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1 Introduction

At low energies asymptotically free quantum field theories can flow to strong coupling,

where a perturbative analysis is impossible. A complete non-perturbative analysis of these

models is complicate and some effective description is necessary. One possibility consists of

finding a completely different theory that in the IR describes the same degrees of freedom

and correlators of the original one. In such a case the two models are dual in the IR.

Anyway it is not a trivial task to find the dual model of a strongly coupled quantum

field theory.

An useful laboratory in this search of dual models is supersymmetry. Indeed many ex-

amples of dualities have been known for a long time in four dimensions, like the Montonen-

Olive duality in the maximal supersymmetric case [1], the N = 2 Seiberg-Witten duality [2]

and the N = 1 Seiberg duality of SQCD [3]. These four dimensional dualities map the

strongly coupled electric regime of one theory to the weakly coupled magnetic regime of

the dual theory. Many extensions of these dualities have been studied in four dimensions.
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The search of analogous dualities in other dimensions is a natural problem. In the last

years the three dimensional case attracted a great interest. For example a rich class of

dualities exists when N = 2. This case shares the same number of supercharges, four, as

the N = 1 four dimensional case, and one may expect some analogy with Seiberg duality.1

Indeed it was shown in [5] that a similar duality exists in three dimensions. This

duality is usually called Aharony duality. This duality is only similar to Seiberg duality

because in the three dimensional case some differences arise in the analysis of the moduli

space and they affect the structure of the dual field content and superpotential. More

precisely, the monopole operators that parameterize a branch of the moduli space of one

theory couple with the monopole operators of the dual theory.

There is a second class of dualities in the three dimensional case that looks close to

Seiberg duality. In three dimensions one can write a topological Chern-Simons (CS) action.

This action modifies the vacuum structure of a theory and gives rise to the Giveon-Kutasov

duality [6]. This duality maps two CS gauge theories and looks similar to the four dimen-

sional Seiberg duality in terms of the field content even if it involves CS theories. More

recently other dualities that mix the Aharony and Giveon-Kutasov cases have been found

in [7]. These cases involve a chiral like matter content where the number of fundamentals

and anti-fundamentals does not coincide.

Even if Aharony and Giveon-Kutasov dualities look different, at the level of the action

and of the field content, they are strongly related. The reason is that in three dimensions

one can assign a real mass to the matter fields charged under some global symmetries.

When a gauge charged chiral fermion is massive it can be integrated out. This process

shifts the effective CS level by a semi-integer number. This real mass flow connects theories

without CS terms to theories with CS terms, and one can in principle flow from one pair

of dual theories to another thanks to this mechanism. While the flow from the Aharony

pair to the Giveon-Kutasov is simple to understand the opposite one is more mysterious,

because one has to understand the origin of the superpotential interaction between the

monopoles of the electric and of the magnetic phase. This flow has been recently found

in [8] by observing that if one assigns some large mass term to some of the electric fields

of the Giveon-Kutasov duality it does not simply reflects in a set of masses for some dual

fields. Indeed in the large mass regime there are points in the moduli space that become

singular, and one has to map the vacua correctly. Indeed at these points some massless

fields acquire a mass and some massive fields become massless. The flow investigated in [8]

was restricted to the case of CS level k equals to −1. It was then studied in some more

general case in [9].

In this paper we generalise the construction of [8] to generic level k. Then we study

the partition function on the squashed three sphere with the real mass terms. We start

from the equivalence of the partition functions of the Giveon-Kutasov dual theories. By

adding the real masses on both sides of this duality and by taking the large mass limit we

arrive at the expected relation for the Aharony dual pair.

1In three dimensions there is another kind of duality, called mirror symmetry, that we will not discuss

in this paper [4].
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An important aspect of the the computation is related to the structure of the partition

function. It is a matrix integral over the real scalar component of the vector multiplet,

reduced to the Cartan subgroup. In some phase this scalar may take a vev proportional to

the large mass that we introduced. Naively one may think that this shift cannot affect

the integral, but it is only true for a finite mass. In the large mass regime this vev

affects the dominant contribution to the partition function, such that the expected result

is recovered. We finally study the analogous flow in the case of symplectic and orthogonal

groups, showing that similar results hold.

The paper is organised as follows. In section 2 we review some useful aspect of three

dimensional N = 2 gauge theories that are relevant in our analysis. In section 3 we discuss

the Giveon-Kutasov and the Aharony dualities and we study the real mass flow connecting

them. In section 4 we review the matrix integral describing the partition function on the

squashed three sphere and the role of the masses in the partition function. In section 5 we

study the RG flow from the Giveon-Kutasov to the Aharony duality from the perspective

of the partition function. In section 6 and 7 we study the symplectic and the orthogonal

cases respectively. In section 8 we conclude.

2 Review material

In this section we review some basic aspects of N = 2 three dimensional gauge theories.

We refer the reader to [10] for a more complete review.

Three dimensional N = 2 supersymmetry has four supercharges Qα and Q̃α with

α = 1, 2. Their non vanishing anticommutator is

{Qα, Q̃β} = σµαβPµ + 2iǫαβZ (2.1)

where Z is the central charge, corresponding to the reduced momentum along P3.

As in four dimensions there are a vector multiplet and a chiral (and antichiral mul-

tiplet). The vector multiplet V is composed by a gauge boson Aµ, the gaugini λα and

λ̃α the D-term D and a real scalar σ. When this real scalar gets an expectation value

it generically breaks the gauge symmetry to U(1)r (r being the rank of the gauge group)

and one is at a generic point of the Coulomb branch. In the abelian case the photon can

be dualized into a scalar Fµν,i = ǫµνλ∂
λφi (i = 1, . . . , r) and one can construct a super-

multiplet Φi = σi + iφi. This supermultiplet parameterizes the classical Coulomb branch

and is associated to a monopole operator Yi ≃ eΦi . The Coulomb branch is usually lifted

by quantum correction and only some direction may remain flat. There is also an Higgs

branch, parameterized by the charged chiral multiplets.

In three dimensions there are usually more global symmetries than in the four dimen-

sional case. Indeed the anomalous symmetries of the four dimensional case become non

anomalous in three dimensions. In addition we have the usual U(1)R charge that rotates

the supercharges, as in four dimensions. Another new symmetry is the topological U(1)J
symmetry, that is generated by the current J iµ = ǫµνλF

νλ,i and shifts the dual photon.

There are r U(1)J currents, but at quantum level, where the Coulomb branch is lifted, just

one combination may be left.
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Another multiplet that one can construct in three dimensions is the linear multiplet. A

linear multiplet, say Σ is defined by ǫαβDαDβΣ = ǫαβDαDβΣ = 0 and its lowest component

is a real scalar. One can define a linear multiplet for every globally conserved current.

