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Abstract

Neurotrophic factors are best known for their roles in both development and continued maintenance of the
nervous system. Their strong potential to elicit pro-survival and pro-functional responses in neurons of the
peripheral and central nervous system make them good drug candidates for treatment of a multitude of
neurodegenerative disorders. However, significant obstacles remain and need to be overcome before translating
the potential of neurotrophins into the therapeutic arena. This article addresses current efforts and advances in
resolving these challenges and provides an overview of roadmaps for future translational research and
neurotrophin-based drug developments.
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Introduction
Neurotrophic factors or neurotrophins are a group of
growth factors which have been classically described for
their ability to regulate differentiation and to support
growth during development of the vertebrate nervous
system. The family of neurotrophins consists of nerve
growth factor (NGF), brain-derived neurotrophic factor
(BDNF), neurotrophin 3 (NT3), and neurotrophin 4
(NT4). In order to elicit a survival response, each binds
to one member of the tyrosine receptor kinase (Trk)
family: NGF binds to TrkA, BDNF and NT4 bind to
TrkB, and NT3 binds to TrkC. Each of the neurotro-
phins can similarly respond through an apoptotic path-
way initiated by binding to the 75 kD neurotrophin
receptor (p75NTR). The spatial and temporal balance
achieved between neuronal survival and death depends
on the overall level of neurotrophin present and the type
of receptors that are expressed [1]. In the peripheral ner-
vous system, NGF is the dominant neurotrophic factor,
acting on sympathetic and sensory neurons. However, in
the central nervous system, BDNF is the predominant
neurotrophin utilized due to the abundant expression of
TrkB, with NGF providing trophic support specifically
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to the basal forebrain cholinergic neurons (BFCNs)
which express TrkA. Studies from heterozygous mice
expressing reduced levels of NGF and BDNF reveal that
these two factors are essential for multiple functions
throughout adulthood such as proper memory acquisi-
tion, memory retention, long-term potentiation, and
cholinergic innervation [2,3].
Since the discovery of NGF in the 1950s [4] a large

body of experimental data has pointed to multiple roles
for the neurotrophins. Firstly, most neurotrophins are
required during development and differentiation, during
a time which specific synaptic connections are being
made and proper circuits are being formed. Secondly,
neurotrophin signaling plays an important role in adult-
hood at a time in which continued maintenance and
modulation of those connections is required for normal
brain function.

Neurotrophic signaling pathways
Although different neurotrophins act on different
receptors in the brain, both NGF and BDNF elicit pro-
survival and pro-functional responses using essentially
the same canonical signaling pathways: the mitogen-
activated protein kinase (MAPK) pathway, the phospha-
tidylinositol 3-kinases (PI3K)/ the protein kinase B (also
known as Akt) pathway, and the phospholipase C-γ
pathway (Figure 1). Binding of neurotrophic factor
causes dimerization and autophosphorylation of the Trk
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Figure 1 Trk receptor activation by neurotrophic factors.
Binding of neurotrophic factor causes dimerization and
autophosphorylation of the receptor leading to activation of
signaling cascades through Src and Shc adaptor proteins which bind
the Trk. Once activated Shc increases the activation of Ras, which
leads to MAPK/ERK1/2, causing differentiation and survival through
transcriptional events, an event that can also occur in signaling
endosomes. Shc activation also leads to increases in Akt through
activation of PI3K promoting cell survival by inhibiting apoptotic
signaling. NT: neurotrophin; Trk: tyrosine kinase receptor; ERK1/2:
extracellular signal-regulated kinase; MEK: mitogen-activated protein
kinase; PLC-γ: phospholipase Cγ; rap1: ras-related protein1; Shp2:
tyrosine phosphatases.
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receptor leading to activation of signaling cascades
through Src and Shc adaptor proteins which are
recruited to the Trk receptor. Once activated Shc
increases the activation of Ras, which leads to MAPK/
ERK1/2, causing differentiation and survival through
transcriptional events. Activation of this particular
pathway is thought to occur as well in a specialized
early endosome, the signaling endosome, which has
been shown at least for TrkA to contain various signal-
ing molecules such as PLC-γ, pERK1/2, and the early
endosomal protein, Rab5 [5,6]. Transport of the signal-
ing endosome from the axon to the cell body is an im-
portant means for transmitting trophic signals to the
neuronal soma [7,8]. For sustained MAPK activation,
Trk activates the scaffolding proteins Gab2/Shp2 and
involves the small G protein, Rap1 on the endosome as
well [9]. Shc activation also leads to increases in Akt
through activation of PI3K promoting cell survival by
inhibiting apoptotic signaling, even though this activa-
tion is thought to occur more at the cell surface rather
than on intracellular endosomes [10]. These different
signaling pathways that are activated by neurotrophins
work together to support normal neuronal function and
to prevent neuronal cellular death.

