbations). The resulting incident edges are drawn by dotted and dashed
gray line segments, respectively. Note that neighboring blocks in the chain are placed
such that the only way to untangle them simultaneously is to move corresponding
pairs of vertices and edges. Thus either all blocks of a variable gadget use the dashed
line segments or all use the dotted line segments. These two ways to untangle a vari-
able gadget correspond to the values true and false of the variable, respectively.

Let C be the numbers of clauses of ϕ. For each of the 3C literals in ϕ, we connect
the gadget of the corresponding variable to the gadget of the clause that contains
the literal. Each block of each variable gadget is connected to a specific clause gadget
above or below the variable gadget, thus there are 3C blocks in total. Each connection
is realized by a part of Gϕ that we call a 2-switch. A 2-switch consists of 15 vertices
and 14 edges. The mobile vertex q of the 2-switch in Fig. 3 is incident to two thick
gray edges that intersect two immobile edges of the 2-switch. Thus q must move.
There are (up to small perturbations) two possible positions, namely q1 and q2, see
Fig. 3.

The 2-switch in Fig. 3 corresponds to a positive literal. For negated literals, the
switch must be mirrored either at the vertical or at the horizontal line that runs through
the point m. Note that a switch can be stretched vertically in order to reach the right
clause gadget. Further note that if a literal is false, the mobile vertex of the corre-
sponding 2-switch must move away from the variable gadget and towards the clause
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gadget to which the 2-switch belongs. In that case we say that the 2-switch transmits
pressure.

A clause gadget consists of three vertical 2-switches and two horizontal
3-switches. A 3-switch consists of 23 vertices and 18 edges plus a small “inner”
2-switch, see the shaded area in Fig. 4. Independently from the other, each of the
two 3-switches can be stretched horizontally in order to reach vertically above the
variable gadget to which it connects via a 2-switch. The mobile vertex p of the left
3-switch in Fig. 4 is incident to two thick gray edges that intersect two immobile
edges of the 3-switch. Thus p must move. There are (again up to small perturba-
tions) three possible positions, namely p1, p2, and p3. Note that we need the inner
2-switch, otherwise there would be a forth undesired position for moving p, namely
the one labeled p̄ in Fig. 4. By construction, a clause gadget can be made plane by
only moving the mobile vertices of all switches if and only if at most two of the three
big 2-switches transmit pressure, that is, if at least one of the literals in the clause is
true.

The graph Gϕ that we have now constructed has O(C) vertices, O(C) edges, and
X = 26C crossings; 4 · 3C in blocks and 2 · 7C in switches. Recall that any mobile
vertex is incident to two edges that each cross another edge. Thus a mobile vertex
corresponds to a pair of crossings. By moving a mobile vertex to any of its predes-
tined positions, the corresponding pair of crossings disappears. If ϕ is satisfiable, Gϕ

can be made plane by moving K = X/2 mobile vertices since no new crossings are
introduced. If ϕ is not satisfiable, there is at least one pair of crossings that cannot
be eliminated by moving the corresponding mobile vertex alone since all its predes-
tined positions are blocked. Thus at least two vertices must be moved to eliminate
that pair of crossings—and still all the other K − 1 pairs of crossings must be elimi-
nated by moving at least one vertex per pair, totaling in at least K + 1 moves. Thus ϕ

is satisfiable if and only if Gϕ can be made plane by moving exactly K (mobile)
vertices.

Recall that Gϕ consists of O(C) vertices and edges. We construct δϕ step by step,
starting with the vertices of the variable gadgets and then treating the clauses from
innermost to outermost. In order for the 2- and 3-switches to reach far enough, note
that each desired position of a mobile vertex is determined by two pairs of immobile
vertices. By making the distances of the two vertex pairs (polynomially) small, the
desired position can be confined to a region that is small enough to force the mobile
vertex of the next switch into one of its remaining positions. Now it is clear that it is
possible to place vertices at coordinates whose representation has size polynomial in
the length L of a binary encoding of ϕ. This implies that our reduction is polynomial
in L. �

Remark 3.2 Our proof can be slightly modified to show that the problem is also hard
if we are additionally given an axis-parallel rectangle that contains the initial graph
drawing, and each move is constrained to that rectangle—in other words Tantalo’s
version of the planarity game. In the proof we simply compute from the given pla-
nar 3-SAT formula a rectangle that is large enough to accommodate not only the
initial drawing, but also the plane drawing that we get in case the formula has a sat-
isfying truth assignment. Note that this rectangle is barely larger than the smallest
axis-parallel rectangle that contains all vertices of our initial graph drawing.
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We now consider the approximability of MINSHIFTEDVERTICES. Since
shift(G, δ) = 0 for plane drawings, we cannot use the usual definition of an approx-
imation factor unless we slightly modify our objective function. Let shift′(G, δ) =
shift(G, δ) + 1 and call the resulting decision problem MINSHIFTEDVERTICES′.
Now we can modify the above reduction to get a non-approximability result.

Theorem 3.3 For any constant real ε ∈ (0,1], there is no polynomial-time n1−ε-
approximation algorithm for MINSHIFTEDVERTICES′ unless P = N P .

Proof Let nϕ be the number of vertices of the graph Gϕ with drawing δϕ that we

constructed above. We add to Gϕ for each edge e n
(3−ε)/ε
ϕ copies, half of them on

each side of e, in the close vicinity of e. If one of the endpoints of e is a mobile
vertex, then all copies are incident to that vertex. In the following we detail where to
place the other (new) endpoints of these edges.

We go through each immobile vertex v of Gϕ . Let degϕ v be the degree of v in Gϕ .
Note that 1 ≤ degϕ v ≤ 3. If degϕ v = 1, we place the endpoints of the copies of the
edge e incident to v on the two rays that are orthogonal to e in v. On each ray we
place half of the endpoints and connect them by new edges along the ray, starting
with v, see vertex v1 in Fig. 5.

Otherwise, if degϕ v > 1, let e, e′ be two edges that are incident to v and consecu-
tive in the circular ordering around v. Now we add half of the endpoints of e and e′ on
a ray between e and e′ emanating from v, in the same manner as above. The position
of the ray depends on whether both e and e′ are immobile or one of them is mobile.
(Being immobile, vertex v is incident to at most one mobile edge.) In the first case
we place the new vertices on the angular bisector of e and e′, see vertex v2 in Fig. 5.

Fig. 5 Clipping of the modified variable gadget for the proof of Theorem 3.3. The old vertices and edges

are drawn thicker than the new ones. Each old edge has n
(3−ε)/ε
ϕ new copies
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In the second case where one of the edges, say e, is mobile, note that the original and
all predestined positions of e lie in an open halfplane bounded by a line 	 through v.
So we place the new vertices on 	, half on each side of v, see vertex v3 in Fig. 5.