The linear multiplet is useful to understand the relation between the central charge

and the real masses. In three dimensions we can indeed turn on a real mass m for a chiral

field X, if this last is charged under a global symmetry.

∫
d4θX†emθθX (2.2)

There is a linear multiplet that contains the global current under which the chiral field X

is charged. The central charge is associated to a background superfield and it is the scalar

component of this linear multiplet, in this case Z = m. In general Z =
∑
qimi where mi

are background linear multiplets.

There is another contribution to the central charge coming from the real FI parameter.

If one turns on a background vector multiplet Vb for the topological U(1)J one has can add

a term
∫
d4θVbΣ that integrating by parts corresponds to

∫
d4θV Σb. The background linear

multiplet Σb is a FI for the gauge multiplet V and contributes to the central charge.

Lastly in three dimensions there is also a topological CS action kij
∫
d4θΣiVj , that is

gauge invariant (under large gauge transformations) if the CS level kij is an integer. It

is important to observe that chiral fermions with a real mass and CS levels are strongly

connected. A massive fermion ψ has in general real massmψ = m+
∑

i q
i
ψσi. By integrating

it out we have at one loop a shift in the CS level (keff)
ij = kij+ 1

2

∑
qiψq

i
ψsgn(m). By gauge

invariance keff has to be integer. It implies that if
∑
qiψq

j
ψ is odd and kij is not vanishing

then parity is broken. This has to be compensated by kij ∈ Z + 1
2 . This phenomenon is

named parity anomaly [11, 12].

3 Giveon-Kutasov and Aharony duality

In this section we present the models that we investigate in the rest of the paper. They

are three dimensional N = 2 supersymmetric gauge theories with U(Nc) gauge groups

and Nf matter fields in the fundamental and in the antifundamental representation of the

gauge group. These theories are called vector like because the number of fundamentals

and of antifundamentals is the same. We leave possible generalisation to dualities between

theories with a chiral field content [7] for future investigations.

First we discuss the Giveon-Kutasov duality [6]. The electric theory consists of a

U(Nc) gauge theory with a CS action at level k. There are Nf fields Q in the fundamental

and Nf fields Q̃ in the antifundamental of the gauge group. In absence of superpotential

there is a SU(Nf ) × SU(Nf ) flavor symmetry acting on these quarks. Moreover we have

an U(1)A global symmetry under which both the fields have the same charge +1 and an

U(1)R symmetry.

The dual theory is a U(Nf−Nc+ |k|) gauge theory with a CS action at level −k. There
are Nf fields q in the fundamental and Nf fields q̃ in the antifundamental of the gauge

group. The N2
f electric mesons M = QQ̃ are elementary singlets in the dual description
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and couple to the quarks through the superpotential

W =Mqq̃ (3.1)

The charges of the fields under the global symmetries are

U(Nc) U(Ñc) SU(Nf ) SU(Nf ) U(1)A U(1)R

Q Nc 1 Nf 1 1 ∆

Q̃ N c 1 1 Nf 1 ∆

q 1 Ñc Nf 1 −1 1−∆

q̃ 1 Ñc 1 Nf −1 1−∆

M 1 1 Nf Nf 2 2∆

(3.2)

In this paper we are interested in connecting these two models with another pair of dual

models by an RG flow. This second pair of dual models, the Aharony duality, was found

in [5]. On the electric side we consider a U(Nc)0 gauge theory, where the subscript indi-

cates that there is not CS action, and Nf fundamentals and antifundamentals Q and Q̃

respectively. The dual model has gauge group U(Nf − Nc)0, the CS level is vanishing as

well, and there are Nf fundamentals and antifundamentals q and q̃ respectively. As in the

case of the Giveon-Kutasov duality the electric mesons are elementary degrees of freedom

in the dual description and couple to the quarks through the superpotential (3.1).

The Coulomb branch is not completely lifted by the quantum corrections. There are

still combinations of monopole operators that remains flat, and they correspond to the ones

with flux (±1, 0, . . . , 0) in the Cartan of the gauge group. We will refer to these monopole

operators in the electric theory as X±. They have charge ±1 under the topological U(1)

that shifts the dual photon. In the magnetic theory they are singlets that interact with

the dual monopole operators x± by a superpotential

∆W = x+X− + x−X+ (3.3)

The charges of the fields under the global symmetries are

U(Nc) U(Ñc) SU(Nf ) SU(Nf ) U(1)A U(1)R U(1)J

Q Nc 1 Nf 1 1 ∆ 0

Q̃ N c 1 1 Nf 1 ∆ 0

q 1 Ñc Nf 1 −1 1−∆ 0

q̃ 1 Ñc 1 Nf −1 1−∆ 0

M 1 1 Nf Nf 2 2∆ 0

X+ 1 1 1 1 −Nf Nf (1−∆)−Nc + 1 1

X− 1 1 1 1 −Nf Nf (1−∆)−Nc + 1 −1

x+ 1 1 1 1 Nf Nf (∆− 1) +Nc + 1 1

x− 1 1 1 1 Nf Nf (∆− 1) +Nc + 1 −1

(3.4)

– 5 –



J
H
E
P
0
3
(
2
0
1
4
)
0
6
4

3.1 Flowing from Aharony to Giveon-Kutasov duality

In this section we review the RG flow connecting the Aharony dual pair to the Giveon-

Kutasov dual pair studied in [15]. The CS terms are generated by assigning real masses to

some of the fermions and by integrating them out.

We consider, on the electric side, a U(Nc)0 gauge theory with Nf + k fundamentals

and antifundamentals. We turn on positive real masses for these matter fields such that

there are Nf light and k heavy fields. By integrating the heavy massive fermions out we

shift the CS level from 0 to k. We are left with a U(Nc)k model with Nf fundamentals and

antifundamentals.

The dual theory has an U(Nf+k−Nc)0 gauge group with Nf light and k heavy flavors.

Moreover this theory has new elementary singlets, consisting of mesons and monopoles of

the electric theory. The monopoles and some components of the meson acquire a large

mass term, in accordance to the global symmetries. By integrating the heavy fields out we

are left with a U(Nf −Nc+ k)−k gauge theory, with Nf light flavors and N2
f light singlets.

It corresponds to the expected Giveon-Kutasov dual phase.

Observe that we could also have inverted the sign of the real masses. It would have

changed the electric level from k to −k and the dual CS level in the opposite way. In any

case the rank of the dual is (Nf −Nc + k), for positive k. In general, the dual of U(Nc)k
is U(Nf −Nc + |k|)−k for any choice of sign of k.

3.2 Flowing from Giveon-Kutasov to Aharony duality

In this section we discuss the RG flow connecting the Giveon-Kutasov dual pair to the

Aharony dual pair. This flow has been recently studied in [8]. The analysis of [8] is

restricted to the electric U(Nc)−1 gauge theory with Nf flavors, dual to U(Nf −Nc + 1)1
with Nf flavors and N2

f singlets. The analysis has been extended to the cases with k = 2

and k = 4 in [9]. Here we generalise part of the analysis of [8, 9] to general k.