Neurotrophins and neurodegenerative diseases
Given the critical role played by neurotrophins in regu-
lating neuronal functions, it is not surprising then that a
significant number of psychiatric and neurodegenerative
disorders is associated with altered NGF and BDNF
levels and with changed expression of their receptors.
For example, neurodegenerative phenotypes similar to
Alzheimer’s disease (AD) are observed in a mouse model
in which half of the NGF level is neutralized by anti-
bodies [11]. In fact, the brains of AD patients and aged
rats show reduced NGF levels in BFCNs [12-14]. An-
other neurodegenerative disorder, Down’s syndrome
(DS), exhibits similar NGF signaling deficits in the same
region of the brain [15]. Neurotrophins undoubtly have a
strong role in preventing cellular death of BFCNs.
The key role for NGF was discovered in early studies

on transected fimbria in which administering NGF upon
transection was able to markedly reduce cholinergic
neuron death, which was typically induced by the pro-
cedure [16]. In addition, NGF administration was found
to partially reduce cholinergic atrophy in aged rodents
[17]. However, to complicate these neurodegenerative
disorders further, alterations in BDNF and its receptor
are seen in two very important areas that control spatial
memory and higher cognitive function: the frontal cortex
(FC) and the entorhinal cortex (EC). Alterations in
BDNF in these neurons and the overall selective vulner-
ability of specific areas to degeneration are seen not only
in AD, DS, and normal aging, but also other disorders of
the brain pointing to multiple roles for BDNF in particu-
lar. Both protein and mRNA levels of BDNF are
decreased in dopaminergic neurons of the substantia
nigra [18], the neurons most vulnerable in Parkinson’s
disease. BDNF has been shown to have survival role here
and alterations in BDNF most likely contribute to the
disease [19]. In a similar manner, in Huntington’s dis-
ease, BDNF transport from cortical to striatal neurons is
deficient, contributing to selective loss of striatal neurons
and voluntary muscle movements in patients with the
disease [20,21]. Moreover, BDNF levels are thought to
play an important role in susceptibility of non-
neurodegenerative diseases. For various psychiatric disor-
ders like bipolar, depression, anxiety, and schizophrenia, it
has been shown that there are abnormal increases and
decreases in levels of BDNF throughout the brain and in
plasma [22-24]. Strong evidence for the link between
these disorders to BDNF specifically originates from data
from patients carrying a BDNF variant gene, which con-
tains a methionine mutation in the prodomain. Evidence
from these subjects and mouse models carrying the
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mutation shows smaller hippocampal volumes, along
with decreased activity-dependent BDNF release [22].
While it is still unclear as to why certain areas of the

brain are more vulnerable in various disorders over other
areas of the brain, one effect that is certain is that the
synaptic loss and neuronal dysfunction in these areas
lead to detrimental changes to overall synaptic transmis-
sion [25-27]. Indeed, vulnerable areas in the brain which
are impacted the most in many of the diseases men-
tioned above show a decrease in neuronal size and num-
ber, along with reduced expression of neurotransmitter
molecules and receptors in response to the decreased
trophic support [28]. It is conceivable that cellular and
intracellular changes to neurons, induced by alterations
in signaling cascades, can impair neuron’s ability to func-
tion properly. Alterations in any component along the
signaling/survival pathways could potentially exacerbate
the deficit in trophic support for neurons, resulting in
their dysfunction either locally and/or on a circuit level.
The well documented role for neurotrophic factors to