Let G be the resulting graph, δ its drawing, and n ≤ (3/2 · n
(3−ε)/ε
ϕ + 1) · nϕ

the number of vertices of G. Note that ϕ is satisfiable if and only if shift′(G, δ) =
shift′(Gϕ, δϕ) = K + 1. Otherwise, in the original graph Gϕ at least one immobile
vertex has to move. This vertex either is incident to a mobile edge or it is not, see
Figs. 4(b) and (c), respectively. In the new graph G, which contains Gϕ , also at least
one (original) immobile vertex v has to move. If v is not incident to a mobile edge,
in order to make space, all new vertices in the vicinity of v have to move, too. If v

is incident to a mobile edge, a new vertex in the vicinity of v has to move only
if it is incident to a new copy of the mobile edge. That is, in both cases, at least
n

(3−ε)/ε
ϕ vertices have to move. In other words, shift′(G, δ) ≥ K + 2 + n

(3−ε)/ε
ϕ . Note

that G can be constructed in polynomial time since we have assumed ε to be a con-
stant.

Suppose there was a polynomial-time n1−ε-approximation algorithm A for MIN-
SHIFTEDVERTICES′. We can bound its approximation factor by n1−ε ≤ ((3/2 ×
n

(3−ε)/ε
ϕ + 1) · nϕ)1−ε ≤ (2n

(3−ε)/ε
ϕ · nϕ)1−ε = 21−εn

(3−3ε)/ε
ϕ ≤ 2n

(3−3ε)/ε
ϕ . Now

let M be the number of moves that A needs to untangle δ. If ϕ is satisfiable, then
M ≤ shift′(G, δ) · n1−ε = (K + 1) · n1−ε ≤ (nϕ + 1) · 2n

(3−3ε)/ε
ϕ = 2n

(3−2ε)/ε
ϕ +

O(n
(3−3ε)/ε
ϕ ). On the other hand, if ϕ is unsatisfiable, then M ≥ shift′(G, δ) >

n
(3−ε)/ε
ϕ . Since we can assume that nϕ is sufficiently large, the result of algorithm A

(that is, the number M) tells us whether ϕ is satisfiable. So either our assumption
concerning the existence of A is wrong, or we have shown the NP-hard problem
PLANAR3SAT to lie in P , which in turn would mean that P = N P . �

We now state a hardness result that establishes a connection between MIN-
SHIFTEDVERTICES and the well-known graph-drawing problem 1BENDPOINT-
SETEMBEDDABILITY. We define the problem 1BENDPOINTSETEMBEDDABILITY-
WITHCORRESPONDENCE as follows. Given a planar graph G = (V ,E), a set S of
points in the plane with rational coordinates and a one-to-one correspondence ζ be-
tween V and S, decide whether ζ can be extended to a plane 1-bend drawing of G,
that is, whether G has a plane drawing δ such that δ(v) = ζ(v) for all v ∈ V and such
that δ maps each edge of G to a 1-bend polygonal chain.

Theorem 3.4 1BENDPOINTSETEMBEDDABILITYWITHCORRESPONDENCE is
NP-hard.

Proof The proof uses nearly the same gadgets as in the proof of Theorem 3.1: set G′
ϕ

to a copy of Gϕ where each length-2 path (u, v,w) containing a mobile vertex v is
replaced by the edge uw. We refer to this type of edges as new edges. The vertices
of G′

ϕ are mapped to the corresponding vertices in δϕ . We claim that G′
ϕ has a 1-bend

drawing if and only if the given planar-3SAT formula ϕ is satisfiable.
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In order to see that the claim holds, note the two differences to the proof of Theo-
rem 3.1. First, in 1BENDPOINTSETEMBEDDABILITYWITHCORRESPONDENCE all
vertices are fixed. This makes it even easier to argue correctness. Second, any edge
can bend, not only new edges, which are meant to bend. Due to the fact that vertices
cannot move, however, all groups of edges that are meant to be obstacles will remain
obstacles to the bending of the new edges. The only way to embed the new edges is
to route them around the obstacles exactly as in Figs. 3 and 4(a). �

Now suppose that we already know that G has a plane drawing with at most one
bend per edge. Then it is natural to ask for a drawing with as few bends as possible.
Let β(G) be 1 plus the minimum number of bends over all plane 1-bend drawings
of G. The following corollary shows that it is hard to approximate β(G) efficiently.

Corollary 3.5 Given a planar graph G = (V ,E), a set S ⊂ Q2, a one-to-one corre-
spondence ζ between V and S that can be extended to a plane 1-bend drawing of G,
and a constant ε ∈ (0,1], it is NP-hard to approximate β(G) within a factor of n1−ε .

Proof We slightly change the clause gadget in the proof of Theorem 3.4. Apart from
the three vertical 2-switches, the clause gadget now consists of two 4-switches and of
two stacks of s edges each, see Fig. 6. Let G′′

ϕ be the resulting graph, which depends
on the given planar 3SAT formula ϕ. The 4-switches make sure that G′′

ϕ always has
a drawing with at most one bend per edge. Each stack is placed in the vicinity of a
4-switch such that all stack edges have to bend if the central switch edge is forced to
bend into the direction of the stack. (In Fig. 6, the central switch edges in the left and
right 4-switch are labeled eC and e′

C , respectively.) If ϕ is not satisfiable, at least one
clause evaluates to false and in the corresponding gadget all s edges in the left or all s

edges in the right stack need to bend.
The number s of edges per stack can be set to n′

ϕ
(3−ε)/ε , where n′

ϕ is the number
of vertices of the graph G′

ϕ defined in the proof of Theorem 3.4. Then, the remaining
calculations for proving hardness of approximation are similar to those in the proof
of Theorem 3.3. �

Fig. 6 Gadget of clause C adapted for the proof of Corollary 3.5. Edges eC and e′
C

each belong to
a 4-switch, that is, they can be drawn in four combinatorially different ways (drawn in gray; solid vs.
dashed-dotted vs. dotted vs. dashed). Note that not all vertices are marked
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We do not know whether 1BENDPOINTSETEMBEDDABILITYWITHCORRE-
SPONDENCE or MINSHIFTEDVERTICES lie in N P , but it is not hard to show the
following.

Theorem 3.6 1BENDPOINTSETEMBEDDABILITYWITHCORRESPONDENCE is in
P S PA C E .

Proof Let G = (V ,E) be a planar graph, S a set of n points in the plane with ratio-
nal coordinates, and ζ a one-to-one correspondence between V and S. Any 1-bend
drawing of G that extends ζ is uniquely determined by choosing, for each edge e,
the position (xe, ye) of the bend be of e. (If an edge uv is to be drawn without bend,
any point in the relative interior of the line segment connecting ζ(u) and ζ(v) can be
chosen.) Thus, the set of all plane 1-bend drawings of G that extend ζ can be repre-
sented by a subset of R2|E|. The bend be splits (the drawing of) the edge e into two
relative open line segments to which we refer as half-edges.

