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Abstract

Background: Like many other plant species, Arabidopsis uses arginine (Arg) as a storage and
transport form of nitrogen, and proline (Pro) as a compatible solute in the defence against abiotic
stresses causing water deprivation. Arg catabolism produces ornithine (Orn) inside mitochondria,
which was discussed controversially as a precursor for Pro biosynthesis, alternative to glutamate
(Glu).

Results: We show here that ornithine-3-aminotransferase (SOAT, At5g46180), the enzyme
converting Orn to pyrroline-5-carboxylate (P5C), is localised in mitochondria and is essential for
Arg catabolism. Wildtype plants could readily catabolise supplied Arg and Orn and were able to
use these amino acids as the only nitrogen source. Deletion mutants of 3OAT, however,
accumulated urea cycle intermediates when fed with Arg or Orn and were not able to utilize
nitrogen provided as Arg or Orn. Utilisation of urea and stress induced Pro accumulation were not
affected in T-DNA insertion mutants with a complete loss of SOAT expression.

Conclusion: Our findings indicate that SOAT feeds P5C exclusively into the catabolic branch of
Pro metabolism, which yields Glu as an end product. Conversion of Orn to Glu is an essential route
for recovery of nitrogen stored or transported as Arg. Pro biosynthesis occurs predominantly or
exclusively via the Glu pathway in Arabidopsis and does not depend on Glu produced by Arg and
Orn catabolism.

Background

Amino acids are required for protein biosynthesis, but
have also additional functions like nitrogen storage and
transport. Proline (Pro) and the non-proteinogenic y-ami-
nobutyrate are also used as compatible osmolytes that are
accumulated by many plant species in response to water
deprivation [1]. Arginine (Arg) and Arg-rich proteins serve
as an important storage form of organic nitrogen in many
plants, especially in seeds [2-4]. Additionally, Arg or orni-

thine (Orn) are the precursors for the synthesis of sper-
mine, spermidine and related polyamines, which are
essential for sexual reproduction and additionally play
important roles in stress tolerance [5,6]. Therefore, bio-
synthesis and degradation of amino acids is embedded in
a complex metabolic and regulatory network that allows
the plant to serve all the requirements of growth and envi-
ronmental adaptation.
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The primary pathways for amino acid biosynthesis and
degradation in plants were mainly deduced by identifying
genes or enzyme activities homologous to prokaryotic or
fungal model systems. However, the localisation of meta-
bolic pathways in different compartments within the
plant cell is still not satisfyingly clarified [7]. Additional
complications arise from the possibility of substrate chan-
nelling in multi-enzyme complexes that could separate
individual pathways despite the use of common metabo-
lites.

Arg biosynthesis seems to be localised predominantly in
plastids, with some ambiguous localisation prediction of
enzymes in the cytosol [3]. Arg decarboxylases (ADC1 &
2), the committing enzymes for polyamine synthesis in
Arabidopsis have a predicted localisation in the cytosol or
chloroplast (SubCellular Proteomic Database [8]),
whereas Arg catabolism takes place in mitochondria via
arginase [9]. Arginase produces urea, which is further
degraded by urease in the cytoplasm, and Orn, which
could be exported from mitochondria to re-enter Arg bio-
synthesis [10]. Two transporters for basic amino acids that
could mediate exchange of Arg and Orn across the mito-
chondrial inner membrane have been identified by com-
plementation of a yeast Argl1 mutant [11,12].

Pro is mainly synthesised in the cytosol from glutamate
(Glu) via pyrroline-5-carboxylate (P5C) by the sequential
action of P5C synthetase (P5CS) and P5C reductase
(P5CR). In Arabidopsis, two isoforms of P5CS are present,
with P5CS2 as a housekeeping isoform and P5CS1 being
responsible for the accumulation of Pro in response to
stress [13,14]. In response to osmotic stress, P5CS1
becomes re-localised to plastids [14]. For degradation, Pro
is imported into mitochondria where it is converted back
to Glu by Pro-dehydrogenase (ProDH) and P5C-dehydro-
genase (P5CDH) [15,16]. There is also evidence for a
pathway of Pro synthesis from Orn, and Orn-8-ami-
notransferase (3OAT) has been implicated in this pathway
[17]. BOAT transfers the §-amino group of Orn to a-
ketoglutarate or related a-keto acids, thereby forming
glutamate-5-semialdehyde (GSA) and Glu. The equilib-
rium of this reaction was found far on the GSA/Glu side
[17]. GSA is in spontaneous equilibrium with the cyclic
P5C, which is the common intermediate in Pro biosyn-
thesis and degradation. Formation of GSA/P5C from Orn
was postulated to constitute an alternative pathway of Pro
synthesis and accumulation, with Arg or Orn instead of
Glu as precursors [18].

The first gene encoding a plant SOAT was cloned from a
moth bean cDNA library by functional complementation
of an E. coli Pro-auxotroph strain deficient in the conver-
sion of Glu to P5C [18]. Sequence similarity to mamma-
lian and bacterial enzymes strongly suggested that the
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gene encoded a SOAT rather than an aOAT. Recently, het-
erologous expression of the moth bean 8OAT in E. coli
revealed that its activity was inhibited by serine, isoleu-
cine and valine, but not Pro [19]. The Arabidopsis SOAT
gene (At5g46180) was identified by sequence comparison
and was found to be upregulated in young seedlings and
in response to salt stress [20]. However, out of eleven pre-
diction programs for subcellular localisation including
mitochondria, all strongly predict a targeting of the §OAT
protein to mitochondria, with a putative transit peptide
cleavage site after Phe16 [21,22]. Targeting OAT to mito-
chondria strongly suggests that P5C is fed into the Pro
degradation pathway rather than into Pro biosynthesis.
Additionally, radiotracer experiments with externally sup-
plied Orn indicated that Pro formed from Orn preserves
the 8-amino group, whereas the o-amino group is lost
[23]. The latter results suggested that Orn to Pro conver-
sion proceeds via an aOAT.