prevent cell death and to maintain cellular function has
led scientists to investigate their translational benefit(s).
To date, the potential beneficial effect of neurotrophins,
NGF and BDNF, in particular, have been explored in
light of several neurodegenerative disorders, including
but not limited to AD, Amyotrophic lateral sclerosis
(ALS) [29], Huntington disease [30], Parkinson’s Disease
and even obesity [31] (Table 1).

Challenges in neurotrophin-based therapy
Although there are strong rationales suggesting that in-
creasing supply of neurotrophins to degenerating neu-
rons may be a potent way to restore neuronal function in
neurodegenerative conditions, delivering neurotrophins
into the brain has proven to be a non-trivial matter. No-
toriously, CNS diseases are difficult to treat due to the
Table 1 Neurotrophic factors that are currently under study f

Neurotrophic factor Target neu

ALS NGF and BDNF Motor neuro

Parkinson’s disease GDNF/neurturin Striatal neur

Huntington’s disease BDNF Striatal neur

Alzheimer’s disease NGF and BDNF Cholinergic

Down Syndrome NGF Cholinergic

Spinal Cord Injury BDNF and NT-3 Site of injur

Obesity BDNF Hypothalam

Lysosomal storage
disorders

BDNF Various in C

Sensory neuropathies NGF Sensory and

Supranuclear Palsy GDNF Various in C

Current status defines Phase trials that have either been completed or are underwa
been shown to rescue neuronal functioning in target neurons in rodent and primat
presence of the blood brain barrier (BBB) that makes it
almost impossible for large proteins and complex com-
pounds to cross from the blood into the brain. In
addition, the cortical and subcortical circuits of the brain
are interconnected resulting in crosstalk among multiple
regions, so coming up with a treatment strategy that se-
lectively targets affected neurons only, but not those un-
affected ones, is a great challenge that has to be carefully
considered. To further compound these issues, neurotro-
phins are relatively large, polar molecules that cannot
readily cross BBB and therefore must be administered
directly into the central nervous system (CNS). Indeed,
all current delivery strategies involve invasive procedures
as discussed below.

Infusion of neurotrophins by direct
intracerebroventricular (ICV) injection
To bypass the inability of neurotrophins to cross BBB,
purified neurotrophins can be directly infused to the brain
by intracerebroventricular (ICV) injection. This delivery
route is particularly suitable for NGF to treat BFCN degen-
eration, since BFCNs extend their axons throughout the
hippocampus and neocortex. NGF that is infused into the
lateral ventricle can act on the TrkA receptor located at
the axonal termini to retrogradely transmit trophic sup-
port signal for BFCNs. This approach has been proven es-
pecially effective in preventing loss of BFCNs in rodents
associated with lesions and aging as mentioned above.
However, clinical trial with NGF infusion showed that, al-
though long-term NGF administration by ICV injection
may cause certain potentially beneficial effects, the intra-
ventricular route of administration is also associated with
significant side effects [33], such as hyperinnervation of
cerebral blood vessels [34], hypophagia [33,35], Schwann
cell hyperplasia with sprouting of sensory and sympa-
thetic neurons [36], and neuropathic pain [33]. As such,
or treatment of various disorders

rons Current status

ns Recruiting for Phase 1 and Phase 2

ons Some Phase 1 complete, ongoing
in Phase 1 and Phase 2

ons Pre-clinical

neurons, entorhinal neurons Ongoing in Phase 1

neurons Pre-clinical

y Pre-clinical

us Pre-clinical

NS Pre-clinical

sympathetic neurons Phase 2 completed

NS Phase 2 completed

y [32]. Pre-clinical status was assigned to each if the neurotrophic factor has
e models of disease.
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these side effects may cause serious concerns in limiting
the dose of infused NGF, thus providing only little
therapeutic benefit.
NGF involvement in pain is stemmed from its ability