In order to decide the existence of a plane 1-bend drawing, we specify a pred-
icate in polynomial inequalities with integer coefficients and with variables in the
set E = {xe, ye | e ∈ E}. We do this by first expressing the condition that no two
half-edges with distinct endpoints may intersect. Given four distinct points A, B , C,
and D, the requirement that points C and D lie in different half-planes determined
by the line through A and B can be expressed by an inequality P(A,B,C,D) < 0,
where P is a degree-4 polynomial with integer coefficients and with variables rep-
resenting the coordinates of the four points [13]. The requirement that the line seg-
ments AB and CD are disjoint is described by the disjunction (P (A,B,C,D) >

0) ∨ (P (C,D,A,B) > 0).
Second, we add conditions that guarantee that no bend be coincides with a point

in S, that all bends are distinct, and that no two half-edges overlap if they share
an endpoint. All these conditions can also be described as Boolean combinations
of polynomial inequalities with integer coefficients and with variables from E . As
a consequence, deciding whether ζ extends to a 1-bend drawing of G recasts into
deciding the non-emptiness of a set in R2|E| defined by a predicate whose atomic
formulas are polynomial inequalities with integer coefficients, a problem that is in
P S PA C E [3, 21]. �

For MINSHIFTEDVERTICES and MAXFIXEDVERTICES an additional trick is
needed.

Proposition 3.7 MINSHIFTEDVERTICES and MAXFIXEDVERTICES are in
P S PA C E .

Proof Obviously, both problems have the same optimal solutions, so it is enough to
treat one of them, say MINSHIFTEDVERTICES. We build on the formulation sketched
in the proof of Theorem 3.6. Additionally, we introduce a binary variable zv for each
vertex v that encodes whether we move vertex v (zv = 1) or not (zv = 0). In order to
restrict zv to these two values, we introduce the quadratic equation zv(zv − 1) = 0.
The x-coordinate of vertex v in the plane target drawing can then be described by
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(1−zv)Xv +zvxv , where Xv is the original x-coordinate of v, and xv is the x-coordi-
nate of v after a possible movement. The y-coordinate of v is treated analogously. The
intersection of edges can be expressed as in the proof of Theorem 3.6. To bound the
number of moved vertices by K , we introduce the inequality

∑
v∈V zv ≤ K . �

4 Planar Graphs: Lower Bound

Any drawing of a planar graph with n ≥ 3 vertices, other than K3 or K4, can be
untangled while fixing at least three vertices [27]. In this section, we give an algorithm
proving that

fix(G) ≥ f (n) =
√

(logn) − 1

log logn

for any planar graph G with n ≥ 4 vertices. Note that f actually grows, albeit very
slowly: f (n) > 3 only for some n ≈ 6 · 1015. Partially building on our algorithm,
Bose et al. [2] showed that fix(G) ≥ 4

√
(n + 1)/2, a bound greater than 3 for n > 161.

We first give some definitions (Sect. 4.1) and sketch the basic idea of our algo-
rithm (Sect. 4.2). Then we describe our algorithm (Sect. 4.3) and prove its correct-
ness (Sect. 4.4). The bound fix(G) ≥ f (n) depends on finding a plane embedding
of G that contains a long simple path with an additional property. We show how to
find such an embedding in Sect. 4.5.

4.1 Definitions and Notation

Recall that a plane embedding of a planar graph is given by the circular order of the
edges around each vertex and by the choice of the outer face. A plane embedding
of a planar graph can be computed in linear time [9]. If G is triangulated, a plane
embedding of G is determined by the choice of the outer face. Further recall that an
edge of a graph is called a chord with respect to a path (or cycle) Π if the edge does
not lie on Π but both its endpoints are vertices of Π .

For a point p ∈ R2, let x(p) and y(p) be the x- and y-coordinates of p, respec-
tively. We say that p lies vertically below q ∈ R2 if x(p) = x(q) and y(p) ≤ y(q). For
a polygonal path Π = v1, . . . , vk , we denote by VΠ = {v1, . . . , vk} the set of vertices
of Π and by EΠ = {v1v2, . . . , vk−1vk} the set of edges of Π . We call a polygonal path
Π = v1, . . . , vk x-monotone if x(v1) < · · · < x(vk). In addition, we say that a point
p ∈ R2 lies below an x-monotone path Π if p lies vertically below a point p′ (not
necessarily a vertex!) on Π . Analogously, a line segment pq lies below Π if every
point r ∈ pq lies below Π . We do not always strictly distinguish between a vertex v

of G and the point δ(v) to which this vertex is mapped in a particular drawing δ

of G. Similarly, we write vw both for the edge of G and the straight-line segment
connecting δ(v) with δ(w).

4.2 Basic Idea

Note that in order to establish a lower bound on fix(G), we can assume that the
given graph G is triangulated. Otherwise we can triangulate G arbitrarily (by fixing
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Fig. 7 An example run of our algorithm. (a) Input: the given non-plane drawing δ0 of a triangulated
planar graph G. (b) Plane embedding β of G with path Π (drawn in gray) that connects two vertices on
the outer face. To untangle δ0 we first make Π x-monotone (c), then we bring all chords (bold segments)
to one side of Π (d), move u to a position on the other side of Π where u sees all vertices in VΠ , and
finally move the vertices in V \ (VΠ ∪ {u}) to suitable positions within the faces bounded by the bold gray
and black edges (e). Vertices that move from δi−1 to δi are marked by circles; those that do not move are
marked by black disks

an embedding of G and adding edges until all faces are 3-cycles) and work with
the resulting triangulated planar graph. A plane drawing of the latter yields a plane
drawing of G. So let G be a triangulated planar graph, and let δ0 be any drawing
of G. It will also be convenient to assume that in the given drawing δ0, the vertices
of G are mapped to points with pairwise distinct x-coordinates. By slightly rotating
the drawing δ0 we can always achieve this.

The basic idea of our algorithm is to find a plane embedding β of G such that there
exists a long simple path Π connecting two vertices s and t of the outer triangle stu

with the property that all chords of Π lie on one side of Π (with respect to β) and u
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lies on the other. For an example of such an embedding β , see Fig. 7(b). We describe
how to find β and Π depending on the maximum degree and the diameter of G in
Sect. 4.5. For the time being, we assume they are given. Now our goal is to produce
a drawing of G according to the embedding β and at the same time keep many of
the vertices of Π at their positions in δ0. Having all chords on one side is the crucial
property of Π , we use to achieve this. We allow ourselves to move all other vertices
of G to any location we like, a process we will occasionally refer to as drawing certain
subgraphs of G. This gives us a lower bound on fix(G, δ) in terms of the number l

of vertices of Π . Our method is illustrated in Fig. 7; we give the details in the next
subsection.

4.3 Description of the Algorithm

Let C denote the set of chords of Π . We assume that these chords lie to the right of Π

when we traverse this path from s to t in the embedding β . (Note that “below” is not
defined in an embedding.) Let Vbot denote the set of vertices of G that lie to the right
of Π in β , and let Vtop = V \ (VΠ ∪ Vbot). Note that u lies in Vtop. Let I be a subset
of the vertices of Π such that no two vertices in I are connected by a chord of Π .
We will choose I such that |I | ≥ (l + 1)/2, and our method tries to fix many of the
vertices in I .