On the other hand, transgenic tobacco and rice plants
overexpressing the Arabidopsis SJOAT gene had increased
Pro content and increased stress tolerance, supporting the
concept that Orn conversion can contribute to Pro accu-
mulation [24,25]. Use of gabaculine as a potent inhibitor
of 0OAT suggested that in radish cotyledons Orn conver-
sion could contribute to salt-induced Pro accumulation,
whereas in rice leaves this pathway was probably of minor
importance or not at all active [26,27]. None of the stud-
ies published at present directly investigated the subcellu-
lar localisation of 8OAT or provided strong evidence for a
physiological function of 8OAT in Pro synthesis in non-
transgenic plants.

In the present study we have analysed the physiological
function of 8OAT in Arabidopsis. We provide experimen-
tal confirmation of the predicted localisation of SOAT in
mitochondria using a SOAT-GFP fusion protein. With the
use of loss-of-function T-DNA insertion mutants we dem-
onstrate that SOAT is essential for nitrogen recycling from
Arg, whereas it does not seem to contribute to Pro biosyn-
thesis.

Results

Ornithine-5-aminotransferase is localised in mitochondria
As a first step to determine the physiological function of
SOAT we determined the subcellular localisation of the
enzyme. We fused the cDNA of JOAT in frame to the N-
terminus of GFP and expressed the fusion protein in Ara-
bidopsis and in Nicotiana benthamiana. Intact cells and
protoplasts from stably transformed Arabidopsis plants or
from transiently transformed N. benthamiana leaves
showed a clear punctate distribution of 8OAT within the
cells (Fig. 1, Additional file 1, and data not shown). Stain-
ing of leaf sections with MitoTracker was not successful,
therefore double labelling was performed on protoplasts.
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Figure |

SOAT is localised in mitochondria. Leaf protoplasts
from Arabidopsis plants stably transformed with a SOAT-GFP
fusion construct under control of the CaMV 35S promoter.
A: Fluorescence signal of MitoTracker orange; B: GFP signal;
C: Autofluorescence of chlorophyll; D: Merge of A and B; E:
Merge of B and C; F: Merge of C and a brightfield image.
Scale bar =20 um.

In protoplasts, colocalisation of the GFP-signal with the
orange fluorescence of MitoTracker clearly identified the
SOAT-GFP containing compartments as mitochondria,
confirming the sequence-based prediction of subcellular
localisation.
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Ornithine-5-aminotransferase does not contribute to
stress-induced proline accumulation

The mitochondrial localisation of OAT indicated that it
is not involved in the formation of Pro, since a reversed
reaction of ProDH is energetically unfavourable. Due to
the chemical instability of GSA/P5C, an export of this
intermediate to the cytosol and thus a contribution to Pro
synthesis appears rather unlikely. To obtain direct evi-
dence for the physiological function of 8OAT, we identi-
fied and characterised loss-of-function T-DNA insertion
mutants. We found that the T-DNA insertion lines
SALK 033541 (oatl) and SALK_106295 (oat3) carry
inverted tandem repeats of the T-DNA in the 15t intron
and 4t exon of JOAT, respectively (Fig. 2A). Segregation
analysis confirmed the absence of further T-DNA inser-
tions in oatl and oat3 after repeated backcrossing to
wildtype Col-0 (data not shown). Plants homozygous for
the T-DNA insertions were identified by PCR on genomic
DNA (Fig. 2B). In both lines, the T-DNA insertion resulted
in the complete loss of transcript accumulation as demon-
strated by northern blot analysis (Fig. 2C-D). The probe
used covers 351 bp of the conserved domain of pyridoxal-
dependent aminotransferases and did not detect any
native or truncated transcripts in both lines, thus exclud-
ing the translation of any active protein from the SOAT
gene (Fig. 2A and Additional file 1). In transgenic lines
expressing the SOAT-GFP fusion construct, the SOAT
probe detected the native mRNA and a band with higher
molecular weight corresponding to the SOAT-GFP tran-
script. Expression of P5CS1, the gene responsible for
stress-induced Pro biosynthesis, was unchanged in oat
mutants and SOAT-GFP transgenic plants (Fig. 2D). A
third line, SALK_010095 (0at2), carried the insertion 4 bp
upstream of the transcription start site that was deter-
mined by [20]. SOAT transcripts of the native size were
detected in oat2, although they were slightly less abundant
compared to the wildtype Col-0 (data not shown). Thus
the 0at2 mutant was not included in further studies.