In the case of k = −1 two different flows are possible. In one case one has in the

IR the usual Aharony dual pair. This has been named the 1 − 4 duality in [8] and we

will keep the same name in this paper. In the second case, named 2 − 3, one flows to

a slightly different pair of dual theories. The matter content is the same as in the usual

case, but one of the interaction between the electric and magnetic monopoles in the dual

phase is lifted and it appears in the electric superpotential. The electric theory has W =

x−X+, a monopole of the magnetic theory is a singlet in the electric phase. The dual

superpotential is W = Mqq̃ + x+X−. This duality can be obtained from Aharony duality

by adding a superpotential mass term for the electric monopole (or antimonopole) in the

dual theory. If |k| > 1 more complicate structures are possible [9]. We will not discuss

these possibilities here.

First we study the flow from the Giveon-Kutasov dual pair at level −k (k > 0) to the

1−4 Aharony dual pair. We consider an U(Nc)−k gauge theory with Nf light fundamentals

and k heavy ones, with real masses. For simplicity we take all the heavy masses with the

same value m > 0. After integrating out the heavy matter we obtain an U(Nc)0 gauge

– 6 –
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theory with Nf massless flavors. The level shifts because we integrate out 2k chiral fermions

with the same positive real mass. This is the electric version of the Aharony duality.

The dual theory is a U(Nf −Nc+2k)k gauge theory with Nf light and k heavy flavors,

with mass −m. There are (Nf + k)2 singlets M , with N2
f light components. This theory

has superpotential W = Mqq̃. In presence of the large real mass one has to shift the

vacuum parameterized by σi. The shifted location on the Coulomb branch is interesting

because some new light degrees of freedom arise here. The magnetic Giveon-Kutasov

phase flows to the magnetic Aharony phase if one chooses σ1 = . . . , σNf−Nc = 0 and

σNf−Nc+1, . . . , σNf−Nc+k = −σNf−Nc+k+1, . . . ,−σNf−Nc+2k = m. All the other matter

fields are at the origin.

This non trivial vacuum is crucial in the analysis, because it corresponds to a point in

the moduli space where the gauge symmetry is broken and some of the real masses for the

quarks become light. The gauge group U(Nf −Nc+2k)k is broken to U(Nf −Nc)×U(k)2.

After integrating out the heavy quarks the U(Nf − Nc) factor has Nf light flavors and

vanishing CS level. The two U(k) factors are more involved. Indeed in this case the light

Nf quarks become heavy because their mass is shifted by the vev of σ. The mass of the

extra k heavy fields is shifted in the two sectors by an amount of ±m. In one case we are

left with k light fundamentals and k antifundamentals with mass −2m, in the other case

the situation is the opposite, there are k light antifundamentals and k heavy fundamentals,

with mass −2m. In both cases an effective CS level k
2 is obtained. Summarizing the

U(Nf − Nc)0 sector has Nf flavors and N2
f singlets, one U(k)k/2 sector hase k charged

chirals and the other U(k)k/2 has k charged antichirals.

The last two sectors are the key ingredients to obtain the monopole interactions in

the Aharony duality. We consider one of these sectors but the discussion applies in the

same way to the second one. A U(k) k
2
gauge theory with one chiral superfield with charge

+1 is dual to a single chiral superfield X+ [7].2 This operator must couple with the

magnetic monopoles x− associated to U(1) ⊂ U(Nf −Nc). The reason is that the original

U(Nf−Nc+2k) theory has a topological symmetry and under this symmetry the operators

X+ and x− have opposite charges. The coupling is through a superpotentialW = x−X+ [8].

In the second case we can repeat the same analysis and we eventually obtain W = x+X−.

Finally we get a U(Nf −NC)0 with superpotential

W =Mqq̃ + x−X+ + x+X− (3.5)

as predicted by Aharony duality. Observe that here we are restricting to the case of level

−k in the electric theory with positive k. The case of k < 0 can be studied by inverting

the sign of the real mass.

As discussed in [8] there is a second possibility. It consists of studying the electric the-

ory in the non trivial vacuum σNc−k, . . . , σk = m, and all the other components vanishing.

The magnetic vacuum that preserves the duality is σNf−Nc+k+1, . . . , σNf−Nc+2k = −m,

2One can understand this duality starting from Aharony duality with an U(k)0 gauge group and k

flavors. By adding a large positive (negative) real mass to the k chiral or to the k antichiral fields one

generates a positive (negative) CS level. On the other hand, in the dual theory, that is composed just by

singlets, many fields become massive and one remains with just one singlet.

– 7 –
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and all the other components are vanishing. In the large m limit the electric theory is a

U(Nc − k)0 × U(k)−k/2 gauge theory with Nf light fundamentals and antifundamentals,

charged under U(Nc − k)0, and k light fundamentals, charged under U(k)−k/2. The mag-

netic theory is a U(Nf − Nc + k)0 × U(k)k/2 gauge theory with Nf light fundamentals

and antifundamentals, charged under U(Nc−k)0, and light k fundamentals, charged under

U(k)k/2. The two extra U(k) sectors can be studied as before and we obtain the electric

superpotential W = x−X+ and the magnetic one W = Mqq̃ + x+X−. We refer to this

duality as the 2− 3 duality.

4 The squashed three sphere partition function

In this section we review some aspect concerning the partition function on a squashed three

sphere, S3
b , preserving a U(1)2 isometry of the original SO(4) of the round case.

Partition functions computed on curved backgrounds that preserve some supercharges

are powerful objects, because they give one loop exact results in supersymmetry. Local-

ization is the most general technique to perform these calculations and it was first used

in [16] for the partition function on S4 of N = 2 four dimensional theories. The case of

the three dimensional sphere was first studied in [17] for N > 2. The extension to N = 2

was done in [13, 18] for the round sphere and in [19] for the case we are interested in.

The possibility of computing the partition function of a quantum field theory exactly

is useful in checking the dualities. Indeed many dualities proposed in three dimensions

have been checked by matching their partition functions on S3
b .

Moreover one can add mass contributions to the partition function and study properties

of the RG flows. Indeed in this paper we are interested in checking the flow by considering

the partition functions of the Giveon-Kutasov dual pair and by checking that, at the end of

the flow, the two partition functions still match and describe the correct Aharony dual pair.