In Step 1 of our algorithm we move some of the vertices in VΠ from the position
they have in δ0 to new positions such that the resulting ordering of the vertices in VΠ

according to increasing x-coordinates is the same as the ordering along Π in β . This
yields a new (usually non-plane) drawing δ1 of G that maps Π on an x-monotone
polygonal path Π1. By Theorem 2.1 we can choose δ1 such that at least

√|I | of the
vertices in I remain fixed. Let F ⊆ I ⊆ VΠ be the set of the fixed vertices. Note that
δ1(v) = δ0(v) for all v ∈ V \ VΠ , see Fig. 7(c).

Once we have constructed Π1, we have to find suitable positions for the vertices
in Vtop ∪ Vbot. This is simple for the vertices in Vtop: if we move vertex u, which lies
on the outer face, far enough above Π1, then the polygon P1 bounded by Π1 and
by the edges us and ut will be star-shaped. Recall that a polygon P is called star-
shaped if the interior of its kernel is nonempty, and the kernel of a clockwise-oriented
polygon P is the intersection of the right half-planes induced by the edges of P . Now
if P1 is star-shaped, we have fulfilled one of the assumptions of the following result of
Hong and Nagamochi [8] for drawing triconnected graphs, that is, graphs that cannot
be disconnected by removing two vertices. We will use their result in order to draw
into P1 the subgraph G+

top of G induced by Vtop ∪ VΠ excluding the chords in C.

Theorem 4.1 [8] Given a triconnected plane graph H , every drawing δ∗ of the outer
facial cycle of H on a star-shaped polygon P can be extended in linear time to a
plane drawing of H .

Observe, however, that G+
top is not necessarily triconnected: vertex u may be adja-

cent to vertices on Π other than s and t . In order to fix this, we split G+
top into smaller

units along the edges incident to u. Let (s =)w1,w2, . . . ,wl(= t) be the sequence
of vertices of Π . Let (i, k) be a pair of integers such that 1 ≤ i < k ≤ l, vertices wi
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and wk are adjacent to u and any vertex wj with i < j < k is not adjacent to u. Con-
sider the subgraph of G+

top induced by the vertices that lie (with respect to β) inside
of or on the cycle u,wi,wi+1, . . . ,wj . In the following we convince ourselves that
this subgraph is actually triconnected. Let Htop be the family of all such subgraphs.

Recall that a planar graph H is called a rooted triangulation [1] if in every plane
drawing of H there exists at most one facial cycle with more than three vertices.
According to Avis [1], the following lemma is well known.

Lemma 4.2 [1] A rooted triangulation is triconnected if and only if no facial cycle
has a chord.

Now it is clear that we can apply Theorem 4.1 to draw each of the subgraphs
in Htop. By the placement of u, each drawing region is star-shaped, and by construc-
tion, each subgraph is chordless and thus triconnected. However, to draw the graph
G+

bot induced by Vbot ∪ VΠ (including the chords in C), we must work a little harder.
In Step 2 of our algorithm we once more change the drawing of Π . Let V ∗ =

VΠ \ I . Note that every chord of Π has at least one of its endpoints in V ∗. Now we
go through the vertices in V ∗ in a certain order, moving each vertex vertically down
as far as necessary (see vertices 5 and 7 in Fig. 7(d)) to achieve two goals: (a) all
chords in C move below the resulting polygonal path Π2, and (b) the faces bounded
by Π2, the edge st , and the chords become star-shaped polygons. This defines a new
drawing δ2, which leaves all vertices in F and all vertices in V \ VΠ fixed.

In Step 3 we use the fact that Π2 is still x-monotone. This allows us to move
vertex u to a location above Π2 where it can see every vertex of Π2. Now Π2, the
edges of type uwi (with 1 < i < l) and the chords in C partition the triangle ust

into star-shaped polygons with the property that the subgraphs of G that have to be
drawn into these polygons are all rooted triangulations, and thus triconnected. This
means that we can apply Theorem 4.1 to each of them. The result is our final—and
plane—drawing δ3 of G, see Fig. 7(e).

4.4 Correctness of the Algorithm

We now show that our algorithm indeed produces a plane drawing where many of
the vertices on the chosen path Π are fixed. To this end, recall that F ⊆ I is the set
of vertices in VΠ we fixed in Step 1, that is, in the construction of the x-monotone
polygonal path Π1. Our goal is to fix the vertices in F when we construct Π2, which
also is an x-monotone polygonal path but has two additional properties: (a) all chords
in C lie below Π2 and (b) the faces induced by Π , w1wl , and the chords in C are
star-shaped polygons. The following lemmas form the basis for the proof of the main
theorem of this section (Theorem 4.7), which shows that this can be achieved.

Lemma 4.3 Let Π = v1, . . . , vk be an x-monotone polygonal path such that (i) the
segment v1vk lies below Π and (ii) the polygon P bounded by Π and v1vk is
star-shaped. Let v′

k be any point vertically below vk . Then the polygon P ′ =
v1, . . . , vk−1, v

′
k is also star-shaped.
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Fig. 8 Illustration of the proof
of Lemma 4.4

Proof Only two edges change when we move vertex vk to its new position v′
k ,

namely v1vk and vk−1vk . Consider the remaining k − 2 edges that do not change
and let K be the intersection of the corresponding right half-planes. Since the k − 2
edges form an x-monotone path, K is not bounded. Let q be a point in the interior
of the kernel of P . Then q lies in the interior of K and, moreover, every point that is
vertically below q also lies in the interior of K . Let q ′ be a point vertically below q

and sufficiently close to the edge v1v
′
k . Then q ′ lies in the interior of the kernel of P ′,

and therefore P ′ is star-shaped by definition. �

Lemma 4.4 Let Π = v1, . . . , vk be an x-monotone polygonal path, and let D be a
set of pairwise non-crossing straight-line segments with endpoints in VΠ that all lie
below Π . Let v′

k be a point vertically below vk , let Π ′ = v1, . . . , vk−1, v
′
k , and finally

let D′ be a copy of D with each segment vivk ∈ D replaced by viv
′
k .

Then the segments in D′ are pairwise non-crossing and all lie below Π ′.

Proof Let vi1vk, . . . , vimvk be the straight-line segments incident to vk (both on the
monotone path Π and in D), sorted clockwise around vk such that vim = vk−1. Note
that, since the straight-line segments in D are below Π , the vertices vi1, . . . , vim

are also sorted according to increasing x-coordinates, and all of them have smaller
x-coordinate than vk . Hence, the situation is as depicted in Fig. 8.