to activate the nociceptive response in sensory neurons
[37]. NGF as a therapeutic tool has been particularly
impacted by this characteristic, even in attempt to treat
peripheral neuropathies such as diabetic and HIV-
induced neuropathy, two disorders that do not have the
delivery barriers to overcome like those of the CNS.
Clinical trials with NGF treatment of these two types of
neuropathies have to be terminated due to the fact that
severe pains were induced in patients, even though
symptoms associated with both disorders were amelio-
rated in early Phase II studies [38,39]. Even healthy
volunteers administered with NGF will begin to feel
hyperalgesia at the injection site after 3 hours, with wor-
sening effects over the course of three days [40].
Current efforts with infusion of other neurotrophins

have yielded similarly disappointing results. For example,
to increase the delivery of BDNF, one study has used
intrathecal infusion of N-terminal pegylated BDNF after
spinal cord injury. While the authors were able to show
that pegylated BDNF was able to reach the spinal cord
and induce expression in that area, they saw no
improved axonal response or locomotor recovery, sug-
gesting the amount of BDNF that was delivered was still
insufficient [41]. In a separate study, although enhanced
delivery of BDNF to the CNS was achieved intravenously
using a combination of pegylation and conjugation to
antibodies targeting the transferrin receptor of BBB,
in vivo data from this dual approach is still lacking [42].
Intraputamenal infusion of glia-derived neurotrophic fac-
tor (GDNF) in Rhesus monkeys has also led to reduced
food consumption and weight loss, meningeal thickening
and Purkinje cell loss in the cerebellum [43]. More im-
portantly, GDNF infusion provided no significant benefit
to human patients with Parkinson’s disease [44]. This re-
occurring theme of side effects without significant bene-
fit of treatment has also been shown with intrathecal
infusion of recombinant BDNF in patients with ALS
[29,45].

Neurotrophin-producing cell transplantation
To circumvent the lack of significant therapeutic benefits
in combination with serious adverse effects associated
with the infusion approach, other methods are designed
to achieve more targeted delivery of neurotrophins dir-
ectly to those populations of neurons affected in disease.
This would allow for more controlled and increased dos-
ing while potentially eliminating side effects through
avoiding unknown interactions of the neurotrophin. Cur-
rently, two approaches of direct delivery of neurotrophic
factor into subcortical sites of the brain have been
developed and practiced: transfer of cells modified to ex-
press neurotrophic factor and delivery of an engineered
viral vector encoding the neurotrophic factor protein.
The first technique involves establishing cell lines, pre-
ferably from the donor host, to express the neurotrophic
factor through transfection and selection using vectors
containing the gene of interest. Once expression of the
gene is assessed and optimized, the cells can be trans-
ferred into brain regions to function locally in providing
neurotrophic factor (Figure 2). Early proof-of-principle
studies for this approach were carried out in 1987 by
Gage and colleagues who first established donor rat
fibroblast cells to express a prototype HPRT vector then
grafted these cells into several regions of the rat brain.
They found that HPRT enzymatic activity in the grafted
cells remained high for at least 7 weeks after transfer
[46]. Following this study, genetically modified fibro-
blasts secreting NGF were implanted into the brains of
rats with fimbria lesions. Not only were the transplanted
cells able to survive and produce NGF, they were able to
prevent cholinergic loss and cause the surviving neurons
to sprout axons towards the direction of NGF-secreting
fibroblasts, an indication that the neurons were function-
ing properly [47]. Similar studies in primate and non-
human primates also showed that genetically modified
cells from various cell lines (baby hamster kidney and
primary cells) were able to rescue cholinergic functioning
in injured neurons [48-50]. In addition, this type of gene
therapy has been used in both rodent and primate aging
models to show that age related reductions in neuronal
functioning and memory impairment can be ameliorated
through delivery of genetically modified cells that express
NGF [51-53]. More importantly, implanted cells sus-
tained NGF production for at least 8 months in the pri-
mate brain, and furthermore, administration of NGF in
this manner did not elicit those adverse side effects that
were seen in infusion studies [52,53], indicating that dir-
ect gene delivery could offer a large therapeutic benefit in
disease. These findings and ensuing preclinical studies
have laid the groundwork that led to the first human clin-
ical trial of NGF gene delivery.
At the beginning of 2001, eight subjects both male and