Analysis of genomic sequences revealed no other candi-
date genes for OATs in Arabidopsis. Still, it was important
to analyse OAT activity in the oatl and oat3 knockout
mutants. In whole plant extracts of 2-week-old wildtype
seedlings, a weak but significant OAT activity was detected
(Fig. 2F). In oat1 and oat3 extracts, OAT activity was not
significantly increased over control values and accounted
for maximally 1/10 of the wildtype activity. Two SOAT-
GFP expressing lines had 8.5 and 20.4-fold higher OAT
activities than the wildtype. Homozygous plants of both
oatl and oat3 mutant lines showed no obvious phenotyp-
ical differences from the wildtype under greenhouse con-
ditions, demonstrating that 8OAT-activity is not essential
for the normal life cycle of Arabidopsis (data no shown).
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Molecular and biochemical characterisation of oat-
knockout mutants. A: Schematic representation of the
exon-intron structure of OAT (At5g46180) with the T-DNA
insertion points in oat/ and oat3. Thick green bars indicate
exons, thin green bars indicate introns. The thick red bars
indicate the part of the mRNA used as probe for northern
blotting. B: PCR with two gene-specific primers and one
primer complementary to the T-DNA left border identified
homozygous plants. Appearance of two T-DNA specific
bands (indicated by arrowheads) indicated an inverted tan-
dem repeat of the T-DNA. C: Northern blot with the 0AT-
specific probe on wildtype, oat mutants and SOAT-GFP trans-
genic plants. D: The same membrane re-probed with a
P5CS | -specific probe. E: EtBr staining of the corresponding
RNA-gel to demonstrate equal loading. F: OAT activity in
whole plant extracts. OAT activity is expressed in arbitrary
units of P5C produced per mg total protein during 20 min.
Error bars indicate SD of triplicate assays, the whole experi-
ment was repeated with similar results from independent
samples.
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To investigate a potential function of 3OAT in stress-
induced Pro accumulation, we cultivated wildtype, oatl
and oat3 in sterile culture on media containing increasing
amounts of NaCl (Fig. 3A). The mutants displayed similar
sensitivity towards NaCl as the wildtype and seedling
establishment was almost completely blocked in all three
genotypes by the addition of more than 100 mM NaCl.
Quantification of free Pro content in 3-week-old plants
revealed no significant differences between wildtype and
oat mutants, neither under control conditions nor after
salt stress (Fig. 3B). In all three genotypes the content of
free Pro was increased approximately 3-fold by the addi-
tion of 100 mM NaCl. Similar Fw/Dw ratios in wildtype
and oat mutants under all salt concentrations further sup-
ported an equal stress tolerance in both genotypes (Fig.
3C). These findings indicate that SOAT does not contrib-
ute significantly to stress-induced Pro biosynthesis in vivo
during salt stress. Additional evidence against a direct
entry of Orn-derived P5C into Pro biosynthesis was
derived from public microarray-expression data analysed
with the BAR e-northern web-tool [28,29]. Over a large set
of stress experiments, JOAT mRNA levels are in much
closer correlation to PSCDH mRNA than to P5CR mRNA
(data not shown).

Ornithine-5-aminotransferase is required for utilisation of
arginine and ornithine

Since the predominant function of OAT was apparently
not in Pro biosynthesis, we considered alternative meta-
bolic functions for this enzyme. Co-localisation with the
Arg-breakdown pathway in mitochondria suggested a
putative function of 3OAT in recycling of nitrogen stored
as Arg. To test if 3OAT functions in Arg catabolism, we
grew wildtype and oat mutant seedlings in sterile culture
with Arg, Orn or urea as the sole source of nitrogen (Fig.
4). In the absence of any external nitrogen, both wildtype
and mutants showed root growth and expanded, de-etio-
lated cotyledons, but further development was not possi-
ble. Arg supported growth of the wildtype, although the
plants grew slower when compared to plants grown on
normal MS mineral medium. oat mutants germinated, but
failed to de-etiolate, initiate root growth or develop true
leaves on 5 mM Arg as the only nitrogen source. With 10
mM Orn as the only nitrogen source, growth of the
wildtype was even more retarded and oat mutants were
arrested in development at the same stage as on Arg-con-
taining plates. Urea could be used equally well by all three
analysed genotypes. These findings demonstrated that oat
mutants could not use Arg or Orn as nitrogen sources for
growth. Comparison with seedlings grown in the absence
of nitrogen indicated that supply of Arg or Orn inhibited
seedling establishment and use of internal nitrogen
reserves in oat mutants.
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oat mutants display the same salt stress responses as
wildtype plants. A: Col-0 wildtype, oat! and oat3 were
grown for three weeks in sterile culture on MS medium sup-
plemented with 60 mM sucrose and increasing amounts of
NaCl. B: Free Pro levels in 3-week-old plants. C: Fw/Dw
ratios of plants cultivated under the same conditions. Col-
umns represent the average of 3 (C) or at least 4 (B) inde-
pendent biological replicates, error bars indicate SD.

A general inhibitory effect of single amino acids to plant
cell growth had been observed earlier and could in the
case of Arg be abolished by addition of glutamine (Gln)

http://www.biomedcentral.com/1471-2229/8/40

10 mM Orn
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Col-0
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Figure 4

oat mutants are unable to use Arg or Orn as nitrogen
source. Col-0 wildtype, oat/ and oat3 were cultivated on MS
medium lacking mineral nitrogen but supplemented with 30
mM sucrose and the indicated concentrations of organic
nitrogen sources. Plates without nitrogen, with 5 mM Arg or
10 mM urea were photographed after 4 weeks, the picture of
the plate with 10 mM Orn was taken after 6 weeks of
growth.