For 1 ≤ j ≤ m, let Bj denote the set of points that lie below the straight-line
segment vij vk and define B = ⋃m

j=1 Bj , see the shaded region in Fig. 8. Note that
the interior of B cannot contain any vertices of Π since this would contradict the fact
that Π is x-monotone or the fact that all straight-line segments in D are below Π .
But this implies that none of the straight-line segments vij v

′
k (drawn dotted in Fig. 8)

is crossed by a straight-line segment in D′ since this would yield a contradiction to
the fact that the straight-line segments in D are non-crossing or to the fact that the
interior of B does not contain a vertex of Π . No other crossings can occur in D′ since
the straight-line segments in D are non-crossing. This finishes the proof. �

Recall that we aim at finding a large set I ⊆ VΠ such that no two vertices in I are
connected by a chord of Π . The set F of fixed vertices will be a subset of I . Note
that I may contain vertices connected by an edge of Π . In the following lemma, the
set V ∗ contains all vertices of Π that we have to move in order to draw the chords
of Π straight-line; clearly such a set must cover all chords of Π . Thus the set V ∗
plays the role of the complement of I .

Lemma 4.5 Let Π = v1, . . . , vk be an x-monotone polygonal path. Let CΠ be a set
of chords of Π that can be drawn as non-crossing curved lines below Π . Let V ∗
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be a vertex cover of CΠ . Then there is a way to modify Π by decreasing the
y-coordinates of the vertices in V ∗ such that the resulting straight-line drawing δ∗
of GΠ = (VΠ,EΠ ∪ CΠ) is plane, the bounded faces of δ∗ are star-shaped, and all
edges in CΠ lie below the modified polygonal path, which is also x-monotone. The
coordinates of the vertices of the modified path have bit length O(nL), where L is
the maximum bit length of the vertex coordinates of Π .

Proof We use induction on the number m = |CΠ | of chords. If m = 0, we need
not modify Π . So, suppose that m > 0. We first choose a chord vw ∈ CΠ with
x(v) < x(w) such that there is no other edge v′w′ ∈ CΠ with the property that
x(v′) ≤ x(v) and x(w′) ≥ x(w). Clearly, such an edge always exists. Then we ap-
ply the induction hypothesis to CΠ \ {vw}. This yields a modification Π ′ of Π such
that Π ′ is x-monotone, all edges in the resulting straight-line drawing δ′ of GΠ −vw

lie below Π ′, and all bounded faces in this drawing are star-shaped.
Now consider the chord vw and, without loss of generality, assume that v ∈ V ∗.

Let Z denote the set of those vertices z ∈ VΠ with the property that no point vertically
below z and distinct from z is contained in an edge of the drawing δ′. Note that,
since Π ′ is x-monotone, there must exist a point p vertically below v such that for
no vertex z ∈ Z, the straight-line segment pz crosses any edge in the drawing δ′ of
GΠ − vw.

Let i ∈ {1, . . . , k} be such that v = vi . We move vertex v to the point p to obtain
a new drawing δ′′ of GΠ − vw. Then we apply Lemma 4.4 to the rightmost vertex
of the x-monotone subpath of Π ′ with vertices v1, . . . , vi and, similarly, we apply
Lemma 4.4 to the leftmost vertex of the x-monotone subpath of Π ′ with vertices
vi, . . . , vk . It follows that this does not produce any crossings among the edges in
the drawing δ′′. Moreover, by our choice of the chord vw, for each face in the draw-
ing δ′ of GΠ − vw that has vertex v in its facial cycle, v must be the leftmost or the
rightmost vertex in this facial cycle. Hence, we can apply Lemma 4.3 to these faces.
This yields that they remain star-shaped in δ′′. By the choice of p we ensure that the
bounded face that results from adding the straight-line segment pw to the drawing δ′′
is also star-shaped.

Concerning the size of the coordinates we argue as follows. Without loss of gener-
ality we can assume that all vertices of Π have negative y-coordinates. Now consider
the addition of the ith chord vw. Let yi−1 be the minimum y-coordinate of a vertex
in the drawing before moving vertex v down. Then it is not hard to check that, in
order to add the chord vw without introducing any crossings, it suffices to move v

down to a point with y-coordinate (2Rx)yi−1, where Rx is the ratio of the maximum
over the minimum difference between the x-coordinates of any two distinct vertices
in VΠ . Solving the recurrence for yi yields |yi | ≤ |(2Rx)

iy0|. Therefore, since there
are only O(n) chords, the y-coordinates in the resulting x-monotone path can be
encoded using O(nL) bits. �

Remark 4.6 Unfortunately, there are indeed instances where our algorithm actually
needs Θ(n2) bits for representing all y-coordinates of the modified path. Let k > 0
be an odd integer, and let Π be a path with n = 2k + 1 vertices v1, . . . , vn, where
vi = (i,0) for 1 ≤ i �= k +1 ≤ n and vk+1 = (k +1,−1), see the thick light-gray path
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Fig. 9 When applying the algorithm that proves Lemma 4.5 to the thick light-gray n-vertex path with
the dotted chords indicated on the left and with the vertex cover V ∗ indicated by circles, some of the
y-coordinates of the resulting path need more than n bits. Note that the x-axis is vertical

in Fig. 9. We set CΠ = {v1vn, v2vn−1, . . . , vkvk+2} (drawn with dotted arcs in Fig. 9)
and V ∗ = {v2, v4, . . . , vk−1, vk+2, . . . , vn−2, vn} (marked with circles in Fig. 9).

Our algorithm straightens the chords in the order from innermost to outermost, that
is, vertices are moved in the order vk+2, vk−1, vk+4, . . . , v2, vn. To simplify presenta-
tion, let w1,w2, . . . ,wk denote the vertices of V ∗ in this order, and let w0 = vk+1. For
i = 0, . . . , k, denote the final position of wi by (xi,−yi). Then clearly |xi − xi−1| =
2i − 1 for i = 1, . . . , k. The edges incident to wi−1 have slope ±yi−1 (with the ex-
ception of the irrelevant edge w0w1), thus yi > yi−1 + yi−1 · |xi − xi−1| = yi−1 · 2i.
The recursion solves to yi > 2i i!.

Now suppose that we have modified the x-monotone path Π1 according to
Lemma 4.5. Then the resulting x-monotone path Π2 admits a straight-line drawing
of the chords in C below Π2 such that the bounded faces are star-shaped polygons,
see the example in Fig. 7(d). Recall that u ∈ Vtop is the vertex of the outer triangle
in β that does not lie on Π . We now move vertex u to a position above Π2 such that
all edges uw ∈ E with w ∈ VΠ can be drawn without crossing Π2 and such that the
resulting faces are star-shaped polygons. Since Π2 is x-monotone, this can be done.
As an intermediate result, we obtain a plane straight-line drawing of a subgraph of G

where all bounded faces are star-shaped. It remains to find suitable positions for the
vertices in (Vtop \ {u}) ∪ Vbot. For every star-shaped face f , there is a unique sub-
graph Gf of G that must be drawn inside this face. Note that by our construction
every edge of Gf that has both endpoints on the boundary of f must actually be an
edge of the boundary. Therefore, Gf is a rooted triangulation where no facial cycle
has a chord. Now Lemma 4.2 yields that Gf is triconnected. Finally, we can use
the result of Hong and Nagamochi [8] (see Theorem 4.1) to draw each subgraph of
type Gf and thus finish our construction of a plane straight-line drawing of G, see
the example in Fig. 7(e). We summarize.