The general structure of the partition function on the squashed sphere for a gauge

group of rank G and charged matter is

Z =
1

|W |

∫ G∏

i=1

dσi√−ω1ω2
e

ikπσ2
i

ω1ω2
+

πiλσi
ω1ω2

∏
I Γh (ω∆I + ρI(σ) + ρ̃I(µ))∏
α∈R+

Γh (α(σ)) Γh (−α(σ))
(4.1)

The integral is performed over the Cartan subgroup of the gauge group. It is parameterized

by the diagonal entries of the real scalar σ in the gauge group. The exponential receives

contributions from the classical action, from the CS term at level k and from the real FI

parameter λ. |W | represents the sum over the Weyl degeneracies.

The Gamma Γh functions are obtained by computing the one loop superdeterminants

of the vector and matter multiplets. They are usually divergent expressions that require a

regularization. The function Γh is referred in the literature as hyperbolic Gamma function

and it can be written as

Γh(z;ω1, ω2) ≡ Γh(z) ≡
∞∏

n,m=1

(n+ 1)ω1 + (m+ 1)ω2 − z

nω1 +mω2 + z
(4.2)

– 8 –
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The contribution of the vector multiplet corresponds to the denominator of (4.1) and it is

parameterized by the positive roots of the algebra.3 The contribution of the matter multi-

plet is the last term in the numerator of (4.1). Each term corresponds to the contribution

of the I-chiral multiplet with R charge ∆. The I-field is in the representation r of the gauge

group G with weight ρI(σ) and in the representation r̃ of the flavour group F , with weight

ρI(µ). Sometimes in the rest of the paper we will use the shortcut Γh(x)Γh(−x) = Γh(±x)
to simplify the expressions.

In the rest of this section we discuss the relation between the masses and the partition

function, because it is crucial in the analysis of the RG flow. As observed, the partition

function has an explicit dependence on the Cartan subgroup of the flavor symmetry. This

is related to appearance of the central charge in the supersymmetry algebra. The central

charge is Z =
∑
qimi where the sum is performed over the real masses of the matter fields

and qi are the charges of these fields under the flavor symmetries.

Observe that these global non-R currents usually mix with the U(1)R current. This

mixing is associated to the assignation of a non zero imaginary part to the real masses.

The exact R-charge is obtained by finding the combination that minimizes the absolute

value of the partition function [13, 14].

Observe that the monopole operators are charged also under the global topological

U(1)J that shifts the dual photon. It follows that this charge mixes with the R-charge

for these operators, and we can take this mixing into account in the partition function by

assigning an imaginary part to the parameter λ.

One can consider another type of mass term. It consists of a complex mass in the

superpotential. Suppose we have a massive combination

W = mQQ̃ (4.3)

where Q and Q̃ are in the and anti-fundamental of the gauge group G and their R charges

are ∆Q = ∆ = 2−∆
Q̃
. Thanks to the relation Γh(z)Γh(2ω − z) = 1 the contribution of Q

and Q̃ to the partition function is 1.

The relation of the partition function with the real masses is more interesting. Indeed

integrating out a real mass term modifies the partition function. Let us consider a field with

R-charge ∆I charged under the gauge group with weight ρI(σ) and real mass ρ(µI) +m.

In the large m limit Γh reduces to

lim
m→±∞

Γh (ω∆I + ρI(σ) + ρ̃I(µ) +m) =

= ζ−sgn(m)e
iπ

2ω1ω2
sgn(m)(ω(∆I−2)+ρI(σ)+ρ̃I(µ)+m)2

(4.4)

We will often use this relation in this paper. Indeed as discussed in section 3.2 the flow from

the Giveon-Kutasov to the Aharony duality is performed by assigning large real masses to

some of the fields.

By using the relation (4.4) we have to decouple the effect of the massive fields on both

sides of the duality. This is necessary to match the partition functions of the new dual

3Actually in the one loop determinant of the vector multiplet there is another term that cancels against

the Vandermonde determinant in the measure.
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pair, where the heavy fields disappear. However the large mass dependence is not only

in the matter fields, because extra mass dependencies come from the vacuum structure.

Indeed in some cases the scalar σ in the vector multiplet takes an expectation value. In

these cases one has to shift σ by an amount of m, where m is the large mass. This shift

affects the integral in the large m limit, modifying the dominant contribution. We refer

the reader to [20–22] for more discussions on this point.

Moreover, there are extra contributions of the real masses to the partition function,

related to CS contact terms associated to the global symmetries [7, 14, 23]. These contri-

butions are necessary in the flows that we are considering for the decoupling of the heavy

masses on the two sides of the duality.

We conclude this section by reviewing the relations between the two sides of the

Aharony and Giveon-Kutasov dualities. These relations have discovered in [21] and studied

in the physical literature in [7, 15, 20, 22, 24]. First we fix the gauge group G = U(Nc) (we

will review the O(Nc) and SP(2Nc) case later). Then we consider N
(1)
f quarks Q and N

(2)
f

antiquarks Q̃. We consider a real mass µa for the fundamentals and νb for the antifunda-

mentals, where a = 1, . . . , N
(1)
f and b = 1, . . . , N

(b)
f . From now on we absorb the R charge

inside the real masses as well. This is done by turning on an imaginary deformation (this

can be done because the U(1)R mixes with the abelian global symmetries). In presence

of a CS action, at level k and of a real FI parameter λ the partition function for such a

model is

I

(
N

(1)
f ,N

(2)
f

)

U(Nc)k
(µ; ν;λ) =

∫ Nc∏

i=1

dσie
iπ(kσ2

i +λσi)

ω1ω2

∏N
(1)
f

a=1 Γh (σi + µa)
∏N

(2)
f

b=1 Γh (−σi + νb)∏
1≤i<j≤Nc

Γ−1
h (±(σi − σj))

(4.5)

Now we consider the case of Aharony duality. The electric side is obtained by turning off

the CS level and by fixing N
(1)
f = N

(2)
f . The parameters µa and νb are

µa = mA +ma + ω∆ νb = mA + m̃b + ω∆ (4.6)

with the balancing condition
∑Nf

a=1 µa =
∑Nf

b=1 νb = mA. The equivalence between the

partition functions is encoded in the relation

I
(Nf ,Nf)
U(Nc)0

(µ; ν;λ) = I
(Nf ,Nf)
U(Nf−Nc)0

(ω − µ;ω − ν;−λ)

×Γh

(
(Nf −Nc + 1)ω −NfmA ± λ

2

) Nf∏

a,b=1

Γh(µa + νb) (4.7)

The relation between the two phases of the Giveon-Kutasov duality is given by (here we

fix k > 0)

I
(Nf ,Nf)
U(Nc)k

(µ; ν;λ) = I
(Nf ,Nf)
U(Nf−Nc+k)−k

(ω − µ;ω − ν;−λ)
Nf∏

a,b=1

Γh(µa + νb)ζ
−k2−2e

iπ
2ω1ω2

φ
(4.8)
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where ζ = e
iπ

24ω1ω2 and the exponent φ is

φ = k(

Nf∑

a=1

(µ2a + ν2a) + k(k − 2(Nf −Nc + k))ω2 +
1

2
λ2 − 2kω

Nf∑

a=1

(µa + νa)

+λ

Nf∑

a=1

(µa − νa) +
1

2
(2(Nf −Nc + k)ω −

Nf∑

a=1

(µa + νa))
2) (4.9)

observe that here we always referred to k > 0. The case k < 0 is obtained from equa-

tion (5.5.7) of [21].