[30]. Indeed, addition of 0.5 mM GIn to 5 mM Arg
improved growth and development of both wildtype and
oat mutants (Fig. 5A). However, oat mutants remained
chlorotic and grew worse than in the presence of 0.5 mM
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Metabolism of Arg and Orn is impaired in oat
mutants. Col-0 wildtype, oat! and oat3 were cultivated for
3 weeks on MS medium lacking mineral nitrogen but supple-
mented with 30 mM sucrose, 0.5 mM GIn and an additional
organic nitrogen source corresponding to 20 mM nitrogen.
A: Addition of 0.5 mM GIn to 5 mM Arg allowed establish-
ment and limited growth of oat mutant seedlings. B-D: Pro-
files of the major free amino acids in excised rosettes of
plantlets cultivated on the indicated nitrogen sources. Values
are the average of 3 to 4 independent biological replicates,
error bars indicate SD. Asterisks indicate significant differ-
ences from the wildtype Col-0 (p < 0.05). For the full amino
acid profiles see Fig. 6.
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Gln alone (data not shown). 10 mM GlIn as the only nitro-
gen source enabled much faster growth of Arabidopsis
than 5 mM Arg or 10 mM Orn, each supplemented with
0.5 mM GIn. oat mutants grew equally well as the
wildtype on 10 mM GIn. These findings indicated that
inhibitory effects of Orn and Arg were overcome by Gln,
but oat mutants were not or only poorly able to utilise Arg
or Orn as nitrogen sources.

oat mutants accumulate urea cycle intermediates when
supplied with arginine

To determine the fate of externally supplied Arg and Orn
in oat mutants and wildtype, we determined the pools of
free amino acids in seedlings cultivated on Gln, Arg, O
or urea as nitrogen sources. To support formation of suffi-
cient amounts of biomass in oat mutants, 0.5 mM Gln was
added to all plates. As expected, free Gln accumulated in
plants cultivated on 10 mM Gln, while most other amino
acids were present at similar levels as in plants cultivated
on 20 mM mineral nitrogen (Fig. 5B, Fig. 6, and data not
shown). A slightly reduced Arg content was the only sig-
nificant difference to the wildtype in oat mutants on 10
mM Gln. With urea, Arg or Orn as the main nitrogen
source, free Gln levels were progressively lowered and the
oat mutants always displayed lower Gln content than the
wildtype, although differences were only significant on 5
mM Arg (Fig. 5C,D and Fig. 6). With Orn as the main
nitrogen source, oat mutants were depleted of Gln almost
to the detection limit, despite the presence of 0.5 mM Gln
in the medium. Interestingly, Glu levels were nearly con-
stant under all conditions analysed and in all genotypes.
Levels of asparagine and aspartate basically mirrored the
trend of Gln and Glu contents on a lower level. On 10 mM
urea as the main nitrogen source, levels of free amino
acids were generally low. Significant differences between
the wildtype and the oat mutants were only observed for
y-aminobutyrate, Arg (both lower in oat mutants) and
Orn (higher in oat mutants). The most striking differences
between the wildtype and the oat mutants were observed
when Arg or Orn were supplied externally. Under these
conditions, oat mutants accumulated Orn, citrulline (Cit)
and Arg. Cit and Orn levels were 34 to 163-fold higher in
oat mutants than in the wildtype, whereas Arg was
increased 6 to 21-fold. Also for leucine, isoleucine, pheny-
lalanine and lysine significant, although smaller,
increases were observed. Gln, aspartate and Pro were the
only amino acids for which significantly lower levels were
observed in oat mutants cultivated on Orn or Arg. Based
on these amino acid profiles, we conclude that 3OAT con-
stitutes a major and possibly the only exit route of nitro-
gen from Orn or Arg. Accumulation of Cit indicated that
Orn and Arg were metabolised after uptake, most likely by
enzymes of the urea cycle.
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line| Col-0 | oat1 | oat3 CoI-0| oat1 | oat3 | Col-0 | oat1 | oat3 | Col-0 | oat1 | oat3

N-source . 10 mM urea, 5 mM arginine, 10 mM ornithine,
Amino acid 10 mM glutamine 0.5 mM glutamine 0.5 mM glutamine 0.5 mM glutamine
Aspartate 19.6 22.3 18.9 12.3 8.9 8.1 5.8

+5.1 4.4 +4.7 +2.9 +2.9 +2.6 +0.3

Threonine| 142 | 192 | 17.4 | 224 | 215 | 21.7 | 38.1
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+0.8 +0.6 +0.7 +2.5 +1.0 +1.8 +1.9 +1.0 +0.7 +1.2 +2.1 +1.6
L 35 4.1 4.1 0.4 0.8 0.7 0.6
Ciruline f 13" | w14 | 214 | 03 | 202 | =06 | 02
o-Amino- | 1.7 1.9 1.8 2.4 25 25 5.6 .
butyrate | 0.6 | 0.7 | 0.6 | 0.8 | 0.8 | 0.6 | 1.8 +1.0

1.8 2.0 2.0 1.2 1.1 1.2 1.1
+0.3 +0.5 +0.5 +0.5 +0.1

1.1 1.1 1.0 0.7 0.9
+0.2 +0.3 +0.1 +0.2 +0.2

1.1 1.0 1.0 0.6 0.7
+0.1 +0.4 +0.3 +0.2 +0.2

11 0.8 11 0.6 1.2
+0.3 +0.2 +0.6 +0.4
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Hydroxy-| 0.8 0.8 0.7 2.2
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Lysine| 66 | +18 | +1.4 | 201 | 205 | 208 | +1.1
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Figure 6

Amino acids profiles of oat mutants grown on different nitrogen sources. Contents of free amino acids were deter-
mined by HPLC. For cultivation conditions see legend to Fig. 5 and the methods section. Amino acid contents are given in
pmol/10 mg FW. Values are the mean + SD of 3 to 4 independent replicates. n.d. = not detected, also not or not consistently
detected were cysteine, methionine, tryptophan and tyrosine. Green and red boxes indicate values significantly higher or lower
than the wildtype, respectively (p < 0.05 by students t-test).