Theorem 4.7 Let G be a triangulated planar graph that contains a simple path Π =
w1, . . . ,wl and a face uw1wl . If G has an embedding β such that uw1wl is the
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outer face, u lies on one side of Π , and all chords of Π lie on the other side, then
fix(G) ≥ √

(l + 1)/2.

Proof We continue to use the notation introduced earlier in this section. Recall that
we aim at finding a large set I ⊆ VΠ such that no two vertices in I are connected by
a chord of Π . The complement VΠ \ I of this set I is the vertex cover V ∗ of C that
we need for applying Lemma 4.5.

Further, F ⊆ I is the set of vertices that we fixed in the first step, that is, in the
construction of the x-monotone path Π1. It follows from Proposition 1 in the paper
by Pach and Tardos [18] that we can make sure that fix(G) = |F | ≥ √|I |. Consider
the graph GC with vertex set VΠ and edge set C. An independent set in GC has
exactly the property that we want for I . Thus it suffices to show that the l-vertex
graph GC has an independent set I of size at least (l + 1)/2. We do this by giving a
simple algorithm.

Our algorithm is greedy: we always take a vertex v of smallest degree, put it in the
independent set I under construction, remove v and the neighbors of v from VΠ , and
remove the edges incident to these vertices from C. We repeat this until GC is empty.

Note that GC initially has at least one isolated (that is, degree-0) vertex and that
the bound is obvious if GC is a forest—the algorithm first picks all isolated vertices
and then repeatedly picks leaves. Even if GC contains cycles, the algorithm always
picks vertices of degree at most 2. This is due to the fact that all chords lie on one
side of Π , and thus GC is and remains outerplanar, and any outerplanar graph has a
vertex of degree at most 2.

Let ni be the number of vertices that have degree i when they are put in I . As
observed above, |I | = n0 + n1 + n2. Whenever we put a vertex of degree i into I ,
we remove i + 1 vertices from VΠ , thus l = n0 + 2n1 + 3n2. Let f be the number
of bounded faces of GC . Whenever the algorithm removes a degree-2 vertex, the
number of bounded faces of GC decreases by one, thus f = n2. We claim—and will
prove below—that f + 1 ≤ n0. Now adding 1 ≤ n0 −n2 to the above expression for l

yields l + 1 ≤ 2n0 + 2n1 + 2n2 = 2|I |, or |I | ≥ (l + 1)/2, which proves the theorem.
It remains to prove our claim, that is, n0 − 1 ≥ f . In other words, we need

to show that GC contains at least one isolated vertex more than bounded faces.
Recall that GC does not include the edges of Π . For a chord c = wiwj in C,
we define {wi,wi+1, . . . ,wj } ⊆ VΠ to be the span of c. Now consider a face F

of GC with vertices wi1,wi2, . . . ,wik and i1 < i2 < · · · < ik . The edges of F are
wi1wi2,wi2wi3, . . . ,wikwi1 . Note that the span of wikwi1 contains the span of every
other edge of F . We define the span of F to be the span of the edge wikwi1 .

We prove our claim by induction on f . As noted above, GC contains at least one
isolated vertex. This establishes the base of the induction. Now suppose that f > 0.
Consider the set M of all faces of GC whose span is maximal with respect to set
inclusion. If |M| > 1, we apply the induction hypothesis to the subgraphs of GC

induced by the spans of the faces in M . Otherwise, let F ∗ be the only face in M ,
and let e1, . . . , ek−1 be the edges of F ∗ whose span is properly contained in the span
of F ∗. We apply the induction hypothesis to the subgraphs of GC induced by the
spans of e1, . . . , ek−1. Since k ≥ 3, there are at least two such subgraphs. Each of
them contains at least one isolated vertex more than bounded faces. Taking F ∗ into
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account, we conclude that GC also contains at least one isolated vertex more than
bounded faces. This completes the proof of our claim. �

4.5 Finding a Suitable Path

We finally present two strategies for finding a suitable path Π . Neither depends on
the geometry of the given drawing δ0 of G. Instead, they exploit the graph structure
of G. The first strategy works well if G has a vertex of large degree and, even though
it is very simple, yields asymptotically tight bounds for outerplanar graphs.

Lemma 4.8 Let G be a triangulated planar graph with maximum degree Δ. Then
fix(G) ≥ √

(Δ + 1)/2.

Proof Let u be a vertex of degree Δ and consider a plane embedding β of G where
vertex u lies on the outer face. Since G is planar, such an embedding exists. Let
{w1, . . . ,wΔ} be the set of neighbors of u sorted clockwise around u in β . This gives
us the desired polygonal path Π = w1, . . . ,wΔ that has no chords on the side that
contains u. Thus Theorem 4.7 yields fix(G) ≥ √

(Δ + 1)/2. �

Lemma 4.8 yields a lower bound for outerplanar graphs that is asymptotically tight
as we will see in Sect. 6.

Corollary 4.9 Let G be an outerplanar graph with n vertices. Then fix(G) ≥ √
n/2.

Proof We select an arbitrary vertex u of G. Since G is outerplanar, we can triangu-
late G in such a way that in the resulting triangulated planar graph G′ vertex u is
adjacent to every other vertex in G′. Thus the maximum degree of a vertex in G′ is
n − 1, and the result follows by Lemma 4.8. �

Our second strategy works well if the diameter d of G is large.

Lemma 4.10 Let G be a triangulated planar graph of diameter d . Then
fix(G) ≥ √

d .

Proof We choose two vertices s and v such that a shortest s–v path has length d . We
compute any plane embedding of G that has s on its outer face. Let t and u be the
neighbors of s on the outer face. Recall that a Schnyder wood (or realizer) [23] of
a triangulated plane graph is a (special) partition of the edge set into three spanning
trees each rooted at a different vertex of the outer face. Edges can be viewed as being
directed to the corresponding roots. The partition is special in that the cyclic pattern
in which the spanning trees enter and leave a vertex is the same for all inner vertices.
Schnyder [23] showed that this cyclic pattern ensures that the three unique paths from
a vertex to the three roots are vertex-disjoint and chordless. Let πs , πt , and πu be the
“Schnyder paths” from v to s, t , and u, respectively. Note that the length of πs is
at least d , and the lengths of πt and πu are both at least d − 1. Let Π be the path
that goes from s along πs to v and from v along πt to t . The length of Π is at least
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2d − 1. Note that, due to the existence of πu, the path Π has no chords on the side
that contains u. Thus, Theorem 4.7 yields fix(G, δ) ≥ √

d . �

Next we determine the trade-off between the two strategies above.