5 Following the flow on the partition function

In this section we study the flow discussed in section 3.2. We first write the partition

function of the dual Giveon-Kutasov pair, by turning on the contribution of the real masses

as well. Then we integrate out the heavy states by using formula (4.4). The decoupling of

the large mass is triggered not only by the massive fields but also by the vacuum structure.

Indeed, as already discussed, the shift in the vev of sigma is not just a variable redefinition

in the large m limit. If the vacuum is not at the origin an heavy quark can be effectively

light and the integral receives the dominant contribution from such a vacuum.

5.1 The 1-4 case

In this first case the vacuum of the electric theory is 〈σ1〉 = · · · = 〈σNc〉 = 0 in the electric

case. The gauge group is U(Nc)−k with k > 0 and Nf light and k heavy flavors. The mass

structure is 



µa = ma +mA a = 1, . . . , Nf

µa = m+mA a = Nf + 1, . . . , Nf + k

νb = m̃b +mA b = 1, . . . , Nf

νb = m+mA b = Nf + 1, . . . , Nf + k

(5.1)

In the large m limit the partition function is

Ze = lim
m→∞

ζ−2kNce
iπk

ω1ω2
Nc(m+mA−ω)2

I
(Nf ,Nf )

U(Nc)0
(µ; ν;λ) (5.2)

where we absorbed the R charge inside the real masses.

The dual theory has gauge group U(Nf −Nc+2k)k with Nf light and k heavy flavors.

The mass structure is




µa = ω −ma −mA a = 1, . . . , Nf

µa = ω −m−mA a = Nf + 1, . . . , Nf + k

νb = ω − m̃b −mA b = 1, . . . , Nf

νb = ω −m−mA b = Nf + 1, . . . , Nf + k

(5.3)

The mass structure of the extra singletsM can be read from the global charges of Q and Q̃.

The vacuum is given as in section 3.2. In the large m limit this changes the behaviour

of the partition function and it is not a simple shift of the variables. This can be understood
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by writing the explicit form of the partition function at large m. In this first example we

separate each contribution coming from the vector multiplet, the charged and the uncharged

matter and the classical action.

We start with the vector multiplet. The non trivial expectation value of σ leaves three

sectors, U(Nf − Nc) × U(k)2, and in addition some mass dependent terms. These mass

dependent terms come from the limit

lim
m→∞

Nf−Nc∏

i=1

k∏

j=1

Γh(±(σi − σ̃j +m))Γh(±(σi − σ̂j −m))×
k∏

i=1

k∏

j=1

Γh(±(σ̃i − σ̂j − 2m))

= lim
m→∞

e
4iπkmω(Nf−Nc+k)

ω1ω2

k∏

i=1

e
−

2iπω(Nf−Nc+k)(σ̃i−σ̂i)

ω1ω2 (5.4)

The first term depends on the mass while the second term is a shift in the FI parameters

of the unbroken U(k) sectors.

In the charged matter sector there are three light contributions. There are Nf funda-

mentals and antifundamentals in the unbroken U(Nf − Nc), k chiral fields in one of the

unbroken U(k) and k antichiral fields in the other unbroken U(k). The other charged fields

are heavy and one has to integrate them out. At large m their contribution is

lim
m→∞

Nf−Nc∏

i=1

Γk
h(±σi + ω −mA −m)

k∏

i=1

Γk
h(σ̃i + ω −mA − 2m)Γk

h(−σ̂i + ω −mA − 2m)

k∏

i=1

Nf∏

a=1

Γh(σ̃i −m+ ω − µa)Γh(−σ̃i +m+ ω − νa)Γh(σ̂i +m+ ω − µa)Γh(−σ̂i −m+ ω − νa)

= ζ2k(Nf−Nc+k) lim
m→∞

e
iπk

ω1ω2
+m2(Nf−Nc+4k)−2mmA(Nc−3Nf−2k)+m2

A(Nf−Nc+k)

×
k∏

i=1

e
iπ(mA(2Nf+k)+2km)

ω1ω2
(σ̃i−σ̂i)e−

iπk
2ω1+ω2

(σ̃2
i+σ̂2

i )
Nf−Nc∏

i=1

e−
iπk

2ω1+ω2
σ2
i (5.5)

where we imposed the constraint
∑Nf

a=1(µa + νa) = 2mA. This constraint, called balancy

condition, has to be imposed on the masses in the case of Aharony duality.

The (Nf + k)2 uncharged singlets split in three sectors. One contains light fields, i.e.

the N2
f mesons of Aharony duality, the other two sectors are heavy. At large m this heavy

sector contributes as

lim
m→∞

Nf∏

a=1

Γkh(µa +mA +m)Γkh(νa +mA +m)
k∏

a,b=1

Γh(2mA + 2m) (5.6)

= lim
m→∞

ζ−k
2−2kNf e

iπk

(∑Nf
a=1(µ

2
a+ν2a)+2Nf (mA+m−ω)(3mA+m−ω)+4kmA(mA+2m−ω)+k(ω−2m)2

)

2ω1ω2

The contributions from the classical action are shifted accordingly to the vacuum structure.

The last contribution is the exponent (4.9). By imposing the constraint
∑Nf

a=1(µa + νa) =

– 12 –
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2mA it is

ζ−k
2−2e

iπ

(
−2k

(∑Nf
a=1(µ

2
a+ν2a)+2k(mA+m)2

)
+4(mA(Nf+k)−ω(Nf−Nc+2k)Nc+km)

2
)

4ω1ω2

×e
iπ(8kω(mA(Nf+k)+km)−2kω2(−2Nc+2Nf+3k)+λ2)

4ω1ω2 (5.7)

Finally at large m the partition function of the dual magnetic theory is

Zm = lim
m→∞

e
iπ(2ωmA(Nf (Nc−2k)−N2

f+k2)+m2
A(kNc+2kNf+N2

f−2k2)+ω2(N2
c+Nf(Nf+2k)−Nc(2Nf+k)))

ω1ω2

e
iπkmNc(2mA+m−2ω)

ω1ω2
+ iπλ2

4ω1ω2 ζ−2kNc−2

Nf∏

a,b=1

Γh(µa + νb) I
(Nf ,Nf )

U(Nf−Nc)0
(ω − µ;ω − ν;−λ)