Page 7 of 14

(page number not for citation purposes)



BMC Plant Biology 2008, 8:40

oat mutants are rescued by expression of an JOAT-GFP
fusion protein

To demonstrate that the mutant phenotypes of the oat
knockout mutants are solely based on the lack of 6OAT
activity, we crossed the oat3 mutant with a SOAT-GFP
expressing transgenic line with a single T-DNA insertion
and clearly visible GFP expression in the T2 and T3 gener-
ation. PCR based genotyping of the F2 generation after
crossing was used to identify plants homozygous for the
0at3-T-DNA that additionally carried the SOAT-GFP con-
struct (Fig. 7A). Among the progeny of a homozygous oat3
plant heterozygous for the SOAT-GFP construct, 39 out of
70 seedlings were scored Arg catabolism positive by

A oat3 —
o — et G

OAT-GFP — L —
oat3 — e —

OAT/ oat3/ OAT/ OAT/
oat3 oat3 oat3 OAT

OAT-GFP

wt

MS-N, 30 mM sucrose, 5 mM Arg

Figure 7

Complementation of the oat mutant phenotype by
expression of the Oat-GFP fusion protein. A: Genotyp-
ing of the F2-progeny of a cross between oat3 and a OAT-
GFP transgenic line. B: The capability to utilise Arg as the only
nitrogen source is segregating in the progeny of two plants
homozygous for the oat3 T-DNA insertion but heterozygous
for the SOAT-GFP construct.
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expanded, de-etiolated cotyledons and true leaf formation
(Fig. 7B). All 39 showed clear GFP expression. Among the
31 Arg sensitive seedlings, 18 did not show any GFP fluo-
rescence, whereas 13 showed expression, mostly with a
patchy pattern of GFP-expressing and non-expressing
cells. Progeny of a plant homozygous for oat3 and the
SOAT-GFP construct had even fewer GFP expressing cells
and were not able to grow with Arg as the sole nitrogen
source, indicating the activation of gene silencing by the
combination of the oat3 insertion with SOAT-GFP overex-
pression (data not shown). Rescue of the oat mutant phe-
notype by the GFP fusion protein provided additional
evidence that the degradation of Arg for nitrogen recycling
requires mitochondrial OAT activity.

Discussion

O0OAT is not required for salt-stress induced proline
biosynthesis

Like the majority of plants analysed so far, Arabidopsis
reacts to high salinity stress by osmotic adjustment
accompanied by Pro accumulation. Pro accumulation is
the cumulative result of induced biosynthesis, reduced
degradation and intercellular re-allocation via specific Pro
transport proteins [16,31]. The main source of stress
induced Pro biosynthesis is the cytosolic pathway from
Glu via GSA/P5C involving the enzymes P5CS and P5CR.

In bacteria and mammals, transamination of Orn consti-
tutes an alternative route for GSA/P5C and subsequently
Pro formation [17]. Recovery of radioactive Pro after feed-
ing of labelled Orn to plants has led to the concept that a
similar pathway exists in higher plants [17,25]. However,
the exact biochemical pathway and contributing enzymes
are subject to controversial debate. While the majority of
publications assume that SOAT produces GSA from Orn,
which spontaneously forms P5C and is then converted to
Pro by P5CR, this hypothesis neglected the localisation of
both enzymes to different compartments (Fig. 1 and Fig.
8). In favour of this concept, transgenic plants overex-
pressing SOAT had higher Pro contents [24,25]. To date,
the exact source of Pro accumulating in these OAT over-
expressors has not been determined. We demonstrated
here that two T-DNA insertion mutants lacked detectable
SOAT expression and showed insignificant P5C produc-
tion from Orn and a-ketoglutarate in whole seedling pro-
tein extracts. Both oat mutants were not affected in Pro
accumulation under stressed or non-stressed conditions.

Additionally, a mitochondrial localisation of OAT had
been predicted before and was confirmed in this study by
analysis of plants expressing a 3OAT-GFP fusion protein.
P5C produced by 30OAT inside mitochondria is most
probably further converted to Glu by mitochondrial
P5CDH. Due to the chemical instability of GSA/P5C,
export from mitochondria seems unlikely but can cur-
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Figure 8

Compartmentation of Arg and Pro metabolic pathways. SOAT links the degradation pathways for Arg and Pro, which
converge at the level of P5C in mitochondria. Pro biosynthesis occurs in the cytosol or, during stress, in plastids, whereas Arg
biosynthesis is constitutively localised in plastids. For details on Arg biosynthesis up to Orn see [3]. ASL: argininosuccinate
lyase; ASSY: argininosuccinate synthetase; OTC: ornithine transcarbamylase, P5C: pyrroline-5-carboxylate, PSCDH: P5C dehy-
drogenase; P5CR: P5C reductase; P5CS: P5C synthetase, ProDH: Pro dehydrogenase.