Theorem 4.11 Let G be a planar graph with n ≥ 4 vertices. Then fix(G) ≥√
(logn)−1
log logn

, where the base of logarithms is 2.

Proof Let G′ be an arbitrary triangulation of G. Note that the maximum degree Δ

of G′ is at least 3 since n ≥ 4 and G′ is triangulated. To relate Δ to the diameter d

of G′, we use a very crude counting argument—Moore’s bound: starting from an
arbitrary vertex of G, we bound the number of vertices we can reach by a path of
a certain length. Let j be the smallest integer such that 1 + (Δ − 1) + (Δ − 1)2 +
· · · + (Δ − 1)j ≥ n. Then d ≥ j . By the definition of j we have n ≤ (Δ − 1)j+1/

(Δ − 2), which we can simplify to n ≤ 2(Δ − 1)j since Δ ≥ 3. Hence we have
d ≥ j ≥ (logn)−1

log(Δ−1)
.

Now, if Δ ≥ (logn)+2, Lemma 4.8 yields fix(G′) ≥ √
((logn) + 3)/2. Otherwise

d ≥ (logn)−1
log logn

, and we can apply Lemma 4.10. Observing that fix(G) ≥ fix(G′) yields

the desired bound. �

Remark 4.12 The proof of Theorem 4.11 (together with the auxiliary results stated
earlier) yields an O(n2)-time algorithm for untangling a given straight-line drawing
of a planar graph G with n vertices by moving some of its vertices to new posi-
tions. The first step, that is, computing the x-monotone path Π1, takes O(n logn)

time [22]. Moving the vertices of Π1 such that the faces induced by the path and its
chords become star-shaped takes O(γ (n)n) time (Lemma 4.5), where γ (n) = O(n)

is an upper bound on the time needed to perform an elementary operation involving
numbers of bit length O(n). The remaining steps of our method can be implemented
to run in O(n) time. This includes calling the algorithm of Hong and Nagamochi [8]
and computing the Schnyder wood [23], which we need in the proof of Lemma 4.10.

5 Planar Graphs: Upper Bound

We now give an upper bound for general planar graphs that is better than the upper
bound O((n logn)2/3) of Pach and Tardos [18] for cycles. Our construction uses the
following sequence, which we call σq and which we reuse in Section 6:

(
(q − 1)q, (q − 2)q, . . . ,2q, q,0,1 + (q − 1)q, . . . ,1 + q,1, . . . , q2 − 1, . . . ,

(q − 1) + q, q − 1
)
.

Note that σq can be written as (σ 0
q , σ 1

q , . . . , σ
q−1
q ), where σ i

q = ((q − 1)q + i,

(q − 2)q + i, . . . ,2q + i, q + i, i) is the subsequence of σq that consists of all q num-
bers in σq that are congruent to i modulo q . To stress this, the last element in each of
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these subsequences is underlined in σq . Thus σq consists of q2 distinct numbers. It is
not hard to see the following.

Observation 5.1 The longest increasing or decreasing subsequence of σq has
length q .

We call two subsequences Σ = s1, s2, . . . , sl and Σ ′ = s′
1, s

′
2, . . . , s

′
l′ of σq sepa-

rated if:

(i) sl comes before s′
1 or s′

l′ comes before s1 in σq , and
(ii) max(Σ) < min(Σ ′) or max(Σ ′) < min(Σ ).

Observation 5.2 Let Σ and Σ ′ be two separated decreasing or two separated increas-
ing subsequences of σq . Then |Σ ∪ Σ ′| ≤ q + 1.

Proof First consider the case that Σ and Σ ′ are both decreasing. Since they are sep-
arated we can assume without loss of generality that max(Σ) < min(Σ ′). We de-
fine Vi = {iq + j : 0 ≤ j ≤ q − 1} for i = 0, . . . , q − 1. Then, since Σ and Σ ′ are
both decreasing, they can each have at most one element in common with every Vi .
Now suppose that they have both one element in common with some Vi0 . Then,
since max(Σ) < min(Σ ′), Σ cannot have an element in common with any Vi ,
i > i0, and Σ ′ cannot have an element in common with any Vi , i < i0. There-
fore, |Σ ∪ Σ ′| ≤ q + 1.

If Σ and Σ ′ are both increasing, then, similarly as above, every subsequence σ i
q

with 0 ≤ i ≤ q − 1 can have at most one element in common with each Σ and Σ ′.
Moreover, at most one subsequence σ i

q can have an element in common with both Σ

and Σ ′. This implies that |Σ ∪ Σ ′| ≤ q + 1, as required. �

Theorem 5.3 For any integer n0 > 0, there exists a planar graph G with n ≥ n0
vertices and fix(G) ≤ √

n − 2 + 1.

Proof Let q = �√n0�. We define the graph G as a path of q2 vertices 1,2, . . . , q2

all connected to the two endpoints of an edge {a, b} with a, b /∈ {1,2, . . . , q2}, see
Fig. 10(a). Hence G has n = q2 + 2 vertices. Let δG be the drawing of G where
vertices 1,2, . . . , q2 are placed on a vertical line 	 in the order given by σq . We place
vertices a and b below the others on 	, see Fig. 10(b). Let δ′

G be an arbitrary plane
drawing of G obtained by untangling δG. Since all faces of G are 3-cycles, the outer
face in δ′

G is a triangle. All faces of G contain a or b. This has two consequences.
First, a and b must move to new positions in δ′

G, otherwise all other vertices would
have to move. Second, at least one of them, say a, appears on the outer face.

Case 1. Vertex b also lies on the outer face. Then there are just two possibilities for
the embedding of G: as in Fig. 10(a) or with the indices of all vertices reversed,
that is, vertex i becomes q2 − i − 1. Now let 0 ≤ i < j < k ≤ q2 − 1 be three fixed
vertices. By symmetry we can assume that j lies in Δ(a,b, i). Then k also lies in
Δ(a,b, i) since the path connecting j to k does not intersect the sides of this triangle.
Note that k cannot lie between i and j on 	 as otherwise one of the edges {a, k} and
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Fig. 10 Drawings of the graph G that we use in the proof of Theorem 5.3

{b, k} would intersect the polygonal path connecting i to j . Thus, each triplet of fixed
vertices forms a monotone sequence along 	. This in turn yields that all fixed vertices
in {0, . . . , q2 − 1} form a monotone sequence along 	. Due to the construction of σq ,
such a sequence has length at most q = √

n − 2.