I
(0,k)
U(k) k

2

(0;ω −mA;λ1) I
(k,0)
U(k) k

2

(ω −mA; 0;λ2) (5.8)

with

λ1 = 2ω(Nc −Nf )−mA(k − 2Nf )− λ , λ2 = −2ω(Nc −Nf ) +mA(k − 2Nf )− λ (5.9)

The last line of (5.8) represents two chiral U(k) k
2
sectors, the first with k fundamentals and

the second with k antifundamentals. In the field theory interpretation each of these sectors

is dual to a single chiral superfield. These integrals represent chiral CS gauge theories with

level k2 , for integer k. They have been studied in [7] and in this case one can compute the

integral. We find

I
(0,k)
U(k) k

2

(0;ω −mA;λ1) = ζΓh

(
kmA

2
− kω − λ1

2
+ ω

)
e

iπ(2kmA(2kω+3λ1)+λ1(λ1−4kω)−3k2m2
A)

8ω1ω2

I
(k,0)
U(k) k

2

(ω −mA; 0;λ2) = ζΓh

(
kmA

2
− kω +

λ2
2

+ ω

)
e

iπ(2kmA(2kω−3λ2)+λ2(λ2+4kω)−3k2m2
A)

8ω1ω2

(5.10)

By substituting the expression in (5.9) to λ1 and λ2 we obtain the expected monopole

contribution with Nc colours and Nf flavors

Γh

(
ω(Nf −Nc + 1)−NfmA ± λ

2

)
(5.11)

By putting everything together we reproduce the formula (4.7).

5.2 The 2-3 case

In this section we consider the second possibility that we discussed in section 3.1. In this

case there is a different vacuum structure in both the electric and magnetic case. In the

electric theory some of the σi acquire a large expectation value proportional to the real

mass m. The duality with the massive Giveon-Kutasov magnetic theory is preserved by

modifying the vacuum of the magnetic theory appropriately, as discussed in section 3.2.
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This different choice of vacua does not modify the structure of the U(Nc)0 and U(Nf −
Nc)0 unbroken parts of the two Aharony dual gauge theories but it changes the superpo-

tential interactions.

We start by considering an electric CS gauge theory with U(Nc + k)−k and with the

same masses as (5.1). We fix k > 0 and study the limit of large m→ ∞, with the vacuum

given by σi = 0 for i = 1, . . . , Nc and σi = −m i = Nc + 1, . . . , Nc + k.

At large m the partition function of the electric theory becomes

Ze = lim
m→∞

ζ−k
2−2kNce

−
iπkm(2mA(−Nc−Nf+k)−mNc+2ωNf+λ)

ω1ω2
−

iπk(kω2−2Nc(ω−mA)2+kmA(mA−2ω))
2ω1ω2

×I(0,k)U(k)
− k

2

(0;mA;λ1)I
(Nf ,Nf )

U(Nf−Nc)0
(µ; ν;λ) (5.12)

with

λ1 = λ+ 2ω (Nf −Nc) + ω −mA(k + 2Nf ) (5.13)

The gauge group of the dual phase is U(Nf−Nc+k)k and the masses of the charged matter

fields are given in (5.3). There are also N2
f light singlets, while the other components are

heavy. The vacuum is σi = 0 for i = 1, . . . , Nf −Nc and σi = m for i = Nf +1, . . . , Nf +k.

At large m the dual partition function becomes

Zm = lim
m→∞

ζ−k
2−2kNc−2e

−
iπkm(2mA(−Nc−Nf+k)−mNc+2ωNf+λ)

ω1ω2

×e
iπ(8ωmA(Nf(Nc−Nf−2k)+k2)+m2

A(4kNc+4Nf(Nf+2k)−10k2)+4ω2(N2
c−Nc(2Nf+k)+Nf(Nf+2k))+λ2)

4ω1ω2

×
∏

a,b

Γh(µa + νb)I
(Nf ,Nf )

U(Nf−Nc)0
(ω − µ;ω − ν;−λ)I(0,k)U(k) k

2

(0;ω −mA;λ2) (5.14)

with

λ2 = −λ+ 2ω (Nf −Nc)−mA(k + 2Nf ) (5.15)

By computing the two integrals of the two chiral sectors one obtains the correct contri-

butions from the monopoles in the electric and magnetic sectors, and the correct result

is found.

At this point of the discussion we can discuss the difference between the 1−4 case and

in the 2− 3 case. In the 1− 4 case the electric gauge group, in the flow from the Giveon-

Kutasov to the Aharony duality, remains unbroken, the saddle is in the vacuum 〈σi〉 = 0.

In the 2 − 3 case the electric gauge group in the flow from the Giveon-Kutasov to the

Aharony duality is broken in a product of two subgroups, one represents the gauge group

associated to the Aharony electric theory while the second gauge group is a sector with

chiral like matter,4 with CS level k2 . This sector generates the superpotential interaction

involving the monopoles, that in the 2− 3 case arise also in the electric case.

Notice that we made two different choices for the electric Giveon-Kutasov gauge group

in the 1− 4 and in the 2− 3 case. Indeed in the first case the electric rank is Nc while in

4By chiral we mean that there are fundamental but not antifundamentals in the large m limit.
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the second case it is Nc + k. In both cases the electric models flow to the Aharony case

with rank Nc. The magnetic theories are modified accordingly.

Anyway there is an alternative way to perform this calculation, basically the study of

the flow in the 1− 4 case can be enough to obtain the flow 2− 3 case.5 One can start from

the 1− 4 case and add, in the magnetic theory, a massive interaction, coupling one of the

electric monopoles (singlets) to a new singlet. The quantum numbers of this singlets are

determined by the superpotential interaction itself. By integrating out the heavy fields and

by dualizing, one obtains the expected 2− 3 duality. At the level of the partition function

one has to add the contribution of this new singlet. By using the relation

Γh(z)Γh(2ω − z) = 1 (5.16)

one can show that, due to the presence of the mass term involving the old and the new

singlets, the contribution of these singlets to the partition function is equal to the unity.

For consistency the same contribution from the new singlet has to be added on the other

side of the equality between the two partition functions of the 1−4 case. This has the same

quantum numbers of the magnetic monopoles acting as a singlet in the electric theory. The

expected relation for the 2− 3 case is then recovered without any other complications.

However at the level of the partition the integration of the monopole operators by the

formula (5.16) does not seem to affect the structure of the saddle point, while in the explicit

calculation for the 2−3 case we had to choose a different saddle in the flow from the theory

without CS to the theory with non zero level. The reason is that the monopole are charged

under the topological symmetry, that is associated to the FI term in the theory. The

integration of one of the electric monopoles in the magnetic theory changes the flow. The

effetive FI of the electric and of the magnetic theory are modified in the large mass limit and

it affects the saddle of the partition function as we explicitely checked in the calculation.