rently not be fully excluded. P5C stimulated O, uptake of
isolated intact mitochondria, but very little P5C was pro-
duced from Orn or Pro [32]. Orn- or Pro-dependent P5C
production and P5C-dependent NAD reduction were
measurable only after swelling of mitochondria in low
osmolarity buffer, which was attributed to the disruption
of ProDH-P5CDH and 8OAT-P5CDH enzyme complexes.
The impact of swelling on the permeability of the mito-
chondrial membranes for P5C was not analysed. In SOAT
overexpressing plants, non-complexed JSOAT could
indeed lead to the release of P5C from mitochondria and
subsequent conversion to Pro by cytosolic P5CR. Alterna-
tively, the use of the Arabidopsis SOAT gene for overex-
pression in tobacco or rice could have resulted in
incomplete import into mitochondria and thus cytosolic
SOAT-activity.

Evidence against a role of 3OAT in the conversion of Orn
to Pro had already come from tracing experiments using
differentially labelled *C/3H-Orn [23]. Only when the &-
amino group of Orn was labelled with 3H, substantial 3H

activity could be recovered in the Pro fraction. These find-
ings are consistent with the activity of a putative a-ami-
notransferase that would produce pyrroline-2-carboxylate
as an intermediate, or an Orn-cyclodeaminase, which
would produce Pro directly. However, long incubation
times and possible isotope discrimination effects do not
allow excluding the participation of SOAT completely
[17]. 3H labelled Pro could have also been formed from
3H Glu that was formed when SOAT transferred the
labelled amino group to o-ketoglutarate. Feeding radioac-
tive Arg or Orn to control or wilted barley leaves indicated
that the Orn to Pro conversion was not enhanced by water
deficit and that the C-skeleton of Arg contributed maxi-
mally 1% of the accumulating Pro [33,34]. These findings
are in line with our observation that 8OAT deficient
mutants retain unchanged levels of salt stress-induced Pro
accumulation (Fig. 2). We propose that under normal
physiological conditions Orn can be converted to Pro
only via Glu, while this conversion is not contributing
substantially to stress-induced Pro accumulation. In addi-
tion, oat mutants provide an excellent tool to investigate if
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mitochondrial Orn (e.g. from Arg degradation) or exter-
nally supplied Orn can be converted to Pro by alternative
pathways. Absence of significant amounts of colour devel-
opment in our OAT assay with oat mutant extracts indi-
cated that such alternative pathways are not catalysed by
soluble proteins or require different substrates and cofac-
tors. Alternatively, the expression could be too low in
young seedlings.

OOAT constitutes an essential exit route for nitrogen from

the urea cycle

Having dismissed the most popular hypothesis for the
physiological function of 3OAT, we set out to analyse an
alternative function in Arg degradation. Arg is effectively
taken up from the medium by Arabidopsis roots and dis-
tributed to aboveground organs, presumably via trans-
porters of the LHT rather than AAP subfamilies of broad
specificity amino acid permeases [35,36]. The first step of
Arg breakdown is the cleavage into Orn and urea by argi-
nase, which is localised in mitochondria in plants [9].
Urea can be further degraded by cytosolic urease, and urea
supported growth of oat mutants and the wildtype equally
well (Fig. 4). No information is currently available on the
export of urea from mitochondria [10]. However, further
catabolism of Orn, the second product of arginase, seems
to depend on SOAT activity since neither Arg nor Orn sup-
ported growth of oat mutants. Instead, intermediates of
the urea cycle accumulated to high amounts, indicating
that 8OAT is required for Arg catabolism and nitrogen
recycling (Fig. 5 and Fig. 6). Other metabolites that can be
produced from Arg are polyamines, but apparently these
are not metabolised further or the capacity of this pathway
is too low to supply enough nitrogen to meet the demand
of growing oat mutant seedlings.

Evaluation of microarray expression data using the BAR
eFP-Browser revealed strongest expression of SOAT in
senescing rosette leaves, floral organs and mature and
imbibed seeds [37]. Within the developing embryo,
strong JOAT expression was detected in cotyledons. These
data further support a function of 8OAT in storage mobi-
lisation during early seedling development and in nitro-
gen recovery during senescence.

Amino acid interconversions and distribution

Orn was less effective than Arg in supporting growth of
wildtype Arabidopsis seedlings, which was reflected in
generally lower amino acid contents in plants cultured on
Orn as the main nitrogen source (Fig. 4 and Fig. 6). This
difference to Arg supply could arise from lower uptake
rates or impaired inter- or intracellular distribution of
Orn. Orn is synthesised in plastids, where it is also further
converted to Arg, whereas production of Orn during Arg
degradation occurs in mitochondria. Thus high rates of
intracellular Orn transport and the occurrence of high
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Orn concentrations in the cytosol are unlikely to happen
under natural conditions. Two members of the mitochon-
drial carrier protein-family, AtBacl and AtBac2, were
shown to mediate transport of Arg and Orn along with
other basic amino acids [11,12]. Both transporters were
able to complement a yeast strain deficient in the mito-
chondrial Orn/Arg transporter Argll, suggesting mito-
chondrial localisation also in plants. The high levels of Cit
and Arg in oat mutants cultivated on Orn suggested
import of Orn into plastids (Fig. 5 and Fig. 6). A reversed
reaction of arginase is thermodynamically unfavourable
and could not be observed with purified enzyme prepara-
tions even in the presence of both Orn and urea in high
concentrations [38]. Orn to Cit conversion was previously
observed in purified mitochondria and could constitute
an alternative pathway to direct Orn import into plastids
[39]. High levels of Cit after Arg feeding of oat mutants
indicate that Orn originating from Arg breakdown is ter-
minally converted to Cit inside mitochondria or is trans-
ferred from mitochondria to plastids. Substantial
production of Cit by reversion of the argininosuccinate
synthetase reaction from the Arg biosynthesis pathway is
unlikely due to the low pyrophosphate levels in plastids
[40,41]. Synthesis of Arg from Orn requires two atoms of
nitrogen per molecule of Arg, thus requiring net N-input
in case of Orn feeding. This is consistent with the extreme
Gln depletion of oat mutants fed with Orn (Fig. 5 and Fig.
6).