Case 2. Vertex b does not lie on the outer face. Then the outer face is of the form
Δ(a, k, k + 1) with 0 ≤ k ≤ q2 − 2. The three edges {b, a}, {b, k}, and {b, k + 1}
incident to b split Δ(a, k, k + 1) into the three triangles Δ(a, k, b), Δ(a,b, k + 1),
and Δ(b, k, k + 1), see Fig. 10(c). Every vertex of δ′

G lies in one of them. Since δ′
G

is plane, vertex k − 1 must belong to Δ(a, k, b), and, by induction, so do all ver-
tices i ≤ k; similarly, all vertices i ≥ k + 1 lie in Δ(a,b, k + 1). We can thus apply
the argument of Case 1 to each of the two subgraphs contained in Δ(a,b, k) and
Δ(a,b, k + 1). This yields two separated monotone sequences of length at most q

each. Note, however, that both are increasing or both are decreasing since one type
forces a to the left and b to the right of 	 and the other does the opposite. Due to
Observation 5.2, the length of two separated monotone subsequences of σq sums up
to at most q + 1 = √

n − 2 + 1.
To summarize, Case 2 yields a larger number of potentially fixed vertices, and thus

fix(G, δG) ≤ q + 1 = √
n − 2 + 1.

Note that actually fix(G, δG) = q + 1 as we can fix, for example, the vertices
0, q,2q, . . . , (q − 1)q , and (q − 1)q + 2. �

6 An Upper Bound for Outerplanar Graphs

In this section we show that the lower bound fix(H) ≥ √
n/2 that holds for any out-

erplanar graph H with n vertices (see Corollary 4.9) is asymptotically tight in the
worst case.

Theorem 6.1 For any integer n0, there exists an outerplanar graph H with n ≥ n0
vertices and fix(H) ≤ 2

√
n − 1 + 1.

Proof Let q = �√n0�. We define the outerplanar graph H as a path of q2 vertices
0,1, . . . , q2 − 1 and an extra vertex c = q2 that is connected to all other vertices, see
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Fig. 11 The outerplanar graph H that we use in the proof of Theorem 6.1

Fig. 12 Analyzing the sequence of fixed vertices along the line 	

Fig. 11(a). Hence H has n = q2 + 1 vertices. Let δH be the drawing of H where
all vertices are placed on a horizontal line 	 as follows. Vertices 0, . . . , q2 − 1 are
arranged in the order σq introduced in Sect. 5, and vertex c can go to an arbitrary
(free) spot on 	.

In the following we show that fix(H, δH ) ≤ 2q + 1 = 2
√

n − 1 + 1. To this end,
let δ′

H be an arbitrary plane drawing of H obtained by untangling δH , and let F

be the set of fixed vertices. Note that H has many plane embeddings—for example,
Fig. 11(b)—but only two outerplane embeddings: Fig. 11(a) and its mirror image. Our
proof exploits the fact that the simple structure of H forces the left-to-right sequence
of the fixed vertices to also have a very simple structure.

Consider the drawing δ′
H . If vertex c lies on 	 in δ′

H , then, since c is connected by
an edge to every other vertex of H and all these vertices lie on 	 in the drawing δH ,
at most two of these other vertices can be fixed. Hence, the interesting case is that c

does not lie on 	 in δ′
H and, therefore, c /∈ F . Hence, F ⊆ {0,1, . . . , q2 − 1}. We

only consider the interesting case that |F | ≥ 2. Let m and M be the minimum and
maximum in F , respectively. Without loss of generality we assume that c lies below 	

and that m lies to the left of M (otherwise we reflect δ′
H on the x/y-axis). Let a and b

be the left- and rightmost vertices in F , see Fig. 12(a).
Let F0 = f1, f2, . . . , f|F | be the vertices in F ordered as we meet them along 	

from left to right. Let F1 = f1, f2, . . . , fj1 be the longest subsequence of F0 starting
at f1 such that fi−1 > fi for 2 ≤ i ≤ j1. Note that by definition f1 = a. We claim that
fj1 = m. Assume to the contrary that fj1 �= m. Then fj1 > m and, clearly, F1 does
not contain m. Thus m lies to the right of fj1+1.

Consider the path π = fj1, fj1 − 1, . . . ,m in H . Since fj1+1 > fj1 > m, fj1+1 is
not a vertex of π . Let R be the polygon bounded by π and by the edges cfj1 and cm.
Since δ′

H is plane, R is simple. Note that fj1+1 lies in the interior of R, and M lies in
the exterior of R, as indicated in Fig. 12(b), where the interior of R is shaded. To see
this, first note that M , which lies to the right of m, cannot lie in the interior of R since
otherwise the path in H with vertices M,M − 1, . . . , fj1 would intersect π or one of
the edges that connect a vertex on π with c. But then, since π can intersect neither
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Fig. 13 This plane drawing of the graph H defined in the proof of Theorem 6.1 shows that
fix(H, δH ) ≥ 2q − 2 since it fixes the vertices 0,1,2, . . . , q − 1,2q,3q, . . . , (q − 1)q of δH . The curved
arcs indicate chains of vertices that have been moved

edge cM nor edge cfj1+1, vertex fj1+1 must lie in the interior of R, as required. This
yields a contradiction since the path M,M −1, . . . , fj1+1 in H must now intersect the
boundary of R. Thus our assumption fj1 �= m is wrong, and we have indeed fj1 = m.

Now let F2 = fj1+1, fj1+2, . . . , fj2 be the longest subsequence of F0 starting
at fj1+1 such that fi−1 < fi for each i with j1 + 1 ≤ i ≤ j2. With similar argu-
ments as above we can show that fj2 = M . Moreover, let F3 = fj2+1, fj2+2, . . . , fj3

be the subsequence of F0 starting at fj2+1 such that fi−1 > fi for each i with
j2 + 1 ≤ i ≤ j3. Again, with similar arguments as above we can show that either F3

is empty or fj3 = f|F |. In addition, we can show in an analogous way that f1 < f|F |
holds.

Thus, the set F is partitioned into F1, F2, and F3. The sequence F2 is increasing,
and both F1 and F3 are decreasing (or empty). Thus, by Observation 5.1, |F2| ≤ q

and, by Observation 5.2, |F1| + |F3| ≤ q + 1, since f1 < f|F | implies that F1 and F3

are separated. Hence, |F | ≤ 2q + 1, as required.
Note that this upper bound is almost tight: fix(H, δH ) ≥ 2q − 2 as indicated in

Fig. 13. �

7 Conclusions

In this paper, we have presented several new results on the problem of untangling a
given drawing of a graph, a problem originally introduced by Watanabe [29] for the
special case of cycles.

On the computational side, we have proved that MINSHIFTEDVERTICES is NP-
hard and also hard to approximate; we also showed that our proof technique extends
to another graph drawing problem, namely 1BENDPOINTSETEMBEDDABILITY with
given vertex–point correspondence. Related questions that remain open are the inap-
proximability of MAXFIXEDVERTICES and the hardness of MAXFIXEDVERTICES

and MINSHIFTEDVERTICES for special classes of graphs such as cycles. We have
shown that all these problems lie in P S PA C E , but do they also lie in N P ? Also, we
are not aware of any result in the direction of parameterized complexity.

On the combinatorial side, Table 1 summarizes the best currently known worst-
case bounds for untangling several important classes of planar graphs. It reveals that
the gap for general planar graphs is probably the most interesting remaining open
problem in the field.
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