6 The symplectic group

In this section we extend our results to the case of the symplectic gauge group SP(2Nc).

First we discuss the Aharony and Giveon-Kutasov dualities for symplectic groups then we

review some useful result for the partition function. Then we will discuss the flow from

the Giveon-Kutasov dual pair to the Aharony dual pair. Finally we test the result on the

partition function as in the unitarity case.

6.1 Aharony and Giveon-Kutasov dualities

First we discuss the case of Aharony duality. The electric theory is a SP(2Nc)0 gauge theory

with 2Nf flavors Q. Note that the group is real here and the field content is chiral like.

The magnetic theory is a SP(2(Nf − Nc − 1)) gauge theory with Nf flavors q and a

singlet in the 2Nf (Nf −1) representation of the SU(2Nf ) flavor symmetry. In addition the

monopole operator Y of the electric theory is a singlet in the dual theory and couples to

the magnetic monopole y. The superpotential is

W =Mqq + Y y (6.1)

5We thank the referee for suggesting us this possibility.
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The symplectic version of Giveon-Kutasov duality was first discussed in [15]. In this case

the electric theory has SP(2Nc)2k gauge theory with Nf light flavors. The factor of 2 in

front of the CS level is related to the normalization of the generators of the Lie algebra [15].

The dual theory is a SP(2(Nf −Nc − 1+ |k|) gauge theory with Nf flavors and the meson

in the Nf (2Nf − 1) representation, with superpotential

W =Mqq (6.2)

6.2 Partition functions

As in the unitary case also in the symplectic case the identities relating these two dualities

have been first derived in [21]. Here we explicitly show these relations.

First we give the general expression for the partition function of an SP(2Nc)2k gauge

theory with 2Nf fundamental

I
2Nf

SP(2Nc)2k
(µ) =

1

2NcNc!

∫ Nc∏

i=1

dσie
2iπk
ω1ω2

σ2
i

√−ω1ω2

2Nf∏

a=1

Γh(±σi + µa)Γ
−1
h (±2σi)

∏

1≤i<j≤Nc

Γ−1
h (±σi ± σj)

(6.3)

When the CS term is vanishing we have the Aharony dual pair. In this case the equivalence

between the electric and magnetic partition functions is encoded in the relation

I
2Nf

SP(2Nc)0
(µ) = I

2Nf

SP(2(Nf−Nc−1))0
Γh(2(Nf −Nc)ω − 2NfmA)

∏

1≤a<b≤2Nf

Γh(µa + µb) (6.4)

with the balancy condition
∑2Nf

a=1 µa = 2NfmA. The second relation can be derived

from (6.4) by integrating out some massive quarks. The duality between the electric

SP(2Nc)2k and the magnetic SP(2(Nf −Nc + |k| − 1)−2k CS gauge theories is summarised

in the relation

I
2Nf

SP(2Nc)2k
(µ) = I

2Nf

SP(2(Nf−Nc−1))−2k

∏

1≤a<b≤2Nf

Γh(µa + µb)ζ
sign(k)(|k|−1)(2|k|−1) (6.5)

e
iπ

2ω1ω2

(
−4Nckω2−sign(k)

(
(2Nf (1−∆)−2Nc+1)ω−

∑2Nf
a=1 µa

)2

+2k
∑Nf

a=1(µa+ω(1−∆))2+k(2|k|−1)ω2

)

6.3 Flowing from Giveon-Kutasov duality to Aharony duality

We consider a SP(2Nc)−2k gauge theory with 2Nf light and 2k heavy flavors. The masses

are {
µa = mA +ma a = 1, . . . , 2Nf

µa = mA +m a = 2Nf + 1, . . . , 2(Nf + k)
(6.6)

with m→ ∞. This theory flows to a SP(2Nc)0 gauge theory with 2Nf light fundamentals.

The dual theory has SP(2(Nf −Nc − 1 + 2k))2k gauge group and 2(Nf + k) fundamentals

and 2(Nf + k)2 − (Nf + k) singlets. The masses can be read from the global symmetries

as usual. The duality is preserved if the vacuum is chosen as
{
σi = 0 i = 1, . . . , Nf −Nc − 1

σi = m i = Nf −Nc, . . . , Nf −Nc + 2k − 1
(6.7)
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This breaks the dual gauge group into SP(2(Nf −Nc − 1)0 × U(2k)k. By integrating out

the massive matter we have, in the unbroken symplectic sector, 2Nf light quarks while in

the unitary sector we are left with k light fundamentals. This chiral theory can be studied

as in the case of the unitary groups and it gives raise to the term yY required by the

Aharony duality. In the rest of this section we will test the validity of this RG flow on the

partition function.

6.4 Following the flow on the partition function

In this section we study the flow just explained on the partition function. At large m the

partition function of the electric theory is

ZE = lim
m→∞

ζ−4Ncke
2iπkNc(mA+m−ω)2

ω1ω2 I
2Nf

SP(2Nc)0
(µ) (6.8)

The dual partition function in the large m limit is6

ZM = lim
m→∞

ζ−4Nck−1e
iπ

2ω1ω2
φ
∏

1≤a<b≤2Nf

Γh(µa + µb)I
2Nf

SP(2(Nf−Nc−1))0
(ω − µ)I

(0,2k)
U(2k)k

(0;ω −mA;λ)

(6.9)

where the exponent φ is

φ = 8kωmANc + 8kmmANc − 16k2ωmA + 4k2m2
A + 8kωmA + 4km2Nc

−8kmωNc − 12kω2Nc + 4ω2Nc + 12k2ω2 − 8kω2 + ω2

+8ωmANcNf + 4km2
ANc − 32kωmANf + 16km2

ANf − 8ωmAN
2
f

+4ωmANf + 4m2
AN

2
f − 8ω2NcNf + 4ω2N2

c + 16kω2Nf + 4ω2N2
f − 4ω2Nf (6.10)

and the complex FI term in the U(2k)k sector is

λ = 4(Nf −Nc + k)ω − 2ω − 2mA(k + 2Nf ) (6.11)

This integral can be computed explicitly ant it gives

ZU(2k)k = e
−

iπ(4kmA(4kω−3λ)+λ(8kω+λ)−12k2m2
A)

8ω1ω2 Γh

(
ω + kmA − 2kω +

λ

2

)
(6.12)

After substituting (6.11) into (6.12) the argument of Γh is 2ω(Nf − Nc) − 2mANf that

represents the correct contribution of the electric monopole appearing as an elementary

field in the magnetic phase of Aharony duality. Finally by eliminating the m dependence

on both sides we recover formula (6.4) as expected.

6As in the unitary case we impose the balancing condition on the light fields
∑2Nf

a=1 µa = 2NfmA.
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7 The orthogonal case

In this section we repeat the analysis for the orthogonal groups. Giveon-Kutasov and

Aharony dualities have been studied in [7, 26–28].