female in early stage AD were enrolled. Primary autolo-
gous fibroblasts derived from each subject were genetic-
ally modified to produce human NGF using retroviral
vectors. Once NGF production was established the cells
were injected into the basal forebrain of the subjects ei-
ther unilaterally or bilaterally. Of those that safely
received the NGF delivery, the mean Mini-Mental Status
Examination (MMSE) scores showed a mean rate-of-
decline reduction of 51 % over a period of 22 months,
and an even higher reduction during the 6–18 months
when NGF production remained robust. In addition,
there were cognitive improvements and increased PET



Figure 2 Gene delivery techniques currently being used to deliver neurotrophin to various sites in the nervous system. Direct viral gene
delivery of neurotrophin (NT) gene occurs through insertion of the neurotrophin into a viral vector and then placement of the viral vector into a
host virus, such as adeno-associated virus or lentivirus. Virus is then directly injected into the brain area(s) through surgical techniques. Cell
transfer gene delivery first involves obtaining host cells, preferably from the subject and then transfecting them with virus containing the
neurotrophin gene. Once selection and amplification of genetically modified cells is performed, and production of the neurotrophin is confirmed,
those cells are then injected or grafted into the brain area(s) through similar surgical techniques.
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scan activity in several areas of the brain. Post-mortem
analysis of one subject which died 5 weeks after NGF de-
livery confirmed that there was robust NGF expression
in the cell grafts and that cholinergic axons showed
sprouting. Overall this study provided the first clinical
evidence that directed neurotrophic factor delivery could
provide therapeutic benefit without side effects com-
monly associated with neurotrophic factor infusion. Only
hemorrhages in two subjects were observed during injec-
tion that may be due to unwanted movements during
the procedure. One patient did not recover and died
shortly after surgery. General anesthesia has been since
adopted to mitigate the problem [54]. Currently, a Phase
II clinical trial with this approach is underway.
This technique has also been applied successfully for

grafting of BDNF and NT-3 in the treatment of spinal
cord injuries. Although not yet performed in human
patients, fibroblasts that were modified to express BDNF
or GDNF and NT-3 and were grafted into sites of spinal
cord injury induced sustained regenerative and sprouting
responses into the sites of injury in rats [55,56]. Overall
direct gene delivery in the clinical setting may prove to
have the most beneficial impact yet, this type of proced-
ure remains an invasive technique. Furthermore,
although grafted cells have been shown to be functional
for up to one year after implantation, subsequent injec-
tions may have to be given over the course of a subjects
lifetime in order to sustain benefits from the treatment.
Moreover, the long term effect(s) of the presence of the
large number of fibroblasts in the brain needs to be fully
evaluated.