Irrespective of the nitrogen source provided, oat mutants
had an increased content in Orn, indicating that catabo-
lism of Arg is constitutively operative in wildtype plants.
Surprising were the decreased levels of Arg in oat mutants
grown on Gln or urea (Fig. 5 and Fig. 6). Arg biosynthesis
is subject to feedback inhibition by the end product at the
level of N-acetyl glutamate kinase, which catalyses the key
regulatory step of Arg biosynthesis [3]. Arg mediated inhi-
bition of N-acetyl glutamate kinase can be alleviated by
the plastidic PII protein, but the precise role of this inter-
action in regulating Arg biosynthesis is yet unknown [42].
The block in mitochondrial Arg catabolism in oat mutants
potentially leads to an altered C/N ratio in plastids or a
localised increase in Arg concentrations, which in turn
could reduce the total rate of Arg biosynthesis. Recently a
genetically encoded nanosensor for Arg was developed,
that can be used to report cytosolic, mitochondrial or
plastidic Arg levels in wildtype and oat mutants under var-
ious nutrition regimes [43].

Also the significant increase in the contents of leucine, iso-
leucine, phenylalanine and lysine in Orn-fed, and par-
tially also in Arg-fed, oat mutants indicated disturbances
of amino acid metabolism. All increased amino acids
have high C/N ratios, consistent with a deficiency of oat
mutants to mobilise nitrogen from Orn and Arg.
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The complete degradation of Arg via arginase, SOAT and
P5CDH yields two molecules of Glu per molecule of Arg.
Despite the consequential massive differences in mito-
chondrial Glu production between wildtype and oat
mutants grown on Arg or Orn, Glu levels were the same in
both genotypes (Fig. 5 and Fig. 6). Similar Glu homeosta-
sis was observed in many studies on nitrogen nutrition,
environmental stress or mutant analyses and was pro-
posed to indicate a special regulatory function of Glu lev-
els [44]. The insensitivity of Glu levels to the deletion of
S8OAT is presumably the prerequisite for the unchanged
capacity of oat mutants to accumulate Pro under stress
conditions.

Conclusion

Decades of biochemical analyses have produced the basis
for our understanding of plant primary metabolism and
are now complemented by genomic, proteomic and
metabolomic approaches. Still, the compartmentation of
metabolic processes to specific organelles or protein
supercomplexes is far from being fully uncovered. Deter-
mination of the exact role of a specific enzyme in the met-
abolic and regulatory networks of plant cells still requires
careful and thorough gene for gene analysis. We show
here that Arg and Pro catabolism are co-localised in mito-
chondria and converge in the formation of GSA/P5C,
which is further metabolised to Glu by PSCDH. The detec-
tion of unchanged Pro levels in Arabidopsis oat mutants
provides strong evidence against a shortcut from Arg
catabolism to Pro synthesis that bypasses Glu and
cytosolic P5CS activity. It remains to be investigated if
other plant species with more than one P5CDH or OAT
gene have differently localised isoforms and thus other
metabolic possibilities.

Methods

Plant material and growth conditions

Arabidopsis (Arabidopsis thaliana (L.) Heynh. ecotype Col-
0) and T-DNA insertion lines SALK 033541 (oatl),
SALK_ 010095 (0at2) and SALK 106295 (o0at3) were
obtained from the NASC. Presence of the T-DNA and
allelic status was verified by PCR and sequencing of the T-
DNA flanking sequences. Gene specific primers were: Oat-
f: 5'agtcttggattaacttaggagag, Oat-1: 5'gtcccatatagttgagecattc
for oatl and oat2; Oat-f2: 5'gctttcatggacgtacattag, Oat-r2:
5'caagtatcaccatgtcaggac for oat3; the T-DNA left border
specific primer was 5'ttcggaaccaccatcaaacag. None of the
three mutant lines expressed clear kanamycin resistance.
All physiological experiments were performed with
homozygous progeny of plants backcrossed three times to
Col-0. Plants were cultivated axenically in 9 c¢cm Petri
dishes on commercial MS medium (Duchefa, Nether-
lands) or self-made MS medium, in which KNO,; and
NH,NO, were replaced by 20 mM KCI [45]. Media were
supplemented with sucrose and nitrogen containing com-
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pounds as indicated for each experiment and solidified
with 8 g/l purified agar (BD biosciences, San Jose, CA,
USA). Seeds were surface sterilised by sequential treat-
ment with 70% (V/V) EtOH and 1% (W/V) NaOCl/0.01%
(V/V) Triton-X-100 and vernalised for 24 h at 4°Cin 0.1%
(W/V) agarose. Plants were cultivated in an air-condi-
tioned room with short day (9 h) light period and a light
intensity of 110 pmol photons*s1*m-2 from mixed fluo-
rescence tubes (Osram, Germany) at a constant tempera-
ture of 22°C. For the OAT activity assay, plants were
cultivated under constant agitation and with 24 h low
light in liquid MS medium supplemented with 60 mM
sucrose. For seed production, plants were kept in a green-
house with a light period of at least 16 h. Nicotiana bentha-
miana Domin plants were cultivated on commercial
gardening soil in the greenhouse under long day condi-
tions.