First we analyse the Giveon-Kutasov theory. We consider a O(Nc)−k gauge theory

with Nf light and k heavy flavors. The real masses are
{
µa = mA +ma a = 1, . . . , Nf

µa = mA +m a = Nf + 1, . . . , Nf + k
(7.1)

with large positive m. The dual theory is a O(Nf −Nc + 2 + 2k)k gauge theory with Nf

light and k heavy flavor and
(Nf+k)(Nf+k+1)

2 singlets. Their mass structure is obtained

from the global charges as usual. The vacuum of this dual theory is
{
σi = 0 i = 1, . . . , Nf −Nc + 2

σi = −m i = Nf −Nc + 3, . . . , Nf −Nc + 2 + 2k
(7.2)

This flow generates the Aharony dual pair for the orthogonal group.

As in the unitary and symplectic cases we study this flow on the partition function.

However, in the orthogonal case, some subtleties arise because the rank of the gauge group

can be even or odd, and this modifies some terms in the partition function. The partition

function for a model with an O(Nc) gauge group (with Nc = 2N or Nc = 2N +1) with Nf

flavors is given by the following two relations

I
nf

O(2N)k
(µ) =

1

2N−1N !

∫ N∏

i=1

dσie
iπk

ω1ω2
σ2
i

√−ω1ω2

Nf∏

a=1

Γh(±σi + µa)
∏

1≤i<j≤n

Γ−1
h (±σi ± σj) (7.3)

I
nf

O(2N+1)k
(µ) =

∏Nf

a=1 Γh(µa)

2NN !

∫ N∏

i=1

dσie
iπk

ω1ω2
σ2
i

√−ω1ω2

Nf∏

a=1

Γh(±σi + µa)Γ
−1
h (±σi)

∏

1≤i<j≤N

Γ−1
h (±σi ± σj)

Even if the two expressions look different it has been shown in [7] that one can write a

single formula to match the cases of the Aharony and Giveon-Kutasov duality. For the

Aharony duality one has

I
Nf

O(Nc)0
= I

Nf

O(Nf−Nc+2)0
Γh

(
ω(Nf −Nc + 2)−

Nf∑

a=1

µa

) Nf∏

a,b=1

Γh(µa + µb) (7.4)

with the constraint
∑Nf

a=1 µa = NfmA. In any case one has to distinguish in the explicit

calculations if the gauge group has rank even or odd. The relation (7.4) allows to derive

the analogous equality for the Giveon-Kutasov duality. This was done in [7] and one has

I
Nf

O(Nc)k
= I

Nf

O(Nf−Nc+2+2|k|)−k
ζ

sgn(k)(k|+1)(|k|+2)
2

Nf∏

a,b=1

Γh(µa + µb) (7.5)

×e
iπ

2ω1ω2

(
−Nckω2−sgn(k)

(
(Nf−Nc+2+2|k|)ω−

∑Nf
a=1 µa

)2

+k
∑Nf

a=1(µa−ω)
2+ k

2
(|k|+1)

)

In the rest of this section we study the flow explained above and show that it connects (7.5)

to (7.4).
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As anticipated the explicit calculation requires the knowledge of the parity of the rank

of the gauge group in the electric and in the magnetic theory. In general there are eight

possibilities, depending on the parity of Nc, Nf and k. By explicit computations it is

possible to observe that they reduce to the same formula. In general starting from the

O(Nc)k theory with Nf +k flavors, Nf light and k heavy as usual one arrives to an O(Nc)0
model with Nf light flavors. In the large m limit we have

ZE = lim
m→∞

ζ−2kNcI
Nf

O(Nc)0
(µ)e

iπkNc(mA+m−ω)2

ω1ω2 (7.6)

In the dual magnetic case, we assign the proper masses to the fields according to the global

symmetries. Then we shift σ as in (7.2). After fixing
∑Nf

a=1 µa = NfmA in the large m

limit we have

ZM = lim
m→∞

ζ−2kNc−1 lim
m→∞

e
iπk

ω1ω2
φ

nf∏

a,b=1

Γh(µa + µb)I
Nf

O(Nf−Nc+2)0
(ω − µ)I

(k,0)
U(k) k

2

(mA; 0, λ)

(7.7)

where the exponent φ is

φ = m2
A

(
kNc + 4kNf +N2

f + k2
)
+Nc

(
−2ω2Nf + k

(
m2 − 2mω − 3ω2

)
− 2ω2

)

+ω2((4k + 2)Nf +N2
f + 3k2 + 4k + 1)− 2mA(ω((4k + 1)Nf +N2

f + 2k(k + 1))

+ω2N2
c −Nc(ωNf + k(m+ ω))) (7.8)

and the complex FI parameter is

λ = 2ω (Nf −Nc + k + 1)−mA (2Nf + k) (7.9)

The integral I
(k,0)
U(k) k

2

(mA; 0, λ) can be computed with the usual technique of [7]. It gives

I
(k,0)
U(k)k/2

(mA; 0, λ) = e
−

iπ(−3k2m2
A+2kmA(2kω−3λ)+λ(4kω+λ))

8ω1ω2 Γh

(
kmA

2
− kω +

λ

2
+ ω

)
(7.10)

After substituting λ all the exponents cancel when one equates (7.6) to (7.7). The hyper-

bolic Γ function in (7.10) becomes

Γh(ω (Nf −Nc + 2)−mANf ) (7.11)

and as expected it coincides with the expected contribution of the electric monopole.

8 Conclusions

In this paper we studied RG flow connecting two sets of dual pairs in three dimensions.

We showed that the matching between the two partition functions in the UV pair is

preserved by the flow once the IR pair is reached. The interesting fact is that one can

reconstruct from the partition function the contribution of the monopole sector in the
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magnetic Aharony phase. We have also shown that the analysis holds in the symplectic

and in the orthogonal cases.

Some generalization of our work are possible. First one may consider the flows studied

in [9]. Indeed it may happen in these cases that some of the extra sectors, that we used to

reconstruct the monopole contributions, decouple. Studying these flows with the partition

function should be useful for an understanding of this decoupling. Another possibility

consists of flowing from the Giveon-Kutasov case to the dual pairs with a chiral field

content studied in [7]. One may also study real mass flows from UV duals with adjoint

matter [29, 30] or more complicate representations and gauge groups [31, 32] and obtain

IR dualities, and check the behaviour of these flows on the partition function.

Another interesting aspect that we did not address in this paper is the role of accidental

symmetries. Indeed already at the level of the Aharony dual there are critical values of the

levels and ranks at which some singlet become free [33]. This is expected also for theories

with a representations different than the fundamental [24, 25, 34]. It would be interesting

to understand if and how accidental symmetries may be an obstruction for these flow.
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