Viral vector-mediated gene delivery
Due to advances in molecular research in the past dec-
ade, viral vector-mediated gene delivery may prove to be
a more optimal approach (Figure 2). Delivery of a virus
would confer a permanent change in the ability of the
neuron to make its own neurotrophic factor, leading to a
single injection at the site instead of multiple injections,
therefore decreasing the invasiveness. Intrastriatal injec-
tion of adeno-associated virus (AAV) vector encoding an
enzyme essential in the production dopamine, aromatic
L-amino acid decarboxylase (AADC), into MPTP-
lesioned non-human primates resulted in expression of
the enzyme for at least six years [57]. Even more appeal-
ing in viral delivery is that the cumbersome cell prepar-
ation associated with the cell transfer technique would
be eliminated and that AAV vectors do not express their
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own proteins and therefore would not elicit an immune
response. To date, viral delivery has been used and eval-
uated in a number of rodent, primate and human subject
studies, particularly for Parkinson’s disease (PD). A hall-
mark of PD is specific dopaminergic loss in the striatum,
leading to neuronal and motor dysfunction. Viral gene
delivery of AAV encoding AADC was shown to provide
eight years of clinical improvement in non-human pri-
mates, one of the longest in vivo studies that have been
performed thus far [58]. Similarly, viral delivery of GDNF
by lentivirus reversed motor deficits in MPTP-treated
monkeys and prevented nigrostriatal degeneration [59].
AAV-mediated delivery of an analog of GDNF, neur-
turin, has also been shown to be neuroprotective for
dopaminergic neurons in rats [60]. Studies have demon-
strated that injection of the neurturin viral vectors is
safe, tolerable and could potentially lead to improve-
ments in motor functioning of actual Parkinson’s dis-
ease patients at 1 year and in rhesus macaques [61,62].
However, as with cell-mediated gene delivery, a small
number of human subjects that were given the injec-
tion suffered from intracranial hemorrhages [63], indi-
cating that more surgical training and care, perhaps
even better injection techniques, need to be adapted to
make this type of treatment more applicable.
Viral treatment has also been explored for treating

other disorders such as the lysosomal storage disease,
late infantile neuronal ceroid lipofuscinosis [64] in which
child subjects demonstrated a reduced rate of neuro-
logical decline. In addition, administration of a lentiviral
construct expressing BDNF into rodent and primate
models of AD showed improved cell signaling and a res-
toration of learning and memory, while reversing synap-
tic loss [65]. Lentiviral NGF gene delivery in rats has
been just as beneficial in preventing cholinergic neuron
loss upon fimbria-fornix lesion injury [66]. Currently on-
going and future clinical trials in human subjects using
both BDNF and NGF viral delivery should inform about
their safety and efficacy, and their potential benefits.
Neurotrophin-peptide mimetics/ small molecules
with neurotrophic properties
It is worth mentioning that many of the challenges fa-
cing either direct infusion of neurotrophic factor or
cell-, viral vector-mediated gene delivery methods may be
overcome with small molecules that target the receptor
for the neurotrophic factor instead of introducing the
neurotrophic factor itself. This would allow for specific
activation of only one type of receptor, such as TrkA or
TrkB and not p75, or vice versa, potentially alleviating
the side effects. To this end, the discovery and use of pep-
tide mimetics, short peptides that have improved bio-
availability and lower degree of proteolysis [67], and
small molecules ligands for the Trk receptors [68] have
attracted intensive interest. A potent peptide mimetic
of BDNF has been shown to activate TrkB, promoting
neuronal survival in embryonic chick dorsal root gan-
glion sensory neurons [69]. Also, small molecule BDNF
mimetics have high potency and specificity towards
TrkB and can promote neuronal survival as well, while
also inducing differentiation and synaptic function in
cultured hippocampal neurons [70]. When administered
to mouse models of AD, Huntington, and PD, the small
molecule was able to rescue cellular death to the same
extent of full protein BDNF [70]. Further studies using
small molecule mimetics of BDNF confirmed their broad
application in both restoring TrkB function and improv-
ing respiratory function in mouse models of Rett Syn-
drome [71] and in facilitating functional recovery after
stroke while promoting an increase in the number of
neurons adjacent to stroke site [72]. Currently, a number
of clinical trials are being carried out using neurotrophic
factor mimetics [68]. Results from these trials, especially
concerning side effects and efficacy, will broaden and en-
hance neurotrophic factor -based therapy for treating
neurodegenerative disorders.