0OAT-GFP construct and imaging

The open reading frame of OAT was amplified by PCR
from EST clone H4E5 (GenBank W43737; ABRC, Ohio)
with the primers 5'ctggatccgactctaatggcagccaccac and
5'ctggatccgcatagaggtttcttccac. The resulting PCR product
was cloned via the introduced BamHI sites into the vector
pEZT-NL (Dave Erhardt, [46]). Agrobacterium tumefaciens
strain LBA4404 was used for transient transformation of
N. benthamiana leaves and floral dip transformation of
Arabidopsis [47,48]. Protoplasts from transformed leaves
were obtained by overnight incubation with cellulase and
macerase (Serva, Heidelberg, Germany) and viewed under
an Axiovert 200 M epifluorescence microscope (Carl
Zeiss, Oberkochen, Germany). Filter sets used for GFP,
MitoTracker orange and chlorophyll were 38HE (excita-
tion 470 + 20 nm, emission 525 + 25 nm), 43HE (550 *
12.5/605 + 35) and 45 (560 + 20/630 + 32.5), respec-
tively. Cross-detection of GFP and MitoTracker was negli-
gible. Images were captured with an AxioCam MRm
monochrome digital camera. False colouring and overlay
of images was performed using AxioVison software.

RNA isolation and detection

Total RNA was extracted from two-week-old axenically
cultured seedlings with Trizol reagent (Invitrogen, USA).
RNA was separated by denaturing agarose gel electro-
phoresis and transferred to a positively charged nylon
membrane by capillary transfer. SOAT transcripts were
detected by hybridization with DIG-labelled PCR prod-
ucts obtained with primers Oat-f2 and Oat-r2 and the
cloned cDNA as template, followed by detection with
alkaline phosphatase coupled anti-DIG antibodies and
the chemiluminescent substrate CDP-star (Roche, Swit-
zerland). P5CS1 transcripts were detected with a 185 bp
fragment of the 5'UTR amplified and subcloned from
genomic DNA.
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OAT activity assay

The assay procedure was a combination of methods
described by [49] and [50]. Fresh seedlings from liquid
culture were rinsed briefly with distilled water, blotted dry
and ground in a mortar in 5 pl/mg Fw ice-cold extraction
buffer (100 mM KHPO,, 10 mM B-MSH, 1 mM EDTA, 0.2
mM pyridoxal 5'phosphate, pH 7.9). The extract was cen-
trifuged for 15 min at 16400 rpm at 4°C in a tabletop cen-
trifuge and desalted over a 5 ml HiTrap column
equilibrated with extraction buffer (GE healthcare, UK).
The assay mixture, consisting of 25 mM Orn, 25 mM o-
ketoglutarate and 100 pl plant extract in a total volume of
500 ul extraction buffer, was incubated at 37°C for 20
min. The reaction was terminated by the addition of 150
ul 3 M HCIO,,. P5C was detected with 100 pl of 2% (W/V)
ninhydrin in water and heating to 96°C for 6 min. The
water-insoluble reaction product was extracted with 1 ml
toluene and quantified by measuring the absorbance at
the maximum of 520 nm. For blanks, HCIO, was added
before the extracts and processed identically. No P5C was
detected when either Orn or extract were omitted. Proline
produced a product with an absorbance maximum at 540
nm, which was not observed in the assay. The protein con-
centration of the extract was determined by a Bradford
assay and used to normalise the amount of P5C, which
was further converted to arbitrary activity units in which
the wildtype activity was set to 1.

Proline and amino acid determination

Free Pro was quantified by a method modified from [51]:
Leaf material was ground in liquid N, with a mortar and
pestle and allowed to thaw in 3 pul/mg Fw of 10% (W/V)
sulfosalicylic acid. After extraction for at least 30 min on
ice, the samples were centrifuged and 250 pl of the super-
natant were mixed with 150 pl of HAc and 150 pl of acidic
ninhydrin reagent (125 mg ninhydrin in 2 ml 6 M ortho-
phosphoric acid and 3 ml HAc) and reacted for 20 min at
96°C. The mixture was cooled on ice and the red reaction
product was extracted with 1 ml toluene. Absorbance of
the toluene supernatant was read at 520 nm and Pro con-
centrations were calculated using standard curves from 0
to 10 mM Pro treated in the same way as the samples. Orn
is known to give equal absorption values as Pro in this
assay, but Orn levels were less than 2% of Pro levels in
NaCl stressed or non-stressed wildtype or oat mutants cul-
tivated on normal mineral nitrogen sources (data not
shown).

Methanol/water extracted amino acids were quantified by
HPLC with post-column ninhydrin derivatisation as
described in [52].

Database mining
Data on subcellular localisation prediction were taken
from the ARAMEMNON database [22,53]. The transit
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peptide cleavage site was predicted with TargetP [21,54].
Microarray expression data were analysed with the webt-
ools offered by BAR (The Bio-Array Resource for Arabi-
dopsis Functional Genomics [29])
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