Combinational therapy using neurotrophins and other
small molecules
Neurodegenerative disorders are very complex diseases.
Although neurotrophic factor-based strategies have
offered great potential, the biggest unknown is whether
such approach by itself is adequate in halting and revers-
ing the course of progression of these diseases.
As years have passed and many clinical trials later, the

idea that “a single magic bullet approach” or one drug
can act as the sole solution for treating neurodegenera-
tive disorders has proven not very successful. This is
highlighted well in the case of Alzheimer’s disease. For
example, acetyl cholinesterase inhibitors (Aricept) and
N-methyl-D-Aspartate (NMDA) receptor antagonists
(Mementine) have been approved for the treatment of
AD, but both treat symptoms and show only moderate
efficacy. Unfortunately, both fail to slow the rate of cog-
nitive decline in AD patients [73]. Furthermore, another
painful lesson came from the recent failure of a Phase III
trial using gamma secretase inhibitors to treat AD, a
“disease-modifying” compound which has been a sought
after drug target for some time [74]. It is clear that vari-
ous treatments with small molecule drugs such as these,
have yielded only modest results at best. Novel small
molecules for AD, including disease-modifying gamma
secretase modulators, are currently under extensive
evaluation for their potential for AD treatment [75].
Given past failure in monotherapy in this arena, it may
become necessary to use a combination of approaches,
i.e. combinational therapies, to attack the different disease
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causing mechanisms simultanously. We can envision that
by a combinational use of a small molecule with neuro-
trophins may work synergistically to restore neuronal
function and to minimize possible side effects as dis-
cussed above.
Going forward, the idea of combinational therapies

for treating various neurodegenerative disorders is worth
serious consideration, given the fact that so many attempts
with monotherapies have not yielded any success. For
many non-neurodegenerative disorders co-therapies tar-
geting multiple disease pathways and symptoms are ac-
tively being used and evaluated. For rheumatoid arthritis,
disease modifying antirhematic drugs (DMARDS) are
used in combination with fast acting glucocorticoids to
alleviate the symptoms of inflammation quickly [76].
The combination of DMARDS and glucocorticoids was
shown to cause a reduction in both the tolerability and
side effects of DMARD infusion alone [76-79]. Moreover
combinational therapy using various DMARDS and glu-
cocorticoids together resulted in short and long term
improvements when compared to DMARDS alone [76].
For cardiovascular disease involving cholesterol, treat-
ment with statins is the standard. However, statins have
shown over time to eventually lead in some cases to re-
gression of the disease [80]. Co-therapy using statins and
niacin have shown to lead to significant decreases in dis-
ease causing low-density lipids, while raising beneficial
high-density lipids [80,81] which may lead to tighter lipid
control and therapeutic benefit for those with statin-
treated cardiovascular disease. Even for diabetes, insulin,
which has been the main glucose lowering treatment, has
been evaluated in combination with recombinant human
insulin-like growth factor I (IGF1), a pathway that if
restored can lead to much higher glucose lowering than
insulin alone. Subjects receiving both IGF1 and insulin
together decreased their insulin need, while those treated
with insulin alone had an increase in insulin usage [82].
Examples such as these highlight various properties of
combinational therapies in treating a disorder and con-
firm why co-therapy in neurodegenerative disease may
prove to be most successful. First, these examples show
that one can quickly relieve symptoms of a disease with
one or more drugs while concomitantly treating the dis-
ease itself with another. This is important since treating
a disease will most likely have a longer time course
inherent to its action than solely relieving symptoms.
Secondly, combinational therapy using two or more
drugs can compensate for one drug’s inactivity over time
and therefore potentially inhibit regression of the disease.
The final property illustrated here is that combinational
therapy using two or more proteins/small molecules can
work synergistically together so that one or both are
needed in lower dose or less frequently, a convenience
that someone suffering from an illness would definitely
benefit from.

Conclusions
NGF and its other family members provide potent
trophic support to neurons. Their robust effects in rescu-
ing degenerating neurons cannot be matched in this re-
gard by any small molecules or compounds identified
thus far. Neurotrophin-based therapies may well prove
to be an effective means to combat epidemic neurode-
generative diseases. Yet, many daunting challenges re-
main to be resolved. Furthermore, it remains to be seen
if such strategies that aim at a single target will be suffi-
cient to cure these diseases. In the end, the inherent
complexity of neurodegenerative diseases may require
combinational therapies that target multiple pathways
for effective treatment.
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